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Abstract
TCP performs poorly on paths that reorder packets significantly, where it misinterprets out-of-order delivery
as packet loss. The sender responds with a fast retransmit though no actual loss has occurred. These re-
peated false fast retransmits keep the sender’s window small, and severely degrade the throughput it attains.
Persistent reordering occasionally occurs on present-day networks. Moreover, TCP’s requirement of nearly
in-order delivery complicates the design of such beneficial systems as DiffServ, multi-path routing, and paral-
lel packet switches. Toward relaxing this constraint on Internet architecture, we present enhancements to TCP
that improve the protocol’s robustness to reordered and delayed packets. We extend the sender to detect and
recover from false fast retransmits using DSACK information, and to avoid false fast retransmits proactively,
by adaptively varying dupthresh. Our algorithm adaptively balances increasing dupthresh, to avoid false fast
retransmits, and limiting the growth of dupthresh, to avoid unnecessary timeouts. Finally, we demonstrate
that delayed packets negatively impact the accuracy of TCP’s RTO estimator, and present enhancements to
the estimator that ensure it is sufficiently conservative, without using timestamps or additional TCP header
bits. Our simulations show that these enhancements significantly improve TCP’s performance over paths that
reorder or delay packets.
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1 Introduction and Motivation

In today’s Internet, deployment of systems that introduce packet
reordering in their normal course of operation, regardless of
their other benefits, is strongly ill-advised. This taboo derives
from the poor throughput TCP achieves under reordering, and
the predominance of TCP traffic on the Internet. To the extent
that reordering occurs today, it is generally perceived as a tran-
sient malfunction, or as an indication that a technology is mal-
adapted for use with TCP. Examples include:

Measured Transient Behavior: When the route to a particular
destination oscillates among multiple alternatives, each of which
may have a different round-trip time (RTT), reordering may re-
sult [19]. Routers have been observed to cease forwarding while
processing a routing update, and intersperse the delayed packets
with new arrivals, causing reordering [20].

High-Speed Switches: Bennett [5] et al. show that MAE-East
reordered packets frequently. They argue that striping of pack-
ets across multiple links between neighboring switches com-
bined with work-conserving switch architectures must produce
reordering.

Satellite Links: Satellite links have very long RTTs, typically
on the order of several hundred milliseconds. To keep the pipe
full, link-layer retransmission protocols for such links must con-
tinue sending subsequent packets while awaiting an ACK or
NAK for a previously sent packet. Here, a link-layer retrans-
mission is reordered by however many packets were sent be-
tween the original transmission of that packet and the return of
the ACK or NAK [22].

A reordering-robust TCP would perform better in these cases.
But the most compelling reasons to improve TCP’s robustness
to reordering are the beneficial systems that cannot be deployed,
because they introduce reordering, or are restricted in their util-
ity because of the in-order delivery requirement. Such systems
include:

Multi-Path Routing: Routing a TCP flow’s packets over mul-
tiple routes with distinct bottlenecks will increase the total end-
to-end bandwidth available to the flow. Overlay networks are
poised to offer this functionality. But the resulting divergent
routes can easily have RTTs that differ sufficiently to cause sig-
nificant packet reordering. While a multi-path routing scheme
could still offer benefit by always routing a single flow’s pack-
ets on one route, this approach doesn’t let one flow use the total
available capacity on all routes, and requires the router divid-
ing packets among routes to use flow identifier information in
making per-packet forwarding decisions.

Parallelism in Packet Forwarding: A promising technique for
building inexpensive high-speed routers is to use parallel for-
warding and/or switching hardware. Successive packets that ar-
rive at a router, even on the same link, may be forwarded and/or
switched simultaneously by independent hardware. This simple
parallel approach ignores ordering between packets processed
simultaneously, and introduces reordering when packets require
different processing delays. Enforcing in-order delivery in such
architectures significantly increases their complexity [8], and in
the case of switching, eliminates much of the cost savings of the

parallel hardware approach.

Differentiated Services: Packets sent by a host may be given
different per-hop behaviors (PHBs) under DiffServ [6]. PHB
markings cause routers to treat packets with different drop be-
haviors or forwarding precedences, among other per-hop behav-
iors. A single TCP flow’s packets generally cannot be marked
with different PHBs, because the different forwarding behaviors
may cause reordering. This restriction is no minor limit on the
usefulness of DiffServ. It is entirely possible that a single flow’s
sending rate may exceed that permitted by a traffic profile en-
forced by a traffic conditioner for a “premium” PHB. In such
a case, the conditioner may either drop out-of-profile packets,
or assign them a different PHB—and thus risk reordering the
flow’s packets. Both alternatives reduce TCP’s throughput. To
avoid these pitfalls, none of that flow’s packets may use the pre-
mium PHB if only a few are out-of-profile. The sender loses
the utility of the premium PHB entirely, whereas it could realize
(for example) a lower overall drop rate if some of the packets in
the flow were marked with the Assured Forwarding PHB.

We seek to end this restriction on the Internet architecture by
enhancing TCP to improve its robustness on network paths that
reorder packets. In this paper, we describe a Reordering-Robust
TCP (RR-TCP).

It is TCP’s inability to distinguish reordering from packet loss
that causes the protocol to perform poorly on paths that deliver
packets out of order. Losses, falsely detected or genuine, cause
TCP to send more slowly. Yet this mistaking of reordering for
loss is not fundamental to window-based congestion control.
Rather, it is an artifact of the design of TCP’s fast retransmit
mechanism, which arbitrarily concludes that a packet must have
been lost if it is still missing at the receiver after three packets
sent later have arrived at the receiver. On a network path that
reorders packets more than minimally, this choice of three is too
aggressive in concluding loss; waiting longer before concluding
loss might reveal that the packet wasn’t lost at all, but only de-
layed en route. Herein lie two of the fundamental costs when
improving TCP’s throughput under reordering:

� End-to-end delay for packets dropped and subsequently
retransmitted will increase, because reordering tolerance
means the sender must wait longer before determining a
loss has occurred.

� Congestion response will be less timely, because detection
of loss is the primary feedback in detecting network con-
gestion.

Clearly, there is a tension between timely detection of loss and
being forgiving in case packets arrive out-of-order. We demon-
strate in this work that a properly extended TCP sender can
achieve significantly improved robustness to reordering, with-
out sending significantly more aggressively in the face of gen-
uine congestion.

The DSACK extension [11] to SACK TCP [16] is a use-
ful tool for making the TCP sender more robust to reordering.
DSACK reports to the sender when duplicate packets (for the
same sequence number) arrive at the receiver. Should the sender
incorrectly conclude that a packet was dropped rather than re-
ordered, and retransmit that packet, it will later learn so from a
DSACK that the receiver returns once both the original packet
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and the spurious retransmission of it arrive. DSACK doesn’t
specify the sender’s actions; it only provides duplicate receipt
information to the sender. While the sender only learns of a
spurious retransmission from DSACK after at least a full RTT,
we show that this information is still quite useful in adapting
the sender’s behavior, both in “backing out” the recent incorrect
window reduction, and in avoiding future spurious retransmis-
sions.

We present a control loop for dynamically adapting the trig-
ger for TCP’s fast retransmit, based on measurements the sender
takes of the reordering behavior of the network. The con-
trol loop uses reordering behavior learned from SACKs and
DSACKs, fast retransmit events, and timeout events as feed-
back, and aims to maximize the throughput achieved by a con-
nection. A key difference between our control loop and the prior
work in this area is that we use information concerning timeouts
to avoid making TCP too tolerant of reordering; we show in Sec-
tions 4 and 5 that excessive reordering tolerance leads to time-
outs and reduced throughput. The control loop presented in this
paper uses more state at the sender than do previous approaches;
we seek to demonstrate that this additional state confers greater
performance benefits than prior, lower-cost approaches. Finally,
we propose a simple change to TCP’s RTO estimator that ren-
ders it sufficiently conservative on paths that significantly delay
packets, without requiring TCP header information beyond that
provided by DSACK.

The end result, RR-TCP, offers significantly enhanced
throughput on reordering paths, as demonstrated in simulations.
Its deployment could substantially loosen the in-order delivery
restriction on the Internet architecture.

We proceed in the remainder of this paper as follows: Sec-
tion 2 describes the phenomenon of false fast retransmit, re-
sponsible for TCP’s poor performance on reordering paths, and
reports on other dynamics of fast retransmit that affect perfor-
mance on reordering paths. Section 3 catalogs related work in
TCP and reordering. In Section 4, we present the algorithmic
components of RR-TCP’s reordering adaptation control loop. A
detailed performance evaluation of RR-TCP in simulation can
be found in Section 5. We conclude by suggesting future av-
enues of research in Section 6, and summarizing our findings in
Section 7.

2 Fast Retransmit and Reordering

The fast retransmit and fast recovery mechanism, first imple-
mented in 4.3BSD Reno TCP and described in RFC 2581 [2],
allows TCP to detect loss without experiencing a retransmit
timeout (RTO). After the loss, packets that arrive at the receiver
cause it repeatedly to acknowledge the same highest contiguous
sequence number received thus far. A sender that implements
fast retransmit uses the return of these duplicate acknowledge-
ments (duplicate ACKs) to detect loss. Using fast retransmit al-
lows the sender to reduce its congestion window by half without
going idle until the one-second-minimum retransmit timer ex-
pires, or having to slow-start from a window of a single packet.

