
Efficient Sequence Alignment of Network Traffic

Christian Kreibich, Jon Crowcroft
University of Cambridge Computer Laboratory

{firstname.lastname}@cl.cam.ac.uk

ABSTRACT
String comparison algorithms, inspired by methods used in
bioinformatics, have recently gained popularity in network
applications. In this paper we demonstrate the need for care-
ful selection of alignment models if such algorithms are to
yield the desired results when applied to network traffic. We
introduce a novel variant of the Jacobson-Vo algorithm em-
ploying a flexible gap-minimising alignment model suitable
for network traffic, and find that our software implementa-
tion outperforms the commonly used Smith-Waterman ap-
proach by a factor of 33 on average and up to 58.5 in the
best case on a wide range of network protocols.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Algorithms, Measurement, Experimentation

Keywords
Traffic Monitoring, Sequence Alignment, Sequence Analysis

1. INTRODUCTION
Traditionally, content-based traffic analysis has typically in-
volved searching the payloads of packets, either in isolation
or reassembled into flows when necessary, for known pat-
terns. Lately, traffic flows have also been compared to each
other, in an attempt to identify commonalities by aligning
the flow contents in a suitable fashion. Discovered common-
alities can be used for follow-up analyses of many kinds, for
example to automatically fingerprint malicious traffic [1, 2],
mimic the modus operandi of network protocols [3], or for
building traffic models suitable for anomaly detection and
traffic classification [4]. Many of the relevant algorithms in
this sequence alignment problem setting are inspired by the
field of bioinformatics, where such methods are regularly
used for problems of motif finding in large DNA sequence
databases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’06, October 25–27, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-561-4/06/0010 ...$5.00.

The contributions of this paper are twofold. First, we point
out the need for careful choice of the right alignment model
and implementation in Section 2. We demonstrate that sub-
tleties in either can lead to inconsistent and, in the worst
case, incorrect results. Second, we show that while the
commonly used and closely related Smith-Waterman and
Needleman-Wunsch algorithms provide high flexibility, they
may be a suboptimal choice if the top concern is runtime
performance of longest common subsequence computations
on network traffic. We next introduce a novel variant of
the Jacobson-Vo algorithm in Section 3. To the best of our
knowledge, this algorithm has not previously been used in
the networking domain. Our variant is consistent with the
goals we present in Section 2 and borrows dynamic program-
ming elements from Smith-Waterman to yield the desired
results, while retaining the runtime complexity of the origi-
nal approach. Jacobson-Vo’s runtime performance depends
on the distribution of characters in the input strings, making
it hard to make a priori statements about its performance
on network traffic. As we show in Section 4, a careful imple-
mentation in software outperforms Smith-Waterman across
a wide range of network protocols and flow sizes by a factor
of up to 33 in the average case, reaching up to 58.5 in the
best case. We briefly discuss our findings in Section 5 before
concluding the paper in Section 6.

2. CAVEATS IN SEQUENCE ALIGNMENT
OF NETWORK TRAFFIC

There are many ways of finding common substrings among
multiple input strings. In this paper we focus on procedures
that yield multiple such strings per pairwise alignment and
include precise locational information per substring. In our
experience, such precision is highly desirable for many appli-
cations of alignment algorithms. More approximate meth-
ods for extracting frequent content have been proposed in
the literature [5, 6].
Two input strings S1 and S2 of respective lengths s1 and s2

can be aligned either globally or locally. Global alignment
assumes that two strings are largely similar and that only
minor misalignments have to be identified. By contrast, lo-
cal alignment assumes no inherent similarity between strings
and focuses on finding regions of similarity. In practice, both
problems can be solved by a tabular dynamic programming
procedure introduced by Smith and Waterman.1 We sum-

1The global alignment procedure is commonly referred to
as “Needleman-Wunsch”, though Needleman and Wunsch
only discussed the global alignment problem but proposed
a different (and slower) algorithm [7, 8].

