
The Strengths of Weaker Identities: Opportunistic Personas∗

Mark Allman, Christian Kreibich, Vern Paxson, Robin Sommer, Nicholas Weaver
International Computer Science Institute

Abstract
Cryptographic security mechanisms often assume that
keys or certificates are strongly tied to a party’s iden-
tity. This requirement can in practice impose a high bar
on making effective use of the cryptographic protections,
because securing the coupling between credentials and
actual identity can prove to be an arduous process. We
frame a more relaxed form of identity, termed oppor-
tunistic personas, that works by (i) generating crypto-
graphic credentials on an as-needed basis, (ii) associat-
ing credentials not with a user per se but instead as a link
to past behavior by the same actor, as a means to inform
future interactions, and (iii) managing these credentials
implicitly in an opportunistic fashion. Using three real-
world examples, we illustrate the benefits this unortho-
dox approach to identity management can yield.

1 Introduction

While cryptographic algorithms can provide strong pro-
tections in terms of authentication, integrity and privacy,
the security mechanisms built from them often assume
that any keys or certificates are also strongly tied to a
party’s identity. For these mechanisms, bootstrapping
the identity in the first place, and then soundly manag-
ing it in the future, both present significant hurdles for
practical use. To avoid these difficulties, some schemes
have evolved that use “opportunistic” methods that by-
pass the need for establishing a solid notion of identity
within the confines of the particular scheme. For in-
stance, while IPsec [6] relies on knowing the identities
of hosts, “anonymous” IPsec [8] does not require pre-
shared keys, but rather generates them on-the-fly.1

The general observation is that while a hard-and-fast
notion of another party’s identity is desirable, we can of-
ten make use of other cryptographic properties (e.g., data

∗USENIX Workshop on Hot Topics in Security, August 2007.
1Often authentication of identity happens at another layer in the

process—such as with a username and password.

integrity and on-the-wire privacy) without it. In addition,
for some applications it is less important to know who the
peer is in a solid way than to know if that peer changed
during the course of interacting with it (e.g., to protect
against cookie theft or hijacking attacks).

As used in practice, SSH [9] often side-steps the ques-
tion of airtight identity to offer more secure data trans-
port. When started for the first time, the SSH daemon
usually generates a host key for a given machine. The
first time a user connects to the given server, they are
presented with the server’s public key fingerprint for ver-
ification. In principle, users should contact the server
administrator out-of-band to obtain the fingerprint they
should expect. In practice, users generally simply accept
the fingerprint—in part because often they are operating
in a broader context (such as having just been told by the
remote administrator that their account is now ready) that
gives them high confidence that the risk at this point of
accepting a bogus key is quite low. In subsequent con-
nections, the user’s client compares the given server key
with their cached copy and warns the user if these do not
match. Two key notions we distill from this are (i) the
opportunistic generation of keys and (ii) the rough notion
of server identity embodied in how this process works in
practice (i.e., that keys are not rigorously vetted by users
on the first connection).

In a different domain, Hu and colleagues [5] present
a scheme for constructing a PKI to secure BGP routing
based on different parties simply assuming that the first
public key they receive for a particular autonomous sys-
tem is likely valid. Their analysis argues that such an
approach can yield quite positive deployment incentives
with fairly minimal risks regarding credential hijacking
going undetected for very long.

In this paper we advocate for generalizing the styles
of dealing with identity illustrated by these examples.
We term the overall notion “opportunistic personas” to
reflect (i) the opportunistic generation of cryptographic
keys, and (ii) the loose notion of identity these keys con-

1



vey. While personas do not provide a strong form of
identity, we argue they can gain significant benefits in
terms of greater ease-of-use, which in some contexts can
exceed the utility of attaining stronger forms of identity.
Further, we speculate about using opportunistic personas
to bootstrap developing solid and general purpose no-
tions of identity (see § 2.3).