Fast retransmit obviously requires a choice of how many du-
plicate ACKs the sender must receive before it concludes that
the network has dropped a packet. This parameter, dupthresh,
is fixed at three duplicate ACKs in the fast retransmit specifi-
cation, which states, “Since TCP does not know whether a du-

plicate ACK is caused by a lost segment or just a reordering
of segments, it waits for a small number of duplicate ACKs to
be received.” [2] Clearly, this choice assumes that the network
hardly ever perturbs a packet’s position in the stream sent by the
sender by more than three packets’ distance; otherwise, fast re-
transmit would incorrectly conclude that loss has occurred, and
halve the congestion window needlessly.

This section describes the interactions between fast retransmit
and reordering, and how they affect TCP’s performance. We
restrict our attention herein to the effects of reordering on the
TCP sender’s retransmission behavior and window size. The
sender enhancements we will propose are robust both to re-
ordered data packets and reordered ACKs. Reordered ACKs
have been shown to have other effects outside the scope of this
paper, e.g., increasing the burstiness of the sender.

2.1 False Fast Retransmit

The false fast retransmit phenomenon limits TCP’s throughput
when the network reorders a connection’s packets. We demon-
strate the phenomenon in Figure 1. Here, the first packet in the
first window shown is delayed by 0.45 seconds, while subse-
quent packets are not delayed, such that the first packet arrives
after the remainder of the packets in the window. Just after one
second, a cluster of duplicate ACKs arrives at the sender, trigger-
ing fast retransmit of the delayed packet, and causing the win-
dow size to be halved, though no loss has occurred. As reorder-
ings recur, this process will repeat, and beat down the sender’s
window, resulting in a severe throughput reduction unwarranted
by the network’s congestion status. On network paths that re-
order, a value of dupthresh greater than the distance in packets a
segment is displaced in the packet stream will prevent false fast
retransmits.
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Figure 1: Example of a false fast retransmit; packet number
vs. time. Times are at sender. The first packet sent is delayed
by 0.45 s.

Figure 1 has one other important aspect: it demonstrates the
use of DSACK information in recovering from a window reduc-
tion caused by a false fast retransmit. Should the sender learn
from a DSACK it receives that a retransmitted packet was not
dropped, it can undo the window reduction made at the time of
the retransmission. Here, the DSACK arrives at approximately
time 1.45. Note that the sender restores its old window of six-
teen packets thereafter. Prior work on TCP’s response under re-
ordering, described in Section 3, investigates this recovery after
learning of spurious retransmission; our work extends recovery
by additionally avoiding false fast retransmits.
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2.2 Risks of Increasing dupthresh

Unfortunately, increasing dupthresh is not without cost. While
progressively greater dupthresh values prevent the TCP sender
from wrongly concluding that progressively longer reorderings
are losses, these greater dupthresh values make the TCP sender
respond more slowly after real packet drops. Should dupthresh
grow large, risks include:

� generation of timeouts, because insufficient duplicate
ACKs return to trigger fast retransmit after a loss;

� significantly increased end-to-end delay for dropped
packets—even if enough duplicate ACKs return, the fast
retransmit will be delayed until they all arrive; interactive
transfers or video over TCP, as done by the popular Re-
alVideo application, are intolerant of spikes in end-to-end
packet delay;

� delayed response of TCP to congestion, also because fast
retransmit is delayed and limited transmit (described in
the next section) may send multiple congestion windows
(cwnd) of additional packets as duplicate ACKs arrive;

� drastic lengthening of transfer times for short transfers,
when a loss occurs near the end of a short transfer, because
there are insufficient packets left to send to provoke a fast
retransmit, and a one-second-minimum timeout will result,
instead.

There is a clear tradeoff between avoiding false fast retrans-
mits and the above-enumerated risks. A scheme for adapt-
ing dupthresh must balance these opposing goals. Increasing
dupthresh alone is insufficiently adaptive; an algorithm for re-
ducing dupthresh is also needed.

2.3 Limited Transmit and dupthresh

One further detail of fast retransmit bears mention: the lim-
ited transmit extension, currently a Proposed Standard in the
IETF [1]. Under limited transmit, the sender is permitted to
send one new data packet for each of the first two duplicate
ACKs that arrive. This behavior aids the sender in accumulat-
ing three duplicate ACKs after a loss, even when its window
is small. On the majority of paths, the RTT is far shorter than
the one-second-minimum RTO. Limited transmit allows senders
on these paths with even a window of three packets to recover
from a single packet loss with fast retransmit, rather than with
a timeout. While limited transmit permits the sender to send
two packets beyond its current congestion window, it only sends
these packets in response to the ACK clock, and so does not
significantly deviate from TCP’s congestion control model.

The proposers of limited transmit specifically avoid consider-
ing a dupthresh of any value other than three. If we are to con-
sider greater dupthresh values, the degree to which the sender
sends beyond its current congestion window will increase. To-
gether with the work we present on varying dupthresh, we also
extend limited transmit to permit sending up to one additional
congestion window’s worth of packets. Note that this limit only
matters when dupthresh is greater than the current congestion
window size; otherwise, it is dupthresh itself that limits the num-
ber of packets sent with limited transmit. There are reasons for

attention to the number of packets limited transmit allows be-
yond the current congestion window. They include:

� Flows that do not use limited transmit will send fewer pack-
ets after a loss than flows that do.

� The extra transmissions of limited transmit may cause re-
transmissions by competing flows to be dropped.

� In cases where there is very little statistical multiplexing at
the bottleneck, a flow using limited transmit may be sub-
stantially responsible for the congestion at the bottleneck,
and may send packets under limited transmit that will only
congest the bottleneck further.

� Limited transmit can delay fast retransmit’s reduction of
the congestion window. After a single loss, if dupthresh is
very great, sending k times the congestion window size of
packets with limited transmit delays window reduction by
k RTTs.

These statements all relate to the aggressiveness of a TCP that
uses limited transmit, vs. that of a TCP that does not. Note that
they apply to all incarnations of limited transmit, regardless of
the dupthresh value, and whether limited transmit will send up
to dupthresh� 1 packets. Yet the number of packets sent by
limited transmit affects the degree to which these arguments are
a concern.

Nevertheless, no matter how many packets limited transmit
sends, it is always self-clocking. Bansal et al. [4] show that
under conditions of appreciable statistical multiplexing, self-
clocking congestion control protocols do not cause high packet
drop rates at a bottleneck for protracted periods. Their result
applies to protocols that respond slowly to congestion, such as
TFRC [10], which requires four to eight RTTs to cut its sending
rate by half, even under persistent congestion. Thus, our choice
of permitting limited transmit to send up to one ACK-clocked
additional congestion window’s worth of data when dupthresh
is great does not make TCP significantly more aggressive; it
merely slides TCP in the direction of being a more slowly re-
sponding congestion control protocol.

Most importantly, we stress that the work we present is inde-
pendent of the number of packets limited transmit may send.
Our algorithms for varying dupthresh in response to reorder-
ing confer quantitatively similar performance improvements
whether we permit no limited transmit, one congestion win-
dow’s worth, or two congestion window’s worth.

Finally, note that the number of packet transmissions per-
mitted by limited transmit determines the maximum reordering
length for which an increased dupthresh is useful in improving
TCP’s throughput. If dupthresh becomes greater than the total
number of packets that limited transmit is willing to send, the
sender will be unable to keep the pipe full during reorderings
longer than the bound on limited transmit. Thus, there is a trade-
off between the maximum reordering length for which TCP will
be robust, and restricting the delay of TCP’s response to loss by
limiting the bound on limited transmit.

2.4 Delay and Reordering

The phenomena of delay and reordering are related. It is pos-
sible to have delay without reordering (e.g., a router buffers all
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packets for a period in-order, then continues forwarding), but
this case is out-of-scope of our investigation. Instead, we view
reordering as a process that causes a packet or packets to be de-
layed, such that they arrive later than packets sent later by the
sender. In the eyes of TCP, delaying a packet and “accelerating”
a packet are equivalent; both cause a packet with a higher se-
quence number to arrive before a packet with a lower sequence
number. Throughout this work, we use the convention of re-
ferring to reordering as being caused by the delay of packets.
The model we use for delay provides for a percentage of pack-
ets to be delayed and a distribution of delay times for packets
selected to be delayed. Each packet is delayed independently,
except where noted otherwise.

3 Related Work

This section describes prior work in improving TCP’s perfor-
mance on networks that delay or reorder packets, and differen-
tiates our work from this earlier research.

Floyd [9] proposes using an extended version of SACK in-
formation to back out a window reduction after learning of a
false fast retransmit. This proposal evolved into DSACK [11],
which offers the sender information about duplicate packets that
reach the receiver, but doesn’t specify how the sender uses the
information to recover from spurious retransmissions.

Ludwig [15] studies the spurious retransmission problem,
both for spurious timeouts and spurious fast retransmits. The
work does not consider adaptation of dupthresh to avoid spuri-
ous retransmissions; it only backs out window reductions that
are found to have been made in response to packet delays or re-
orderings. Ludwig does not use DSACK to notify the sender of
duplicates. Rather, he proposes two alternatives. The first is to
use TCP timestamps on every packet [13], such that the different
timestamps on the original and retransmission return in ACKs,
and reveal to the sender that the ACKs are for distinct transmis-
sions of the same packet. The second is to use a reserved bit in
the TCP header, dubbed the RTX bit [15], to mark every packet
as either an original or a retransmission. An ACK reflects the
RTX bit value of the data packet it acknowledges. Timestamps
add twelve bytes to each packet’s length, and render present-
day header compression schemes ineffective; requiring their use
is therefore strongly undesirable. The RTX bit uses one of only
three remaining unused bits in the TCP header; primarily for this
reason, it has been withdrawn from the IETF standards process.
Both the timestamp and RTX bit proposals have two advantages
over DSACK. First, both timestamps and the RTX bit fully dis-
ambiguate whether an ACK corresponds to the original packet
transmission or a retransmission; DSACK does not. Second,
DSACK cannot notify the sender of duplicates until both the
original and retransmitted packets reach the receiver, whereas
either of Ludwig’s schemes may notify the sender up to one
RTT earlier that a retransmission was spurious. We examine
the performance difference between the RTX bit and DSACK in
Section 5.1.1.