marise the algorithm here and refer to the literature for de-
tails [9, 8, 10]. The algorithm runs in O(s1 s2) by filling a
table of size s1 × s2 row-by-row, in each cell recording the
best alignment of the prefixes of S1 and S2 up to the cell’s
row/column indices by selecting an edit operation on the pair
of characters at the current row/column. These operations
can (i) skip characters of either string, (ii) align the char-
acters directly, or (iii) accept mismatching characters via
substitution. Each operation is assigned a cost/score, and
the best resulting alignment is the one with the highest score
(for local alignment) or lowest cost (for global alignment).
The resulting alignment is extracted by walking backward
through the table, starting in the bottom-right corner, fol-
lowing the alignment decisions taken at each cell. The algo-
rithm computes a longest common subsequence LCS(S1, S2)
of input strings S1 and S2. A common subsequence is a
sequence of common substrings; a longest common subse-
quence maximises cumulative length.
The cost model chosen directly affects the resulting LCS and
thus requires careful consideration. Showing the soundness
of cost models with per-character-pair substitution costs
takes substantial effort [8] and their investigation is a topic
of future research for the networking domain. We feel that
the soundness of this approach is undermined by limitations
of the similarity to the bioinformatics domain: while na-
ture introduces at most limited random mutation, proto-
cols do not undergo such a process; rather, they evolve over
a sequence of more or less well-specified implementations.
Worse, the networking domain faces a malicious adversary
who is aware of the model decisions we are making. We
argue that when using Smith-Waterman approaches, rather
than choosing an ad-hoc cost model, the alignment decision
should be coded explicitly into the algorithm, for example
by excluding the possibility of substitutions altogether and
interweaving exactly matching subsequences with gaps only.
We will now show how even when doing so, subtleties in the
implementation can critically affect the outcome. Consider
the following pair of strings:

‘GET / HTTP’

‘GET /a/a.HTM HTTP’

The LCSs for these strings have a maximum length of 10.
Note the plural; the following are both possible LCSs of this
length:

‘GET /’, ‘ HTTP’

‘GET ’, ‘/’, ‘ HTTP’

Examples with more ambiguity are easily constructed. The
key difference among the alternatives is the number of gaps—
the most compact version has only one gap while the other
has two. Without forethought it depends on the subtleties
of the implementation which result is obtained, even in such
basic cases as the given example. Worse, once we restrict
our interest to substrings of a minimum length larger than
a single character, the second LCS will yield the wrong re-
sult if we filter the detected substrings, as it will fail to
report the ‘GET /’ substring. We argue that an LCS com-
putation should report the LCS with the minimum num-
ber of gaps, since it yields more consistent results. To get
Smith-Waterman to return such results, one needs to employ
alignment scoring schemes that actively encourage longer
contiguous substrings.

3. FAST LCS FOR NETWORK TRAFFIC
We now introduce a method for computing LCSs that ad-
heres to the requirements presented in the previous sec-
tion and that is typically substantially faster than Smith-
Waterman. The method is an adaptation of an algorithm
that was presented independently by Jacobson and Vo [11]
and Pevzner and Waterman [12]. We will refer to the orig-
inal algorithm as Jacobson-Vo and summarise its operation
before enhancing it.

3.1 Jacobson-Vo: Combinatorial Reduction
Jacobson-Vo reduces a related combinatorial problem for
which there is a potentially more efficient solution than
O(s1 s2) to the LCS problem. This combinatorial prob-
lem is the identification of a longest increasing subsequence
(LIS) in a sequence of numbers. Again referring the reader
to the literature for details [11, 8], we continue the example
of the previous section to demonstrate the algorithm. The
idea is that an LIS has a one-to-one correspondence with
an LCS if the sequence of numbers is produced from the
two input strings in the following fashion: iterating over the
characters in S1, we list once per occurring character all in-
dices in S2 at which that character occurs, in descending
order. This yields:

G → 0 / → 6 4
E → 1 H → 13 9
T → 15 14 10 2 P → 16

→ 12 3

These character occurrence lists are then concatenated into
a numerical sequence Π of length π. For S1 and S2 the
beginning of Π looks as follows (dots indicate occurrence
list merge points):

0 · 1 · 15 14 10 2 · 12 3 · 6 4 · 12 3 · 13 9 · . . .