In addition to the opportunistic generation of personas,
we also argue for the idea that user actions can often be
interpreted as an implicit proxy for management of per-
sonas. Users tend to respond differently to legitimate ver-
sus unwanted activity. By observing user reactions, we
can then in some cases infer the user’s trust in particu-
lar personas. For example, user reactions could drive the
construction of white- and black-lists (see § 2.1).

Certainly, in terms of achieving secure and sound sys-
tems, learning personas in an informal fashion is in prin-
ciple not as desirable as manually exchanging and val-
idating keys. However, in a number of contexts such
validation has proven impractical: it is either beyond
the ability of most users, or at least beyond their “pain
threshold” for the perceived benefits [4]. Thus, we be-
lieve application and protocol developers will benefit if
they broaden their thinking to consider weaker forms of
identity may actually provide stronger practical security.

The remainder of this paper progresses as follows. In
§ 2 we outline several examples where use of opportunis-
tic personas could mitigate real-world problems. § 3 of-
fers some guidelines on using opportunistic personas. Fi-
nally, we conclude in § 4.

2 Examples Of Employing Personas

In this section we present several examples of appli-
cations for which the notion of opportunistic personas
could enhance security.

2.1 Reducing False Positives in Email Filters

Mail filters are used to sift out a large variety of unwanted
email—everything from malware to spam to phishing at-
tacks. While some filters can be quite accurate, the pro-
cess inevitably flags legitimate messages as junk. Even
high accuracy ratios will inevitably falsely finger legiti-
mate emails. Also, as the overall rate of incoming email
increases, the interval between wrongly catching legiti-
mate emails decreases. Depending on the user’s setup,
this flagging can cause anything from a simple indica-
tion in the mail reader to the message being put in a
side (“junk”) folder to the outright deletion of the mes-
sage. For some, a false positive can be much more costly
than the stream of unsolicited mail itself. One way to
help combat the problem of false positives is by devel-
oping positive reputations of trusted senders whose mes-

sages can then be safely whitelisted. However, such ap-
proaches usually founder on the fact that (i) email ad-
dresses are easy to spoof2, (ii) developing cryptographic
identities is difficult (per the discussion in the previous
section), and (iii) the inconvenience to the user of then
populating their whitelist with the identities of the differ-
ent legitimate senders. We propose an approach based
on the notion of opportunistic personas that can address
these concerns. Our goal is not to offer better filter-
ing of unwanted email, but rather to prevent legitimate
mail from getting caught in the maze of traps already de-
ployed.

To use the idea of opportunistic personas, a user’s
mailer would generate a public/private key pair3 when
first configured. This key pair would then be used to con-
sistently sign the user’s messages. The public half of the
key would be included in the messages themselves. A
crucial simplifying aspect of our scheme is that dissem-
inating the sender’s key and using it to sign a message
are both done without user intervention. There is no at-
tempt to explicitly associate a key with a user, and thus
having a user’s mailer sign each of their messages with
the key does not provide a deep degree of authentication.
Rather, it serves to indicate that whoever sent a message
is the same person as who sent previous messages signed
with that same key.

Each email recipient, in turn, automatically devel-
ops their own view of the reputation associated with a
sender’s particular public key based on whether the re-
cipient has found that, in the past, mail signed by that
key is legitimate. This “reputation” is deduced implicitly
and in a quite simple fashion: when a user takes some
action that indicates an incoming mail is legitimate (e.g.,
replying to it), then their mail reader adds the sender’s
public key to a whitelist.4 Before applying filtering to
signed incoming email, the reader (or MTA upstream;
see below) first checks whether the signature is valid and
corresponds to a public key in the whitelist. If so, then
the reader can bypass its normal filtering, eliminating the
chance of a false positive.5 Essentially, the scheme al-
lows automatic construction of reliable whitelists.

The approach sketched above offers a great degree
of incremental deployability: senders using a modified
mailer would have their mail consistently signed without

2For instance, if source addresses are to be believed, then one of the
authors of this paper regularly sends spam to another author.

3Generation could proceed without a passphrase, or take the user’s
existing POP3/IMAP password as the passphrase.