Blanton and Allman [7] use DSACK information to restore
the sender’s congestion window size after detecting false fast
retransmits, and to increase dupthresh with the aim of avoid-
ing future false fast retransmits. They do not study the potential
negative effects of an increased dupthresh, and present no other
strategy for reducing dupthresh than resetting it to three packets

upon a timeout. In their work, they consider six strategies for in-
creasing dupthresh; we name them with short textual tags to ease
referring to them later. DSACK-BL-R detects and recovers from
false fast retransmit but doesn’t vary dupthresh. Three strate-
gies directly manipulate dupthresh: increasing dupthresh by a
constant value (one in their simulations) every time a false fast
retransmit occurs (DSACK-BL-INC); averaging dupthresh with
the number of duplicate ACKs that caused a false fast retransmit,
each time such an event occurs (DSACK-BL-AVG); and set-
ting dupthresh to an exponentially weighted moving average of
the number of duplicate ACKs received at the sender (DSACK-
BL-EWMA). These schemes limit dupthresh to a maximum of
90% of the current congestion window. Their other two strate-
gies involve the use of a timer to delay fast retransmit. One
sets the timer’s value to the delay between the arrival of the
first duplicate ACK and the return of the first ACK for the de-
layed packet (DSACK-BL-TIMEDEL). The other increments
the timer’s value by a constant value (10 ms in their simulations)
each time a false fast retransmit is encountered (DSACK-BL-
TIMEINC). For the timer-based schemes, the maximum value
the timer can reach is half TCP’s smoothed round-trip time esti-
mate, and the timer is never reduced in its length. These schemes
all hold less state at the sender than the ones we propose, but
they do not address the negative effects of too great a dupthresh,
or too long a timer.

4 Algorithms

This section describes our algorithms for enhancing TCP’s ro-
bustness to reordering. We begin with a simple scheme that the
sender uses to sample the reordering length distribution expe-
rienced by the data packets sent on a connection. Next, we
show how to use the reordering length distribution to increase
dupthresh in such a way as to avoid false fast retransmits. While
increasing dupthresh on lossless paths yields improved through-
put, this simplistic strategy is problematic on lossy paths, where
a dropped packet that could have triggered a fast retransmit with
the default dupthresh of 3 may instead cause a timeout.

Motivated by this difficulty, we present a strategy for reduc-
ing dupthresh adaptively in response to timeouts. The combined
increase/decrease scheme for dupthresh balances the tradeoff
between false fast retransmits and timeouts using a cost func-
tion that quantifies the reduction in throughput associated with
a false fast retransmit, vs. the reduction in throughput associated
with a timeout. The result is a heuristic for adapting dupthresh
in response to false fast retransmit and timeout events that the
sender experiences.

We complement the dupthresh adaptation algorithm with an
improvement to TCP’s RTO estimator that eliminates a sam-
pling bias that causes RTOs to be too aggressive on paths that
delay packets. Today’s SACK TCP avoids sampling RTTs
for all retransmitted packets, in accordance with Karn’s Algo-
rithm [14], whether by fast retransmit or timeout, because the
sender cannot know whether an ACK matches a data packet’s
original transmission or its retransmission. Because delayed (re-
ordered) packets are likely to trigger retransmissions, they are
less likely to be included in TCP’s RTO estimator, and produce
RTO estimates that are too short. We enhance the RTO estimator
to include RTT samples for falsely retransmitted packets, with-
out requiring the use of timestamps or any other extension to the
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TCP header.

4.1 Reordering-Related State: The Scoreboard

The SACK TCP scoreboard data structure [17] stores per-packet
state at the sender concerning recently transmitted packets. It
offers a natural framework for storing per-packet reordering-
related information: whether a fast retransmit is false, the du-
ration of false fast retransmit, and the length of the reordering
a packet experiences. We record each fast retransmit’s starting
time and window reduction amount in the scoreboard entry for
the retransmitted packet. If the fast retransmit is later identified
as false, we record the interval between the start and end of the
false fast retransmit, during which the window was unnecessar-
ily halved.

Measurement of reordering length is more nuanced. There are
two phases to sampling the distribution of reordering lengths ex-
perienced by packets: measuring the reordering length for each
packet, and aggregating these samples into a histogram of re-
ordering lengths recently observed on the connection’s path.

It is important to note that the extensions we describe to the
scoreboard here do not change the asymptotic storage or compu-
tation requirements of scoreboard maintainance. The fields we
add to the scoreboard affect the bytes per packet recorded in the
scoreboard, not the number of packets stored in the scoreboard.
And the reordering length histogram is small, as it only stores
events for reordered packets. Thus, the techniques we describe
are not significantly different in cost from SACK TCP, which is
already widely deployed [18].

4.1.1 One Packet’s Reordering Length

For the TCP sender to avoid a false fast retransmit after a packet
is reordered, its dupthresh must be greater than the number of
duplicate ACKs the reordering generates. When packet i is
delayed, one duplicate ACK will arrive at the sender for each
packet i+ 1 : : : i+ k that arrives at the receiver before packet i.
Thus, the worst-case number of duplicate ACKs generated by
the delay of packet i is k: the difference between the highest
packet number ACKed or SACKed so far and the number of the
delayed packet.1

Intuitively, when a packet is delayed and arrives out-of-order,
there is a “hole” in the sender’s scoreboard for that packet;
the sender receives SACKs for packets sent later than the de-
layed packet before receiving the ACK or SACK for the delayed
packet. Measuring the reordering length thus amounts to detect-
ing when a returning ACK or SACK fills in a hole in the score-
board corresponding to a packet number greater than the highest
contiguous packet number previously acknowledged; the differ-
ence between the packet number of the “hole” and the greatest
ACK or SACK number received so far is the reordering length.

For the moment, let us assume that ACKs are not dropped
or reordered, and that delayed acknowledgement is not used.
Here, the arrival of one packet at the receiver triggers one cu-
mulative or selective ACK, that communicates the receipt of that
one packet. In this case, a returning ACK or SACK block for a
delayed packet must always close exactly a one-packet hole in

1We use packet numbers here for clarity of exposition; the correspondence
between packet numbers and sequence numbers is abstracted away by the score-
board data structure.

length 4

Packet Stream at Receiver:  2  3  4  5  1
SACKs at Sender: S2 S3 S4 S5 C5

1 2 3 4 5
ACKed?

sequence number

Figure 2: An example of reordering measurement using the
scoreboard.

the scoreboard. This hole must lie between the previously ac-
knowledged packet with the greatest contiguous packet number
and the greatest packet number in the newly arriving ACK or
SACK. Thus, where i is the greatest packet number in the newly
arriving ACK or SACK, a sender measures the reordering length
r by scanning the scoreboard as follows:

c = greatest contiguously ACKed packet number
m = greatest ACK or SACK number received so far
n = 0
foreach packet k such that c < k � i

if current ACK newly ACKs or SACKs k
then

h = k // found a hole
n = n+1

endif
end
if n == 1 then

r = m�h
endif

When ACKs are dropped or reordered, a single returning
ACK can close more than one hole in the scoreboard. The test
for n == 1 ignores samples where a returning ACK closes more
than one hole, such that erroneous samples are not caused by
dropped or reordered ACKs. It is important to note that this
test makes the reordering length measurement mechanism ro-
bust against reordered ACKs; in Section 5.4, we demonstrate
in simulation that reordered ACKs do not affect the throughput
achieved by our TCP sender.

Figure 2 shows a simple example of the reordering length
measurement mechanism. Here, packet 1 is displaced four pack-
ets later in the stream of data packets that arrive at the receiver.
SACKs return to the sender for packets 2 : : :5. The scoreboard
in the figure is shown at the moment the cumulative ACK for
packet 5 returns. The sender finds the hole at packet 1, and con-
cludes a reordering length of 4.

When a packet is retransmitted, there is an ambiguity as to
whether its ACK corresponds to the original transmission or
the retransmission. When no DSACK for the retransmission
returns, the sender discards the reordering length sample for
the retransmitted packet, because that packet was lost, not re-
ordered. When a DSACK does return, the sender pairs the
original transmission with the first ACK to return, and the re-
transmission with the second, computes the reordering length
for each, and takes their mean as a conservative approximation
to the reordering length encountered by both packets. Note that
this mean has the same value, regardless of which of the two
possible pairings of ACKs with data packets are used.

TCP receivers are not intended to use delayed ACKs when
they receive out-of-order packets [2], to promote the accumula-
tion of duplicate ACKs at the sender. A look at the FreeBSD

5



ICSI TR-02-006, July 2002

4.3 TCP code reveals that a receiver only uses delayed ACK
when both the newly arrived segment is contiguous with previ-
ously acknowledged data, and the reassembly queue (containing
packets with sequence numbers greater than those contiguously
acknowledged) is empty. We conclude from these facts that de-
layed ACKs are extremely unlikely to occur during a reordering
epoch, between receipt of the first non-contiguous packet at the
receiver, and the emptying of the reassembly queue.