The next step is to greedily extract a cover of Π. A cover is a
set of non-increasing subsequences of Π that together use up
all of its members. We can perform this extraction in a tab-
ular fashion by building up each subsequence in one column
of a subsequence table. Let Sn be the nth such subsequence.
An arbitrary element in Si is denoted ei, and IS1

ei
and IS2

ei

are ei’s indices in S1 and S2, respectively. Iterating over
the elements of Π, one selects for each element the leftmost
subsequence (i.e., column in the table) that the element can
extend. Extension is possible whenever the last number in
a sequence is larger than or equal to new element. If no
subsequence fulfills this requirement, a new one is added to
the table. We obtain:

 0 1 15 12 6 12 13 15 15 16
 14 3 4 9 10 14
 10 3 10 14
 2
 2
 2

To extract an LCS, first an arbitrary element in the last
subsequence is selected. Afterward, the remaining subse-
quences are scanned downward in right-to-left order, select-
ing the first element ei in each Si for which IS2

ei
< IS2

ei+1 ,
where ei+1 is the element chosen in Si+1:

 0 1 15 12 6 12 13 15 15 16
 14 3 4 9 10 14
 10 3 10 14
 2
 2
 2

The resulting sequence of S2 indices is an LCS of S1 and S2:
‘GET ’, ‘/’, ‘ HTTP’. To estimate the runtime complexity
of this procedure, observe that the last numbers of the sub-
sequences are sorted in increasing order at all times when
scanning the table left-to-right. We can thus find the correct
column for insertion via binary search. Let S1 be the shorter
of the two strings, without loss of generality. Since there can
never be more than s1 sequences in the table and we insert
π elements in total, this algorithm runs in O(π log s1).

3.2 Improving Jacobson-Vo: Targeted LCS
Selection

Note that for our running example, standard Jacobson-Vo
yields an LCS that violates the goals of gap minimisation
and substring maximisation. We now extend the algorithm
to overcome this limitation, borrowing several concepts from
Smith-Waterman: we introduce dynamic programming to
Jacobson-Vo to track incrementally the LCS that yields the
smallest number of gaps and longest-possible substrings, and
collect the optimal LCS via back-pointer traversal. As we
will show, these extensions render Jacobson-Vo gap-mini-
mising and substring-maximising, while retaining the same
algorithmic complexity as the original algorithm.

3.2.1 Path Selection Through Dynamic Programming
The unmodified Jacobson-Vo algorithm does not consider
possible alternatives in the selection of each subsequence’s
LCS member. The first step therefore is to consider the
choices we have whenever an LCS member in Si−1 is selected
after having selected one in Si. Adding the S1 indices of each
element in Π to the subsequence table (in small type), we
obtain the following:

 0 1 15 12 6 12 13 15 15 16
 14 3 4 9 10 14
 10 3 10 14
 2
 2
 2

 0 1 2 3 4 5 6 7 8 9

 2 3 4 6 7 7

 2 5 8 8

 2

 7

 8

Observe that while the S2 indices are non-increasing in each
subsequence when reading top-down, the S1 indices are non-
decreasing. This follows from the mechanics of the algo-
rithm: later insertions appear further down in the subse-
quences and are made using elements further to the right in
Π. Those elements have equal or larger S1 indices.
Assume now that we have just chosen an element ei+1 in
Si+1. Since every element in Si has least one element in
Si−1 that can be chosen as its predecessor, we can pick any
element ei in Si as an LCS member subject to the condition
that IS1

ei
< IS1

ei+1 and IS2
ei

< IS2
ei+1 since only then does ei

appear before ei+1 in both S1 and S2. Given the opposite
growth directions of the indices in each subsequence in the
table, this means that for each ei+1 there exists a window of
possible predecessors in subsequence i, and, by symmetry,
for each ei there exists a window of possible successors in
subsequence i+1. More formally, the sets of elements Wp(ei)
in the predecessor window of ei and Ws(ei) in its successor
window are defined as follows:

Wp(ei) =
n

ei−1 ∈ Si−1 : IS1
ei−1 < IS1

ei
∧ IS2

ei−1 < IS2
ei

o
Ws(ei) =

n
ei+1 ∈ Si+1 : IS1

ei+1 > IS1
ei

∧ IS2
ei+1 > IS2

ei

o
Returning to our running example, we see that Wp(125) =
{64, 44}, i.e., when choosing the predecessor of element 125
(up to which there are no alternatives since window size is
always one) we can choose between 64 and 44. If we choose
the latter, we end up with the desired LCS ‘GET /’ - ‘

HTTP’:

 0 1 15 12 6 12 13 15 15 16
 14 3 4 9 10 14
 10 3 10 14
 2
 2
 2

 0 1 2 3 4 5 6 7 8 9

 2 3 4 6 7 7

 2 5 8 8

 2

 7

 8

Thus the goal is to use the limited freedom in selecting LCS
members to minimise gap counts and maximise substring
lengths in the resulting LCS. By tracking those properties
incrementally on all possible paths through the table and
identifying the path with least gaps and longest substrings,
the algorithm will compute the desired LCS. This LCS is
collected by traversing the table left-to-right from the ele-
ment in the first subsequence with the highest score, using
back-pointers. Note that the search still starts in the last
subsequence, since scanning right-to-left has the benefit of
eliminating more elements from consideration. As in the
original approach, all elements of the last subsequence are
potential starting points. The core strategy is to perform
a parallel downward scan of pairs of subsequences adjacent
in the table. If the table contains n subsequences, the first
scan uses Sn−1 and Sn, the second Sn−2 and Sn−1, etc.,
until eventually S1 and S2 are reached.2

Assume the scan currently examines Si and Si+1. The scan
considers all elements in Si in top-down order that have
a non-empty window in Si+1, ignoring the ones at the be-
ginning of Si with too high an S2 index as well as those
at the end of the subsequence with too high an S1 index.
The elements linked by back-pointers thus form a corridor
through the subsequence table, and the upper boundary of
the corridor is the LCS selected by the original Jacobson-Vo
algorithm. This is illustrated in Figure 1.
As the scan proceeds from one Si element to the next, the
successor window Ws(ei) moves down Si+1. Let the cur-
rently considered element in subsequence i be ei. The idea
is to compute alignment scores, akin to Smith-Waterman,
incrementally for all LCSs as they are considered, tracking
the best-scoring one. As with Smith-Waterman, it depends
on the alignment model whether “best” means maximisa-
tion (of alignment similarity) or minimisation (of edit dis-
tances). Alignment scores can penalise gaps and encourage
long common substrings, but also realise other alignment
policies. By prefixing ei to the partial LCSs starting with
the elements in Ws(ei) and ending in Sn, ei’s score can be
computed for each LCS depending on whether ei introduces
a gap, starts a common substring, or extends one. The best-
scoring element e∗i+1 ∈ Ws(ei) is remembered by setting ei’s
back-pointer to e∗i+1 and storing the corresponding score in
ei.
2Single-column tables do not permit this approach, however
their occurrence means that the LCSs consist only of a single
character and any member of the sole column will do.

Figure 1: Corridor of linked LCS elements (shaded
in grey background) through an idealised subse-
quence table. The elements along the upper bound-
ary of the corridor (in white) form the LCS selected
by the original Jacobson-Vo algorithm.