It’s possible to use the number of duplicate ACKs to measure
reordering length. But the number of duplicate ACKs is affected
strongly by delayed, dropped or reordered ACKs. The method
described above is not, and also allows us to measure multiple
reordering events within a single window of packets.

4.1.2 Aggregating into the Reordering Histogram

Samples of reordering lengths from each transmitted packet are
stored in a reordering histogram as ACKs return to the sender.
The bins in the histogram are reordering lengths; they count
the number of packets that have experienced each reordering
length between one and a configurable maximum. The his-
togram tracks the reordering history for a configurable period
of time. Each reordering event stored in the histogram holds a
timestamp. Periodically, events older than the history period are
deleted from the histogram. At the cost of the associated state
per connection, the histogram provides details of the reorder-
ing distribution to our dupthresh adjustment algorithms. The
choice of a histogram for storing state related to reordering is
one of many possible; Blanton and Allman explore alternatives
that accumulate less state [7]. Our goal is to demonstrate the best
case performance improvement that can be attained by using the
most accurate and detailed reordering information—a histogram
trades off increased accuracy and detail for increased state size.
We stress that a histogram makes no assumption about the dis-
tribution of reordering lengths packets experience; for any per-
sistent reordering process, a histogram will provide percentiles
of reordering lengths.

Note that reordering length samples for retransmitted pack-
ets are delayed in their insertion into the histogram. For each
retransmission of a packet, the sender must wait for the return
of both an ACK and a DSACK, as described previously, before
being able to determine the packet’s reordering length. If no
DSACK returns, we assume the original or retransmitted packet
was dropped.

4.1.3 Storage and Computational Costs

The standard SACK sender implementation keeps a scoreboard
for each open TCP connection. The reordering length mea-
surement scheme we’ve described keeps additional state in two
places for each connection: in the scoreboard and in the reorder-
ing length histogram. The standard SACK scoreboard already
measures whether a packet has been retransmitted and whether
it’s been acknowledged. Reordering length measurement adds
little further state; for each packet index in the scoreboard, the
additional fields used are only a reordering length field and a
DSACK block counter field. A single byte of storage per packet
index suffices for reordering lengths of up to 63 packets (6 bits)
and counting DSACK blocks (2 bits). Because the sender must
buffer each unacknowledged packet (1500 bytes for Ethernet-
MTU-sized packets), adding a byte of storage to the score-

board per packet is truly insignificant. The reordering length
histogram stores up to 1000 reordering events, each of which
contains a timestamp (4 bytes provide sufficient resolution and
magnitude) and pointer (another 4 bytes). This histogram can
be allocated dynamically as reordering is encountered. It costs
no storage on connections that do not encounter reordering, and
storage proportional to the degree of reordering on connections
that do, up to an 8K maximum. These storage requirements re-
strict cost to the connections that benefit. Again, our goal is to
explore the best throughput attainable under reordering; other
schemes may keep less state, but can be compared against this
one, which uses detailed reordering information.

The computational cost of our reordering length measure-
ment scheme involves scanning the scoreboard on receipt of
each ACK, SACK, and DSACK, and modifying the reordering
length histogram each time a reordered packet is found. The
BSD/OS SACK implementation [3], as a representative SACK
implementation, keeps a list of holes to track regions of se-
quence number space sent but not yet cumulatively ACKed or
SACKed. That implementation scans this list to update it with
every SACK it receives. Our reordering length measurement al-
gorithm can easily be implemented on this data structure, and
requires the same computation: a scan of this list on every re-
ceived SACK, and additionally on every received new cumula-
tive ACK. Note that each such scan costs computation propor-
tional to the number of holes in the sequence number space, i.e.,
the extent of packet reordering. Thus, reordering measurement
only costs computation when reordering occurs, exactly when
our scheme offers a throughput benefit. Upon detecting a re-
ordered packet, there is a single histogram insertion requiring
constant time. When a reordered packet expires from the his-
togram, its removal costs constant time. The oldest histogram
members are checked for expiration on each insertion. A coarse-
grained timer expires them when no insertions occur for a long
period. Thus, the computational costs of measuring reordering
length are negligibly greater than those of standard SACK.

4.2 Avoiding False Fast Retransmits: Increasing
Dupthresh

The reordering histogram summarizes the distribution of re-
orderings experienced by a connection’s packets. A simple strat-
egy for avoiding false fast retransmits is to choose the desired
percentage of reorderings for which false fast retransmits are to
be avoided, and to set dupthresh such that it equals that per-
centile value in the reordering length cumulative distribution.
That is, if 90% of reordering events are of 8 packets or fewer,
a dupthresh of 9 will avoid 90% of false fast retransmits. Even
with a fixed percentile choice, dupthresh may vary over time, as
the reordering histogram’s contents change in accordance with
the reordering behavior of the connection’s path.

We refer to this algorithm as DSACK-FA, for False Fast Re-
transmit Avoidance, and the percentage of reorderings the algo-
rithm avoids as the FA ratio.

4.3 Avoiding Timeouts: Adapting the FA Ratio

As described in Section 2.2, increasing dupthresh is not without
cost. Potential negative effects of a too-large dupthresh include
timeouts, long end-to-end delays for packets retransmitted after
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drops, and a delayed response of TCP to congestion. To avoid
these ills, an algorithm for reducing dupthresh is also needed.

Rather than directly varying dupthresh, we instead pro-
pose varying the FA ratio. Increasing the FA ratio will in-
crease dupthresh, while decreasing the FA ratio will decrease
dupthresh. A natural approach to building a control loop that
governs adaptation of the FA ratio is to consider the relative
costs of false fast retransmits and timeouts, and to set the FA
ratio accordingly.

4.3.1 Cost Function: RTOs

Both false fast retransmits and timeouts have opportunity costs
in needlessly missed packet transmissions. A false fast retrans-
mit causes a window reduction by half, and this smaller window
prevails until DSACKs return, and permit reinstatement of the
previous window value. In contrast, timeouts have two main
costs: the idle period after the full window of packets has been
sent, but before the RTO expires; and slow start, during which
the congestion window size must grow from one, and will be
smaller than half the previous congestion window size for mul-
tiple RTTs. We distinguish between two types of timeouts:

� False timeouts, for which a DSACK eventually returns,
occur when delay, not loss, causes an RTO.

� True timeouts, for which no DSACK returns, occur when
loss causes an RTO.

Suppose that a TCP connection has a steady state window size
W , a smoothed RTT of R, and a retransmission timeout period
of T . TCP will send a maximum of k�cwnd additional packets
while duplicate ACKs return under limited transmit [1], which
permits TCP to send new data in response to returning duplicate
ACKs to ease triggering of fast retransmit.

A true timeout consists of three phases: an idle period, slow
start, and linear increase beyond the halved window. Fast re-
transmits reduce throughput less than timeouts; they consist
only of halving the window, and linear increase beyond the
halved window. Thus, the additional cost of suffering a true
timeout rather than a fast retransmit is only the idle period and
slow start.

During the idle period, the sender misses the opportunity to
transmit W T

R �W(1+ k) packets. During slow start up to W=2,
the sender misses the opportunity to send (W �1)+(W �2)+
: : :+(W �W=2+1)+(W �W=2) packets, or:

log2 W�1

∑
i=0

[W �2i] =W (log2 W �1)+1

packets. Thus, the total cost of a true timeout is:

C(true timeout) =W (
T
R
+ log2 W � k�2)+1

packets. After a false timeout, when DSACK information re-
turns, the pre-timeout congestion window is restored. Thus,
there is no period of opportunity cost during linear increase of
the congestion window, and the cost of a false timeout with win-
dow restoration under DSACK is roughly equal to that of a true
timeout.2

2The costs are only approximately equal; the DSACK information may be
delayed in returning, in which case linear increase may begin before the old
window can be restored.

4.3.2 Cost Function: False Fast Retransmits

The transmission opportunity cost after a false fast retransmit
depends on the interval required for the sender to receive the
DSACK that identifies the fast retransmit as false. Recall from
Section 4.1 that the scoreboard measures, for each false fast re-
transmit, the duration of the wrongly reduced window (between
the window reduction and the return of the DSACK, if any).
We maintain an exponentially weighted moving average of this
false fast retransmit duration, D. When D = R, the cost of a
false fast retransmit is merely W=2; the window was halved un-
necessarily for only one RTT. When D > R, however, the cost is
greater, as the reduced window is in effect for a longer period.
Note that each subsequent RTT costs less, as linear increase
of the congestion window progresses, until after W=2 RTTs,
when the original window value has been restored. Thus, for
k = dD=Re, the cost of a false fast retransmit is bounded above
by (W � W

2 )+(W � W
2 �1)+ : : :+(W � W

2 � (k�1)), or:

C(false fast retransmit)�
k�1

∑
i=0

[
W
2
� i] =

k(W � k+1)
2

packets. Note that we limit k to W=2 regardless of D, to cap the
cost appropriately.

Because D and R are estimated as exponentially weighted
moving averages, their values are not instantaneously accu-
rate. The actual cost of a false fast retransmit lies between
the cost for khigh = dD=Re and the cost for klow = bD=Rc.
Rather than using a discrete single value of k, such that a small
change in D or R can provoke a disproportionate change in
C(false fast retransmit), we linearly interpolate between klow
and khigh.

4.3.3 Cost Function: Limited Transmit

The bound on limited transmit also introduces an opportunity
cost in idle time when the FA ratio (and thus dupthresh) are
great. In this situation, it may happen that limited transmit is in-
sufficient to accumulate the number of duplicate ACKs to trig-
ger a fast retransmit, and an idle period results. This is not to
say that limited transmit is problematic. On the contrary, when
dupthresh is so large, the idle time provides downward pressure
on the FA ratio without incurring the more severe cost associated
with a timeout.