In order to be able to score common substrings differently
from gaps, the algorithm must be able to track common
substrings as they occur. Common substrings consisting of
at least two characters exist whenever two LCS elements
ei and ei+1 have the property that IS1

ei
+1 = IS1

ei+1 and

IS2
ei

+1 = IS2
ei+1 . To notice when this is the case, the algo-

rithm tracks the the element inside Ws(ei) whose S1 and S2

indices are as close as possible to, but strictly larger than,
e1’s. Let this element be called ei’s neighbour, denoted en

i .
A direct neighbour is a neighbour en

i for which IS1
ei

+1 = IS1
en

i

and IS2
ei

+1 = IS2
en

i
, i.e., one that ei can extend as a common

substring. To formalise the neighbour definition, let the dis-
tance D of subsequence members ei and ei+1 be defined as
D(ei, ei+1) = (IS1

ei+1 −I
S1
ei

) + (IS2
ei+1 −I

S2
ei

). Then en
i is de-

fined as follows:

en
i = e ∈ Ws(ei) : IS1

e > IS1
ei

∧ IS2
e > IS2

ei
∧

D(ei, e) = min
e′∈Ws(ei)

ˆ
D(ei, e

′)
˜

The neighbour always resides within Ws, since it is a legiti-
mate successor of ei, all of which are by definition contained
in Ws. As the elements inside ei’s window are considered,
a direct neighbour can be scored in a way ensures extension
of an existing common substring as opposed to introducing
a gap. Figure 2 illustrates sliding windows with neighbour
tracking.
The introduction of alignment scoring adds significant flex-
ibility to the algorithm, since many different scoring mod-
els become feasible. Below we show the subsequence table
for the running example, with each visited element’s align-
ment score in the top right corner, showing previous point-
ers where set, and using a scoring scheme that quadratically
favours longer common substrings (by adding the length of
the common substring to the score, for each substring char-
acter) while linearly increasing the score for gaps. Elements
in grey font are outside of the corridor and not considered:

30 25 16 15 10 3 1 0 1 15 12 6 12 13 15 15 16 0 1 2 3 4 5 6 7 8 9
 18 16 6 14 3 4 9 10 14 2 3 4 6 7 7

 10 3 10 14 2 5 8 8
 21 2 2

 2 7

 2 8

3.2.2 Overcoming Greedy Substring Extension
The algorithm is now gap-minimising if a scoring scheme
favouring common substrings over gaps is used, because such
a scoring scheme will never introduce a gap if it can extend a

12 15
12 14
10 11
 9 11
 8 10
 7 9

 5 7

 6 8

 7 8

 7 9

 8 9

 9 10
 6 8 9 12

12 15
12 14
10 11
 9 11
 8 10
 7 9

 5 7

 6 8

 7 8

 7 9

 8 9

 9 10
 6 8 9 12

12 15
12 14
10 11
 9 11
 8 10
 7 9

 5 7

 6 8

 7 8

 7 9

 8 9

 9 10
 6 8 9 12

Figure 2: Parallel subsequence scanning with slid-
ing windows. As the iteration proceeds over the
left sequence’s elements 107, 97, and 88, the window
of possible successor elements slides downward. The
dotted border indicates the previous window. Along
with the window boundaries, the current element’s
neighbour (shown with lighter background) moves
down as well: while 107 can extend the substring
ending at 118, for 97 and 88 the introduction of a gap
is unavoidable. (The string indices shown are hypo-
thetical and not related to the running example.)

common substring. Whichever path has the least amount of
gaps globally will be the one with the largest overall score.
One problem remains: the greediness of common substring
extension means that a common sequence will always be ex-
tended when possible due to its locally higher score, even
when it would be beneficial to stop a substring and begin
a new one. This situation occurs when one common sub-
string’s suffix is a later common substring’s prefix.
Thankfully the problem is easy to fix: in addition to tracking
with every element ei the globally best score it obtains by
linking with the best element in Si+1, we now also track
the local score the element has when following the common
substring it is part of through to the end. If this common
substring turns out to be longer than the one it overlaps
with, the local score will eventually exceed the global one
and take its stead. What is left to do is to adjust the back-
pointer that cuts off the tail of the longer substring back
into the substring.