More specifically, when a large dupthresh is in effect and the
RTT is small in relation to the minimum RTO, the sender may
remain idle after it exhausts limited transmit. Yet no timeout
may occur, as the delayed packet can easily be acknowledged
before the RTO expires. The idle period indicates dupthresh has
grown too large.

When the sender exhausts limited transmit, we store the time
this event occurs. If an ACK returns that permits the window
to advance once again, and no RTO has occurred, the idle pe-
riod I is the difference between the time the ACK returns and
the stored time limited transmit was exhausted. During this pe-
riod, we count the number of further duplicate ACKs that re-
turn, d. These duplicate ACKs partially filled the pipe at the
time the idle period began, and are not part of the opportunity
cost during the idle period. The cost of this idle period is thus
C(limited transmit) = I

RW �d.
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Here W is the steady state window size, and R is the smoothed
RTT. By reducing the FA ratio based on the cost of this idle
period, we risk increasing the number of false fast retrans-
mits experienced. Thus, we only decrease the FA ratio after
a limited-transmit-induced idle period if C(limited transmit) >
C(false fast retransmit).

4.3.4 Adapting the FA Ratio: Combined Cost Function

Having defined the cost functions associated with timeouts, false
fast retransmits, and limited transmit, we now explain how they
are used together to vary the FA ratio. Let the parameter S be
the fundamental step by which we adapt the FA ratio. In the
results presented herein, we use an S of 0.01, chosen to permit
fine adjustment of the FA ratio by the control loop. Rules for
adapting the FA ratio are:

Upon every false fast retransmit detected, increase the FA ratio
by S.

Upon every timeout, decrease the FA ratio by

C(timeout)
C(false fast retransmit)

S

Upon every limited-transmit-induced idle period, provided
C(limited transmit) > C(false fast retransmit), decrease the FA
ratio by

C(limited transmit)
C(false fast retransmit)

S

These rules heuristically adapt the FA ratio (and thus
dupthresh) in a way that maximizes throughput for a connection
experiencing reordering. False fast retransmits cause a gradual
increase in the FA ratio. Timeouts and significant idle periods
triggered by great dupthresh values cause the FA ratio to de-
crease in proportion to the relative throughput reductions they
create, as compared with the throughput reduction associated
with a false fast retransmit. We refer to the algorithm that uses
these cost functions and rules to adapt the FA ratio as DSACK-
TA, for Timeout Avoidance.

These collected enhancements to the sender result in a TCP
that achieves significantly greater throughput than a standard
SACK TCP, but it is important to note that this disparity does
not directly imply any fairness difficulties between a sender us-
ing these DSACK enhancements and a sender using standard
SACK TCP. It is the reordering that causes standard SACK TCP
to perform poorly. A DSACK-enhanced sender doesn’t cause
reordering, and so is not responsible for the poor throughput
SACK achieves under reordering. In cases where a DSACK-
enhanced TCP competes with a SACK TCP on a reordering
path, replacing the DSACK TCP with a SACK TCP should not
materially improve the performance of the other SACK TCP.

4.4 Choosing an Accurate, Conservative RTO

Karn’s Algorithm dictates that retransmitted packets not be in-
cluded in RTT sampling because of the retransmission ambigu-
ity, described in Section 3. On paths where packets are delayed,
however, it is the delayed packets that are most likely to provoke
retransmissions. Thus, in the presence of reordering, Karn’s Al-
gorithm introduces a sampling bias against including long RTT

Algorithm Name Description
SACK Standard SACK

DSACK-R DSACK + FFR recovery
DSACK-FA DSACK-R + fixed FA ratio

DSACK-FAES DSACK-FA + enhanced RTT sampling
DSACK-TA DSACK-FA + timeout avoidance

DSACK-TAES DSACK-TA + enhanced RTT sampling
DSACK-HG DSACK-TA + histogram RTO estimator

Table 1: Algorithms compared in simulation. FFR recovery in-
cludes detection of False Fast Retransmits with DSACKs and
restoration of the old, larger window size.

samples in the RTO estimator. In cases where packets are de-
layed for significant periods relative to the RTT, this bias may
cause TCP to adopt an RTO that is insufficiently conservative,
and causes false timeouts.

For all falsely retransmitted packets, either by fast retransmit
or timeout, two ACKs return, the second of which is a DSACK.
If both these ACKs arrive at the sender, the sender may approx-
imate the RTTs experienced by the packets by pairing the first
ACK to return with the first transmission, and the second ACK
with the second transmission; computing the time elapsed for
each; and taking the mean of these two values as a single RTT
sample for the RTO estimator. As before, the scoreboard holds
the time information associated with the packet’s transmission
and retransmission. Note that this mean value doesn’t change,
regardless of whether the packets and ACKs are paired prop-
erly. If one packet was delayed, or both were delayed, the mean
of their RTTs will be include a portion of the delay in an RTT
sample that otherwise would have been ignored by Karn’s Al-
gorithm. The sample cannot exceed the true RTT for the longer
of the two delayed packets. In this sense, DSACK enables RTT
sampling that is more inclusive for delayed packets, yet still con-
servative. If no DSACK returns, either the original or retrans-
mitted packet was lost, and we don’t sample that packet’s RTT.
In this sense, we comply with Karn’s Algorithm for retrans-
missions caused by packet drops, but include additional RTT
samples for retransmissions caused by packet delays. We term
this RTT sampling extension DSACK-ES, for Enhanced RTT
Sampling.

5 Experimental Evaluation

This section presents simulation results to demonstrate the
improvement DSACK-based sender-side algorithms make to
TCP’s performance over paths that reorder or delay packets. We
compare the performance of several variants of DSACK, both
those we propose in Section 4 and those proposed by others in
prior work. Table 1 summarizes the algorithms we compare in
simulation.

S1 S2R1 R21ms 1ms?ms
 10Mb/s 10Mb/s   ?Mb/s

Figure 3: Network topology used in simulations.

We simulate these algorithms in the ns-2 network simula-
tor [17], version 2.1b8, which includes support for generation
of DSACK information at the receiver in its sack1 implemen-
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tation. To introduce reordering, we extended ns-2 to delay a
configurable percentage of packets that traverse a link. An un-
delayed packet is forwarded on the link immediately; a delayed
one is scheduled to traverse the link later, and a delay later than
subsequent packet arrivals introduces reordering. The delay dis-
tribution is configurable, such that simulation with delays dis-
tributed according to the random processes supported in ns-2
(normal, exponential, hyperexponential, Pareto, Pareto II, and
uniform) is possible. Independently of the delay, we also con-
trol the drop rate associated with a link.

We simulate a wide variety of delay (reordering) distributions
to demonstrate the value of our algorithms in improving TCP’s
performance under reordering. Because of space limitations,
nearly all the results we present in this paper are for normally
distributed reordering lengths. In practice, our algorithms work
similarly well for other the other distributions we simulate; in
Section 5.5 we demonstrate this fact. We stress that the reorder-
ing sources we seek to address result in reordering behaviors that
are as tractable for our algorithms as those we simulate. Multi-
path routing will produce modal delays; successive packets sent
on paths with different RTTs will be reordered proportionally to
the paths’ RTT differences; we consider such a modal distribu-
tion in Section 5.6. Parallelism in router forwarding software or
hardware will result in relatively short reordering lengths. Satel-
lite links present long propagation delays, and delay packets re-
transmitted at the link layer by multiples of the RTT. Our simu-
lations are relevant for all these cases.

Our simulations consist of a single, long-lived TCP flow
traversing the network topology shown in Figure 3. The flow
lasts 1000 seconds. All data points in simulation results plots
are the means of five runs with different pseudorandom number
generator seeds for the packet reordering process, except where
otherwise noted. Reordering events and packet drops are intro-
duced at bottleneck link (R1;R2), whose link speed and propa-
gation delay we vary. In all simulations, the maximum window
size M permitted by the sender is fixed at 50 packets. To achieve
precise control of the loss behavior of the bottleneck, where the
bottleneck link has RTT R, we set the capacity S (in packets per
second) of link (R1;R2) such that S = M=R. Thus, when we
don’t introduce a controlled packet delay or dropping process
at the link, a TCP flow achieves throughput S, and the steady
state window size will be exactly M = 50. Were M greater, the
bottleneck link would periodically cause packet drops as TCP’s
congestion window varied in saw-tooth fashion bracketing 50
packets.

We show other parameters used in our simulations in Table 2.
Note that we bound the number of packets TCP may send with
limited transmit to be one current congestion window value.
This limit ensures that the sender delays window reduction after
a loss by fast retransmit no longer than one RTT.

5.1 False Fast Retransmit Avoidance

We first show how use of DSACK at the sender improves TCP’s
performance by detecting, recovering from, and avoiding false
fast retransmits. Here, the delay of link (R1, R2) is 50 ms. The
packet delay process is normally distributed, with a mean of 25
ms and standard deviation of 8 ms, such that most packets se-
lected for delay are delayed between 0 ms and 50 ms. Note
that these parameters represent typical Internet link delays, and

Parameter Value
Initial FA ratio 90%ile sampled

RTT Histogram ratio 99.8%ile sampled
Minimum dupthresh 3 pkts
Maximum dupthresh 64 pkts

Maximum sending window (maxwnd) 50 pkts
Limited transmit bound 1� cwnd

Reordering length sample lifetime 80 s
α in EWMA of FFR duration 1

8

Table 2: Simulation parameters. FFR denotes false fast retrans-
mit.

relatively mild reordering.