3.3 Complexity Analysis
The extended Jacobson-Vo is identical to the original one
as far as construction of the subsequence table is concerned.
Clearly the extended variant’s runtime complexity cannot
beat the original algorithm’s O(π log s1), since the latter
does less work. The question is how costly the extension
of the algorithm is. The parallel scanning phase considers
every element in the left subsequence at most once, imply-
ing O(π) additional cost. Näıvely, for each element ei in Si,
every element in Ws(ei) must be considered. This implies
a non-constant amount of additional work per Π element
which would certainly affect the overall runtime complexity
negatively. The following observation comes to the rescue:
unless ei’s neighbour in Ws(ei) is direct, all elements in the
window are going to introduce gaps. In this case, and unless
our alignment model scores different gaps differently, there
is no reason to consider each window member. We only
need to know which window member’s score is best, and up-
date that score according to our scoring schema. This trick
renders the amount of work needed per ei element constant,
since we only need to track the best-scoring node in the win-
dow, as well as ei’s neighbour. Three pointers suffice, and
since the parallel scanning phase only slides the window over
each subsequence once, each of those pointers will similarly

50 100 250
0

0.5

1

1.5

2

2.5

3
x 10−3 2.0 5.7 10.1

FTP

SW
JVsm

50 100 250 500
0

0.005

0.01

0.015
2.0 5.5 11.0 11.9

HTTP

50 100 250 500 1000 2000
0

0.05

0.1

0.15

0.2
2.4 5.1 18.7 39.6 53.2 58.5

HTTPS

50 100 250 500 1000 2000
0

0.05

0.1

0.15

0.2
2.2 7.6 17.4 18.1 22.9 31.7

SSH

50 100 250 500 1000 2000
0

0.05

0.1

0.15

0.2
2.1 5.5 11.6 11.7 10.1 8.8

SMTP

50
0

2

4

6

8
x 10−5 1.6

DNSTi
m

e
(s

)

50 100 250
0

1

2

3

4

5

6
x 10−3 1.0 0.7 0.5

DHCP

50
0

2

4

6

8
x 10−5 0.9

NetBios NS

Prefix length (bottom), JVsm speedup (top)
50 100 250

0

0.5

1

1.5

2

2.5

3
x 10−3 1.8 4.2 5.9

SNMP

50 100
0

1

2

3

4

5

6
x 10−4 2.2 5.5

Syslog

Figure 3: Performance comparison of Smith-Waterman and Jacobson-Vo on intra-protocol alignments of
various TCP and UDP protocol flows. Error bars indicate the minimum and maximum runtimes.

50 100 250
0

25

50

75

100
FTP

50 100 250 500
0

25

50

75

100
HTTP

50 100 250 500 1000 2000
0

25

50

75

100
HTTPS

50 100 250 500 1000 2000
0

25

50

75

100
SSH

50 100 250 500 1000 2000
0

25

50

75

100
SMTP

LCS
Π
Coverage

50
0

25

50

75

100
DNSPe

rc
en

t

50 100 250
0

25

50

75

100
DHCP

50
0

25

50

75

100
NetBios NS

Prefix length
50 100 250

0

25

50

75

100
SNMP

50 100
0

25

50

75

100
Syslog

Figure 4: Behaviour of various Jacobson-Vo aspects with TCP and UDP protocol flows: length of LCS
relative to min(s1, s2), length of Π relative to s1s2, coverage of corridors relative to subsequence table.

visit each member of Π at most once.
At this point, the runtime complexity depends on the lo-
gistics of tracking the best-scoring node in the window. By
storing the window elements in a priority queue, we can ac-
cess the best-scoring element in constant time. Assume the
priority queue contains n elements. As the window moves
downward over a subsequence, new elements are inserted
into the priority queue as the low window boundary ad-
vances. Using a heap, this can be done in O(log n). At the
same time, existing elements need to be removed from the
priority queue whenever the top boundary advances. Re-
moval can likewise be done in O(log n). To estimate the
maximum size n of the queue, we need to bound the size
of Π’s subsequences. Note that a single occurrence list can
exist in a subsequence at most once in its entirety, and an
occurrence list can be at most of size s2. Beyond that, a
subsequence can only grow by adding the bottom-most in-
dex repeatedly, which can occur at most s1 times. Thus,
subsequence size is bounded from above by s1 + s2.
We can now summarise the runtime complexity of our ex-
tended Jacobson-Vo algorithm. As in the original approach,
we insert each member of Π into the subsequence table using

binary search, requiring O(π log s1). The parallel scanning
phase visits each element in Π at most once in the left sub-
sequence, while each element in the right subsequence is at
most once inserted into the priority queue and removed from
it, which takes at most O (log(s1 + s2)). Combining subse-
quence table construction and parallel scanning phase, we
obtain O (π (log s1 + log(s1 + s2))). Since normally we can
assume s1 ≈ s2 and thus O(s1 + s2) = O(s1), we obtain
O(2π log s1) = O(π log s1).
Remarkably, extending Jacobson-Vo to target gap-minimi-
sing and substring-maximising LCSs does not hurt the run-
time complexity bound, making only modest assumptions
about the scoring schema, namely uniform gap penalties.

4. EVALUATION
We implemented Smith-Waterman and our variant of Jacob-
son-Vo in about 500 and 600 lines of C++, respectively.
To compare performance, we selected a number of popu-
lar servers from a one-day full-content trace of our labo-
ratory’s uplink. We selected TCP services running FTP,
HTTP, HTTPS, SSH, and SMTP as well as UDP services
for DNS, DHCP, NetBios NS, SNMP, and Syslog, picking
n = 142 flows each so that we could perform

`
n
2

´
> 10, 000

Prefix Length
Protocol 50 100 250 500 1000 2000

FTP 9,870 9,730 5,460 × × ×
HTTP 10,000 10,000 8,778 561 × ×

HTTPS 10,000 10,000 9,870 9,316 2,346 630
SSH 10,000 10,000 10,000 9,730 8,385 5,253

SMTP 10,000 7,381 1,431 1,271 703 136

DNS 496 × × × × ×
DHCP 10,000 10,000 10,000 × × ×

NetBios NS 10,000 × × × × ×
SNMP 5,778 3,828 1,596 × × ×
Syslog 3,655 435 × × × ×

Figure 5: Number of LCS computations per service
and prefix length.

Prefix Length 50 100 250 500 1000 2000

Avg. Speed-up 1.82 4.98 10.74 20.1 28.73 33

Figure 6: Average speed-up of extended Jacobson-
Vo compared to Smith-Waterman.

LCS computations among flow pairs of the same service,
an operation more meaningful than cross-service alignments
and commonly performed by systems employing sequence
alignment. We reassembled the originator→responder flows,
where feasible, using the Bro IDS [13] and stored them in
reassembled form. Next we measured the runtime for pair-
wise LCS computations with minimum substring length 1 of
flows belonging to the same service, averaged the runtime
of 100 iterations, and varied the string length in separate
runs over 50, 100, 250, 500, 1000, and 2000 bytes. The ex-
periments were run on an otherwise idle Pentium 4 running
at 2.53GHz with 512MB of memory. Since flows of at least
2000 bytes are less frequent than those of at least 50 bytes,
the actual number of string pairs varied per protocol. We
chose 100 comparisons as the lower bound for investigation,
and show the actual number of comparisons in Table 5. Fig-
ure 3 shows the performance comparison for all protocols,
including the speed-up factors of Jacobson-Vo over Smith-
Waterman. Our extended Jacobson-Vo algorithm is up to
33 times faster on average (see Table 6) with the best speed-
up factor being 58.5 for HTTPS flows of 2000 bytes. The
runtime overhead of the extended Jacobson-Vo’s additional
operations is marginal; we do not show it.
There are two cases where Jacobson-Vo is not the clear win-
ner: NetBios NS and, more strongly, DHCP. To understand
the reason, recall that the runtime performance of Jacobson-
Vo is largely determined by the length of Π, and consider
Figure 4. With NetBios NS, and DHCP in particular, Π is
substantially larger than s1s2 (the amount of work Smith-
Waterman has to do) than with the other protocols. At the
same time, their ratio of LCS length to input string length
is not substantially higher than that of other protocols such
as FTP, where speed-up is substantial. The corridor sizes
relative to the full subsequence table sizes also cannot ex-
plain DHCP’s behaviour, since it is among the lowest in the
dataset. In summary, these observations confirm that our
modifications have kept the length of Π the defining factor
of Jacobson-Vo’s performance.