5.1.1 Varying Packet Delay Rate
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Figure 4: Throughput vs. fraction of delayed packets. 50 ms
propagation delay, normally distributed pkt delay, mean 25 ms,
stdev 8 ms.
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Figure 5: False fast retransmit ratio vs. fraction of delayed pack-
ets. 50 ms propagation delay, normally distributed pkt delay,
mean 25 ms, stdev 8 ms.

First, we vary the percentage of delayed packets from 1% to
30%, without introducing packet drops. As shown in Figure 4 3,
as more packets are delayed, the throughput of SACK drops
rapidly, but that of DSACK-FA and -TA is better. DSACK-TA
performs best, as its throughput decreases much more slowly
than that of the other schemes.

DSACK-FA and -TA avoid false fast retransmits by vary-
ing dupthresh. Figure 5 reveals that the fraction of packets re-
sent with fast retransmit for which retransmission is false under

3Note that SACK-NODELAY is a single point plotted at x = 0, and that
DSACK-TA-MEAN and DSACK-TA-RTX are plotted atop one another.
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DSACK-FA is less than 10%. DSACK-TA prevents still more
false fast retransmits. We do not show SACK’s fraction of false
fast retransmits here because the SACK implementation does
not detect these events.

In cases with virtually no RTOs, such as in this simula-
tion, DSACK-TA adjusts the FA ratio to 99% so that most
false fast retransmits are avoided. SACK-NODELAY shows the
ideal throughput TCP achieves when there is no packet delay.
DSACK-TA can maintain over 71% of the throughput possible
without packet delays, even when 30% of packets are delayed.

The -RTX and -MEAN variants of the TA and FA algorithms
show a comparison of two different strategies for measuring
the reordering lengths of retransmitted packets. Recall the am-
biguity in matching ACKs with retransmitted packets. The -
RTX variant uses the RTX bit [15] (a reserved bit in the TCP
header) to mark retransmitted packets and their ACKs differ-
ently, thereby resolving the ambiguity. The -MEAN variant
uses the technique described in Section 4.1.1, where no RTX
bit is used, but instead the two packets are paired with ACKs
in the order the ACKs return, and the mean of these two re-
ordering lengths is used as the sample for the reordering length
histogram. In all subsequent simulations, plots with no -MEAN
or -RTX suffix use the -MEAN variant.

The performance of DSACK-TA-MEAN is comparable to
that of DSACK-TA-RTX, but the FA-MEAN variant performs
a bit better than the FA-RTX variant. DSACK-FA-MEAN aver-
ages the two transmitted packets’ measured reordering lengths,
while DSACK-FA-RTX uses the reordering length of the origi-
nal transmission only. In this simulation, the reordering length
of the original packet is most often shorter than that of the
retransmitted packet because the original packet’s ACK usu-
ally arrives earlier. Thus, DSACK-FA-MEAN tends to mea-
sure slightly longer reorderings, and thus selects a slightly larger
dupthresh, which in turn causes fewer false fast retransmits. The
result is higher throughput for DSACK-FA-MEAN.

5.1.2 Varying Packet Drop Rate
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Figure 6: Throughput vs. drop rate. 5% of packets delayed. 50
ms propagation delay, normally distributed pkt delay, mean 25
ms, stdev 8 ms.

Next, we study the behavior of DSACK when packets are
both delayed and lost. In this example, 5% of packets are de-
layed, and the packet drop rate varies between 0% and 2%.
As shown in Figure 6, the throughput achieved by DSACK-
TA and DSACK-FA decreases sharply as the loss rate increases.
As one expects, all TCP variants suffer reduced throughput un-

der loss. As before, SACK-NODELAY shows the throughput
SACK TCP achieves under these loss rates when no packets are
reordered. In the case of the reordering-robust DSACK vari-
ants, a fast retransmit can be identified as a false fast retransmit
only when there are no packet losses in that window of packets.
As the drop rate increases, it becomes increasingly likely that
at least one packet drop occurs within a window. As a result,
the percentage of false fast retransmits decreases rapidly, and
the performance difference between DSACK and SACK dimin-
ishes.

5.2 Timeout Avoidance

20000

40000

60000

80000

100000

120000

140000

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
T

hr
ou

gh
pu

t (
pk

ts
)

Link Delay (s)

SACK
DSACK-R

DSACK-FA-MEAN
DSACK-FA-RTX

DSACK-TA-MEAN
DSACK-TA-RTX

Figure 7: Throughput vs. link propagation delay. 1.4% of pack-
ets delayed; 0.6% of packets dropped; uniform packet delay in
[0;4P].

Here, we demonstrate the performance benefits of dynami-
cally adapting the FA ratio to balance between false fast retrans-
mits and timeouts. We delay 1.4% of packets and drop 0.6%
of packets, and vary the link propagation delay P of (R 1;R2)
between 40 ms and 200 ms. The packet delay time varies uni-
formly between [0;4P] (up to 2 RTTs). These parameters repre-
sent cases in the upper range of Internet link delays, and moder-
ate packet delay.

As shown in Figure 7, DSACK-TA performs best. But this is
not because DSACK-TA causes the lowest percentage of false
fast retransmits; DSACK-FA actually causes an even smaller
percentage. To examine this relationship more closely, we fix
the link delay of (R1;R2) at 100 ms, and vary the target FA
ratio of DSACK-FA from 95% down to 5%. Figure 8 shows
(a) the RTO behavior, (b) the fast retransmit behavior, and (c)
the throughput behavior of DSACK-FA under these conditions.
In Figure 8a, the fraction of sent packets that encounter time-
outs decreases rapidly as the FA ratio decreases from 95% to
to 60%, then decreases further only slightly as the FA ratio de-
creases further. Note that DSACK-TA adaptively chooses an
FA ratio of approximately 60%, at this point of diminishing re-
turns below which fewer timeouts are avoided. Figure 8b reveals
that as the FA ratio (dupthresh) decreases, the actual fraction of
fast retransmits will increase. Thus, were DSACK-TA to de-
crease the FA ratio below 60%, not many timeouts would be
avoided, but progressively more fast retransmits would result.
Figure 8c shows that DSACK-TA achieves a higher through-
put than DSACK-R, which uses a fixed dupthresh of 3, and
DSACK-FA, which fixes the FA ratio at 90%, because DSACK-
TA balances between false fast retransmits and timeouts. Note
further in Figure 8c that DSACK-TA adapts dupthresh such that
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Figure 8: Timeout avoidance: comparing DSACK-FA and DSACK-TA.

it achieves approximately the maximum throughput available
among all possible fixed FA ratios.

0

20

40

60

80

100

0 200 400 600 800 1000
0

20

40

60

80

100

F
A

 R
at

io
 %

D
up

lic
at

e 
A

C
K

 T
hr

es
hh

ol
d 

(p
kt

s)

time (s)

FA Ratio
Duplicate ACK Threshhold

Figure 9: FA ratio and dupthresh vs. simulated time for a single
simulation.

Figure 9 shows the dynamic behavior of DSACK-TA as it
adapts the FA ratio and dupthresh ; note that the ratio oscillates
about the 70% point, shown in Figure 8c to offer roughly the
maximum throughput among all FA ratios. dupthresh oscillates
around 25.

Figure 7 shows the effect of increasing the propagation delay
of link (R1;R2). Note that the performance difference between
DSACK-TA and DSACK-FA narrows. This phenomenon oc-
curs because as the link delay increases, the idle cost associated
with timeout decreases, and the cost difference between a time-
out and false fast retransmit does, too. Thus, the performance
of DSACK-FA approaches that of DSACK-TA as the link delay
increases.

5.3 More Conservative RTO Estimator

We next study the effect of the RTO estimator on the perfor-
mance of DSACK and SACK. As explained previously, a sur-
feit of retransmissions provoked by delayed packets may cause
Karn’s Algorithm to choose RTO values that are biased to be too
short, leading to an overly aggressive RTO. In the following, we
use a propagation delay P of 200 ms for (R 1;R2). We delay 4%
of packets, and drop none. Packets are delayed according to a
normally distributed process with mean kP and standard devi-
ation k

3 P, so that most delays last between 0 and 2kP seconds
(mean k

2 RTT s). These parameters, again, represent cases in the
upper range of Internet link delays, and the extreme stress of
severe packet delays. We observe similar phenomena in cases
where the packet delay can exceed the one-second-minimum

RTO; satellite links that use link-layer retransmission fall into
this category.
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Figure 11: Fraction of packets that encounter timeout vs. av-
erage delay time. 4% of packets delayed; no packet drops;
P = 200 ms propagation delay; normally distributed pkt delay;
mean kP; stdev k

3 P.

In Figures 10 and 11, we gradually increase k from 4.5 to 8.0.
As k grows, the RTT of a delayed packet may exceed the min-
inum RTO of 1 second, and may thus trigger a false timeout. In
Figure 10, as packet delay increases, the throughput decreases,
as expected. But when k goes beyond 5.5, which corresponds
to a mean delay of 1.1 seconds in Figure 10, the throughput of
DSACK-TA drops sharply and becomes even worse than that of
DSACK-FA. It may seem that the timeout avoidance mechanism
of DSACK-TA doesn’t work well here, but actually, the cause
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is the RTO estimator rather than timeout avoidance. Figure 11
shows that the fraction of packets that encounter timeouts under
DSACK-TA increases rapidly, and exceeds that for DSACK-FA
after the mean delay surpasses 1.1 seconds. DSACK-TA is de-
signed to avoid timeouts by increasing the number of fast re-
transmits. But Karn’s Algorithm causes false fast retransmits to
skew the sampling of RTTs by excluding RTT samples for de-
layed packets. DSACK-TAES, which implements the enhanced
RTT sampling strategy described in Section 4.4, maintains a low
incidence of timeouts even when packet delays are severe by in-
cluding conservative mean RTT samples from packets that expe-
rience false retransmits. The more conservative RTO chosen by
DSACK-TAES leads to fewer timeouts and increased through-
put.
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Figure 12: Fraction of packets that encounter timeout vs. FA
ratio. 4% of packets delayed; no packet drops; 200 ms propaga-
tion delay; normally distributed pkt delay; mean 1200 ms, stdev
400 ms.

SACK 1.0 DSACK-R 1.0
DSACK-FA 3.1 DSACK-TA 1.6

DSACK-TAES 3.1 DSACK-HG 2.3

Table 3: Mean RTO (s) across all RTOs.
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Figure 13: Throughput vs. FA ratio. 4% of packets delayed; no
packet drops; 200 ms propagation delay; normally distributed
pkt delay; mean 1200 ms, stdev 400 ms.

To look at the interaction between timeout avoidance and the
RTO estimator more closely, we fix k at 6 and vary the FA ra-
tio from 95% down to 5% in Figures 12 and 13. As shown in
Figure 12, the fraction of timeouts under DSACK-FA when the
FA ratio is 95% is far less than that under DSACK-TA, which

causes more than 0.4% of packets to encounter timeouts. Note
further that under DSACK-FA, many more packets encounter
timeouts as the FA ratio decreases below 95%, unlike in prior
results, where the incidence of timeouts steadily decreases as
the FA ratio decreases. Now consider DSACK-FAES, which
samples RTTs for packets falsely retransmitted. The incidence
of timeouts under DSACK-FAES always remains low. Table 3
reveals the effect of sampling additional RTTs during false re-
transmits on the mean RTO value during a simulation. With-
out additional samples, the average RTO used by DSACK-TA
is much shorter than that used by DSACK-FA with an FA ratio
of 95%. By adding samples for falsely retransmitted packets,
DSACK-TAES eliminates the bias against long RTT samples,
and restores the RTO to a value comparable with that used by
DSACK-FA. For comparison, we include a curve for DSACK-
HG, which uses a detailed histogram of RTT samples for each
packet, rather than an exponentially weighted moving average,
to compute the RTO. DSACK-HG targets the 99.8% point in the
cumulative RTT distribution in formulating its RTO estimate.
Note that both DSACK-FA and DSACK-TAES are more conser-
vative than DSACK-HG. Thus, the standard EWMA RTO esti-
mator is inherently very conservative if not skewed by false fast
retransmits, as compared with the estimate given by a histogram
with nearly perfect information concerning the RTT distribution.

Figure 13 shows that timeout avoidance continues to perform
well under severe packet delays, once a sufficiently conserva-
tive RTO estimator is added to it in DSACK-TAES. DSACK-
TAES matches the best throughputs achieved by DSACK-FAES
across all FA ratio values, and even DSACK-HG. Even across
the range of delays in Figures 10 and 11, DSACK-TAES offers
high throughput and low timeout incidence, comparable to those
of DSACK-HG.

5.4 Robustness to ACK Reordering

The mechanisms we propose for making the TCP sender robust
against reordering address the effects of reordered data packets
on the sender’s window size. Reordering may also occur on the
reverse path, such that ACKs arrive out-of-order at the sender.
Because the algorithms we present use the ACK stream to mea-
sure the reordering lengths of data packets, it is important to ver-
ify that reordered ACKs do not diminish their effectiveness. We
confine our interest here to the avoidance of false fast retrans-
mits and false timeouts that are our goals in this paper; reordered
ACKs have other effects, including increasing the burstiness of
the sender, that have been investigated by others previously.

Figure 14 shows the throughput attained by the previously de-
scribed DSACK-aware sender variants as the fraction of ACK
packets reordered increases. Note that reordered ACKs have no
significant negative effect on the sender’s throughput, for rea-
sons previously explained in Section 4.1.1. There is similarly
negligible effect on throughput for the other link delays and data
and ACK packet delay distributions we’ve simulated, as well.

5.5 Independence of Reordering Distribution

Figure 15 shows that across all reordering length distributions
simulated, DSACK-TA achieves similar throughput gains over
SACK.
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5.6 Robustness for Multi-Path Routing
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Figure 16: Throughput vs. pkt delay. 50 ms propagation delay,
no loss.

In Figure 16, we examine DSACK-TA-MEAN’s behavior
under packet delays similar to those that would be seen if a
sender’s packets were sent alternately over two paths with dif-
ferent RTTs. If we assume that the RTT of each of the two paths
remains fixed, all delayed packets are delayed by the difference
between the two paths’ RTTs. Here, we examine a case with
a 50 ms propagation delay, and simulate 50% of packets being
delayed for the same period, representing the RTT difference
between the 100 ms RTT path and a longer path. At a delay
of zero seconds, all packets are routed on the same path, and
there is no reordering. As the delay, and thus the reordering
length, increase, DSACK-TA-MEAN continues to offer signif-

icantly increased throughput over SACK. Note that the perfor-
mance advantage of DSACK-TA-MEAN over SACK begins to
diminish at delays longer than 100 ms; at this point, packets are
being delayed more than one window’s worth. Recall that we
restrict limited transmit to one window’s worth of packets, to
avoid delaying TCP’s response to a genuine packet loss. Thus,
the performance improvement diminishes because of idle time
induced by limited transmit, in accordance with the discussion
in Section 2.3. Even with limited transmit of one window and a
path RTT difference of two 100 ms RTTs (200 ms), DSACK-
TA-MEAN offers a seven-fold throughput improvement over
SACK.

5.7 Comparison with Prior Work

Blanton and Allman propose several techniques for adapt-
ing dupthresh in response to reordering [7]. They increase
dupthresh after measuring reorderings, but do not explicitly
weigh the tradeoff between false fast retransmits and timeouts.
After a timeout, they propose resetting dupthresh to 3. An ad-
vantage of their proposals is that they require little state at the
sender; our false fast retransmit and timeout avoidance algo-
rithms maintain a reordering histogram. This section compares
the behavior of Blanton and Allman’s algorithms with our own,
in the interest of exploring the space of alternatives with differ-
ent costs in sender-side state.

We begin by characterizing the expected behavioral differ-
ences between the algorithms. First, in Blanton and Allman’s
algorithms, dupthresh often increases to a great value, often as
great as the maximum reordering length seen during the simula-
tion. This great dupthresh value may increase end-to-end delay
for dropped packets in cases where the reordering length has
a heavy-tailed distribution. When a network path reorders less
severely than before, their algorithms without a dupthresh de-
crease strategy must rely on a timeout to reset dupthresh to 3. In
comparison, in exchange for the extra state associated with the
reordering histogram, our timeout avoidance algorithm avoids
most false fast retransmits, while ignoring rare and extremely
long reorderings. Should reordering lengths change in distri-
bution over time, the histogram reflects any such change, and
causes dupthresh to change accordingly.

Resetting dupthresh to 3 discards history learned about the
network’s reordering behavior, and re-accumulating history
thereafter takes time. Again, in exchange for increased state,
use of a reordering length histogram preserves knowledge of the
path’s characteristics across timeouts.

As timeouts are expensive, Blanton and Allman limit
dupthresh to 90% of the current congestion window. However,
this limit may not always prevent timeouts that could have been
avoided with a smaller dupthresh—when multiple packets are
delayed or lost within a single window, a timeout may be in-
evitable.

The dupthresh limit of 0:9� cwnd can’t prevent false fast
retransmits in cases where reordering lengths are longer than
0:9� cwnd, but not long enough to trigger false timeouts with
the one-second-minimum RTO. When the congestion window is
small, such cases occur frequently.

We use Blanton and Allman’s simulator code in ns-2,4 but

4Their code runs in ns-2.1b7, whereas ours runs in ns-2.1b8. In the interest
of maximal comparability of results, we used the TCP parameter defaults from
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with our delay and loss models, used previously in this paper.
Our observations after simulating these algorithms on identical
networks follow.
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Packet delay normally distributed, mean kP, stdev k
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We compare the approaches on a network where link (R 1;R2)
has P = 50 ms propagation delay, S = 4 Mb/s link capacity, and
1% of packets are delayed according to a normal distribution
with mean kP and standard deviation k

3 , such that most packet
delays lie between 0 and 2kP. As shown in Figures 17 and 18,
we gradually increase k from 0.1 to 4.0, and thus vary the packet
delay between 5 ms and 200 ms.

The DSACK-BL-XXX curves represent results for Blanton
and Allman’s algorithms. As shown in Figure 17, when kP is
small, all schemes perform similarly better than SACK, but as
kP increases, DSACK-TA achieves increasingly higher through-
put as compared with all other schemes we simulated. Figure 18
shows that the fraction of fast retransmits suffered by DSACK-
TA hovers around 0%, whereas the other schemes suffer increas-
ingly from fast retransmits as the mean packet delay increases.
Here, the 0:9� cwnd bound on dupthresh prevents the other
schemes from avoiding false fast retransmits caused by longer
reorderings.

We now explore the behavior of Blanton and Allman’s al-
gorithms under bursty packet loss, when multiple packets are
dropped within a window. This dropping pattern can occur un-
der low statistical multiplexing, when one or more of the few

2.1b8 when running their code in 2.1b7.