5. DISCUSSION
Generally, Jacobson-Vo tends to perform better on content
with a high number of characters in random distribution [8].
Our results confirm this: first, both ICMP and NetBios NS

contain a large number of zero-bytes and are of highly fixed
structure: the LCSs reach up to 93% of the input string
length for DHCP and 97% for NetBios NS, indicating that
the input strings are nearly identical. Second, the encrypted
HTTPS has high randomisation in large parts of the content,
and brings out overall best performance. Knowledge of a
protocol’s statistical content distribution is thus a guideline
for the choice of alignment algorithm.

6. CONCLUSION
Sequence alignment algorithms have many potential appli-
cations in the network setting. As we have shown, the
employed alignment models and algorithms require care-
ful consideration. We have introduced an extension of the
Jacobson-Vo algorithm that allows flexible alignment scor-
ing, borrowing concepts from Smith-Waterman. Our soft-
ware implementation outperforms Smith-Waterman by a fac-
tor of 33 on average and 58.5 in the best case. Both our
Smith-Waterman and Jacobson-Vo implementations will be
available with the next release of the Bro IDS.

7. REFERENCES
[1] James Newsome, Brad Karp, and Dawn Song. Polygraph:

Automatically generating signatures for polymorphic
worms. In Proc. 2005 IEEE Symposium on Security and
Privacy, pages 226–241, Washington, DC, USA, 2005.
IEEE Computer Society.

[2] Christian Kreibich and Jon Crowcroft. Honeycomb —
creating intrusion detection signatures using honeypots. In
Proceedings of the Second Workshop on Hot Topics in
Networks (Hotnets II), Boston, November 2003.

[3] W. Cui, V. Paxson, N. Weaver, and R. H. Katz.
Protocol-independent adaptive replay of application dialog.
In 13th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, USA, February 2006.

[4] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and
G. Voelker. Unexpected means of identifying protocols. In
Proceedings of the Internet Measurement Conference.
SIGCOMM/USENIX, October 2006.

[5] H.-A. Kim and B. Karp. Autograph: Toward automated,
distributed worm signature detection. In Proceedings of the
13th Usenix Security Symposium, San Diego, CA, 2004.

[6] Sumeet Singh, Cristian Estan, George Varghese, and Stefan
Savage. Automated worm fingerprinting. In Proceedings of
the ACM/USENIX Symposium on Operating System
Design and Implementation, Dec 2004.

[7] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

[8] Dan Gusfield. Algorithms on Strings, Trees and Sequences.
Cambridge University Press, 1997.

[9] Temple F. Smith and Michael S. Waterman. Identification
of common molecular subsequences. Journal of Molecular
Biology, 147, 1981.

[10] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis. Cambridge University Press, 1998.

[11] G. Jacobson and K. P. Vo. Heaviest increasing/common
subsequence problems. In Proc. of the 3rd Symposium on
Combinatorial Pattern Matching, volume 644, pages 52–65.
Springer LNCS, 1992.

[12] P. Pevzner and M. Waterman. Matrix longest common
subsequence problem, duality and Hilbert bases. In Proc. of
the 3rd Symposium on Combinatorial Pattern Matching,
volume 644, pages 79–89. Springer LNCS, 1992.

[13] Vern Paxson. Bro: A system for detecting network
intruders in real-time. Computer Networks (Amsterdam,
Netherlands: 1999), 31(23-24):2435–2463, 1998.

	1 Introduction
	2 Caveats in Sequence Alignment of Network Traffic
	3 Fast LCS for Network Traffic
	3.1 Jacobson-Vo: Combinatorial Reduction
	3.2 Improving Jacobson-Vo: Targeted LCS Selection
	3.2.1 Path Selection Through Dynamic Programming
	3.2.2 Overcoming Greedy Substring Extension

	3.3 Complexity Analysis

	4 Evaluation
	5 Discussion
	6 Conclusion
	7 References