No drops Drops No drops Drops
Total Total FR ratio FR ratio

packets packets % %
DSACK- 97184 60708 0.13 0.48
BL-INC
DSACK- 103770 81916 0.03 0.19

TA

Table 4: Throughput and fast retransmit ratios, with and without
bursty packet loss.
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Figure 19: dupthresh values of DSACK-TA and DSACK-BL-
INC vs. time for a single simulation.

connections is in slow start, and exponential window increase
causes a drop-tail router to drop a burst of packets.

Here, link (R1;R2) has P = 200 ms propagation delay, and
packets are delayed according to a normal distribution with
mean 100 ms and standard deviation 33 ms, such that most
packet delays lie between 0 and 200 ms. 2% of the packets
are delayed. We further introduce a small fraction (0.02%) of
packet drops. Each drop event lasts for a period that varies uni-
formly in [300;400] ms, during which all consecutive packets
to arrive are dropped. This drop behavior will trigger timeouts
even with a 0:9� cwnd bound on dupthresh. In Table 4, we see
that the throughput of DSACK-BL-INC is comparable to that
of DSACK-TA when there aren’t bursty packet drops. After
we introduce a small fraction of bursty packet drops, however,
the throughput of DSACK-BL-INC suffers more than that of
DSACK-TA, because DSACK-BL-INC experiences more false
fast retransmits. Figure 19 shows the variation in dupthresh for
DSACK-TA and DSACK-BL-INC. Each timeout resulting from
a drop burst will cause DSACK-BL-INC to reset dupthresh to
3, so that DSACK-BL-INC loses all its reordering length his-
tory. Thereafter, it linearly increases dupthresh as it encounters
reordering. In contrast, DSACK-TA keeps dupthresh around the
optimal value because it maintains the histogram of reordering
events. Thus, DSACK-TA suffers fewer false fast retransmits
and offers higher throughput.

We have compared all variants of DSACK under an exten-
sive set of network conditions, where we vary the link delay
of (R1;R2) between [50;400] ms; the packet drop rate between
[0;9] percent; the fraction of delayed packets between [0:1;10]
percent; and mean packet delays between [25;1600] ms, using
many of the random processes supported in ns-2 (normal, expo-
nential, hyperexponential, Pareto, Pareto II, and uniform). As
expected, DSACK-TAES has the best overall performance be-
cause it combines the benefits of false fast retransmit avoidance,
timeout avoidance, and enhanced RTT sampling. Under a few
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cases, other schemes, especially DSACK-FA or DSACK-BL-
TIMEINC, offer slightly better throughput than DSACK-TAES.
In these cases, the throughput differences are mostly < 5%, and
all < 10%. We believe the factors at work in these cases include:

� Our cost functions use an EWMA to estimate some of the
parameters, such as steady state window size and duration
of false fast retransmits. The averages thus computed are
not instantaneously accurate.

� The control loop for adapting the FA ratio takes time to
converge to its optimum from its initial value. After it con-
verges, it oscillates about this value.

6 Future Work

While we’ve exhaustively evaluated RR-TCP in simulation, we
look forward to implementing it for a widely distributed host op-
erating system, such as Linux or FreeBSD. Completing this im-
plementation will allow us to gain deployment experience with
the enhanced protocol, as well as learn how to minimize the pro-
cessing overhead it incurs.

In this paper, we’ve pursued only sender-side designs for re-
ordering robustness. These designs require the sender to store
extra state for each connection in the SACK scoreboard, and in
the reordering histogram. For a busy server with many thou-
sands of open connections, these additional state requirements
may be burdensome. We believe RR-TCP can be built in a
receiver-side fashion, whereby the receiver measures reorder-
ing and keeps the relevant histogram, applies the dupthresh ad-
justment algorithms, and dynamically informs the sender of the
dupthresh value it should use, perhaps in a TCP option. This
design devolves the reordering-related state requirements from
the server to each client, at the cost of requiring a modification
to the over-the-wire protocol.

A reordering-robust transport protocol is one step toward vi-
able multi-path routing. But other transport problems in spread-
ing a single flow’s packets over multiple paths remain unad-
dressed. The different paths packets take may not only have dif-
ferent RTTs, but also different loss rates. Understanding TCP’s
behavior in such cases will require further study.

TCP’s congestion control algorithms act at a granularity of
a single window. Choosing the number of packets that limited
transmit may send affects the maximum reordering length for
which RR-TCP can avoid false fast retransmits. When limited
transmit permits multiple windows of packets to be sent, the re-
sult is reordering robustness at a granularity greater than a single
window. While ACK-clocking ensures limited transmit does not
cause TCP to be unresponsive to congestion in the long term, the
choice of the maximum allowed extent of limited transmit bears
further investigation.

This paper has considered only long-lived flows in the interest
of simplifying the evaluation of algorithms’ properties. Many
web transfers are short-lived. We believe that sharing reorder-
ing state (i.e., the reordering histogram and/or FA ratio) between
short-lived flows that occur serially in time will confer the ben-
efits of RR-TCP to short-lived flows. We further believe that
there is little to no risk to the network in sharing this state in
this way; it is not congestion state, but reordering state, and thus
will not cause a sender to send more aggressively than current
network conditions permit.

The cost functions we use to adapt the FA ratio make de-
cisions based on individual false fast retransmit, timeout, and
limited transmit idling events. We plan to investigate whether
further history, in the form of event counts for some past period
for each of these event types, can be used to adapt the FA ratio
in a way that causes it to converge more quickly to the optimal
value, or to change more smoothly over time, and how either of
these outcomes affects the throughput RR-TCP achieves.

Finally, in some network environments, even the modi-
fied, conservative RTO estimator described in this work may
not be conservative enough. In multi-hop ad hoc networks,
RTTs are extremely variable because of link-layer ARQ. IEEE
802.11 [12], for example, backs off exponentially between link-
layer retransmissions, and delays all subsequent packets during
such backoff periods. A cascaded chain of many such hops
offers formidable RTT variability. TCP estimates the RTO by
RTO = SRTT+ kRTTVAR. For the standard TCP RTO estima-
tor [21], k = 4. A control loop to increase k dynamically in re-
sponse to spurious timeouts, and decay k back to a minimum of
4 during periods without spurious timeouts, may aid in making
TCP’s RTO estimator sufficiently conservative in environments
where RTTs are severely variable.

7 Conclusion

We have presented extensions to TCP that allow the sender to
distinguish between reordering and loss, in the interest of im-
proving TCP’s robustness on paths that reorder packets. Our
extensions use a histogram of the reordering lengths packets ex-
perience to adapt TCP’s dupthresh, and a control loop to adapt
the FA ratio, the fraction of reordering events that the sender
should avoid misidentifying as losses. Our simulations on net-
works over a wide range of link delays, packet delays, and loss
patterns show that our DSACK-TAES variant of RR-TCP con-
sistently improves TCP’s throughput significantly in the face of
reordering, as compared with both standard SACK TCP and pre-
viously published reordering robustness enhancements to SACK
TCP.

The key novel feature of RR-TCP is its use of timeout avoid-
ance; our control loop for varying the FA ratio is mindful not
only of the costs of false fast retransmits, but also of the costs
of timeouts and idle periods during limited transmit. The con-
trol loop converges to an FA ratio that offers throughput very
nearly as great as the maximum attainable under any fixed FA
ratio. Also, using a reordering histogram at the sender allows
the sender to profit from knowledge of a connection’s reordering
history, even across timeouts. It is noteworthy that just as lim-
ited transmit aids in avoiding timeouts when dupthresh is fixed
at three, it aids in avoiding timeouts under RR-TCP; the limited
transmit cost function allows RR-TCP to reduce the FA ratio,
and hence dupthresh, without having to incur a costly timeout in
many circumstances. Finally, sampling RTTs for delayed pack-
ets in RR-TCP significantly improves TCP’s throughput by en-
suring that the RTO estimator is sufficiently conservative when
packets are severely delayed.

Our experimental evaluation of RR-TCP reveals much about
the nature of the reordering problem. As the loss rate increases,
the sender’s window is kept small by congestion avoidance, and
reordering doesn’t limit throughput—congestion does. As the
length of reorderings increases beyond the permitted extent of
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limited transmit, an RR-TCP sender must incur idle periods,
and will offer less of a performance improvement over SACK.
Limited transmit embodies a fundamental tradeoff between the
responsiveness of the sender to congestion and the reordering
length a TCP sender can be made to tolerate.

Despite its improved throughput on reordering paths, RR-
TCP does not steal bandwidth from other, non-enhanced SACK
TCPs; it is reordering that limits the throughput of non-enhanced
SACK, not the transmission behavior of RR-TCP. In the face
of persistent network congestion, RR-TCP is not significantly
more aggressive than SACK TCP, even when it uses limited
transmit, because it obeys ACK clocking. RR-TCP outperforms
SACK TCP and previously published DSACK variants for lim-
ited transmit regimes that send anywhere between one half and
two congestion windows’ worth of data. Thus, the choice of the
extent to which RR-TCP allows limited transmit can be made,
within reason, based on the worst-case end-to-end delay tolera-
ble to an application, and by the length of reordering to which
the sender would like to be able to respond properly.

RR-TCP is a Reordering-Robust TCP that is safe to deploy.
We believe its deployment could substantially loosen the in-
order delivery restriction on the Internet architecture.

Simulation code for RR-TCP for ns-2 may be found at
http://www.icir.org/bkarp/RR-TCP/.
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