4While we believe that most users would not want to be bothered,
the interface to this whitelisting of personas could in principle be ex-
posed to direct user command, as well.

5The procedure could also work such that all messages are first
checked to see if they are unwanted and only those that are unwanted
are run through the signature verifier. Our goal in this paper is to not
dwell on the particulars, but to concentrate on the high-level concepts.

2



needing the user to take any explicit steps, and receivers
would benefit from having senders whose mail they find
useful automatically whitelisted in the future.

One key aspect that requires development is how to
share these whitelists, as filtering is often done by a mail
server and not by the user’s own machine. Therefore, the
observations from the user will have to be conveyed to
the server in order to short-circuit its spam filtering. This
could be done cheaply by having the mailer fire off a pe-
riodic automated email containing the whitelisted keys to
some general address within the organization that auto-
matically installs such lists in the site’s mail processing
framework.

Of course, users’ lists of whitelisted keys could also
be shared with each other. However, there are two prob-
lems with doing so. First, sharing keyrings among actual
users likely means that the users would have to be in-
volved, which is at odds of with the entire scheme of do-
ing things opportunistically without involving the user.
Automated schemes for sharing whitelists may be possi-
ble, but may also allow for attackers of the system to slip
their keys into the whitelists. Second, sharing whitelists
is not likely to gain users much protection from false pos-
itives. Since most filters only have a very small fraction
of false positives, it seems likely that a key will be judged
as legitimate and whitelisted fairly readily by each user.
On the other hand, an area for experimentation would be
an organization coalescing its users whitelists together
when processing email on a central server. In this case,
users are not bothered by the process and may derive
some marginal benefit.

We note that attackers cannot in general impersonate
legitimate senders, since they lack their private keys, and
cannot benefit from minting their own public/private key
pairs, since recipients will not find this mail worthwhile
and thus their mailers will not learn to whitelist the asso-
ciated key. If an attacker does obtain a private key (say as
part of a more general compromise of a host), the private
key will get them little leverage, because the number of
users who will have whitelisted this key will be small.
Furthermore, if a recipient receives a piece of mail from
a whitelisted sending key, their mailer can observe the
user filing the message in a “junk” folder and remove the
associated key from the whitelist.6

Another tempting thought is to use opportunistic per-
sonas to encrypt (rather than just sign) email. The prob-
lem with this idea is that the opportunistic keys are gen-
erated on a per-mailer basis. Therefore, if a user reads
their mail on both a desktop machine and a laptop they
will send mail signed with two keys. Therefore, when
someone wishes to encrypt an email they will have to

6The mailer could even flag this change in the behavior associated
with the key, such that the recipient might in turn inform the sender that
their key appears to have been stolen.

encrypt the email to both keys. While this is not difficult
once all the keys are known, the problem is that a sender
does not have any good way to know when it possesses
all the keys for a recipient. Using encryption when not
all of the recipient’s keys are known will lead to the user
not being able to read the message in some mail clients
they use.

This last bit suggests that we may be able to use pro-
tocol extensions to help with on-the-fly use of cryptogra-
phy. For instance, we could think about extending IMAP
[2] such that the IMAP server can hold a user’s keys and
a single key can be used wherever a user reads their mail.
While this is more complicated than the simple scheme
sketched above, it could be done in a way that remains
transparent to the users.

2.2 Web Transactions

Our next example application of opportunistic personas
involves web browsing. We look towards helping solve
the issues surrounding phishing, where users are tricked
into logging into a fake site that appears to be legitimate.
The user’s credentials are logged and the attacker replays
these to masquerade as the user and login to the legiti-
mate site. In this paper we will use the example of a thief
accessing a user’s bank account (even though alternate
forms also exist). Both users and banks have an interest
in thwarting this form of attack and therefore we con-
sider using the notion of opportunistic personas in both
directions of web transactions.

On the server side, a bank’s web site could set its secu-
rity posture regarding the legitimacy of a request based
on the origin of the request with respect to previous re-
quests. For example, if some user always logged in from
some given IP address, an attempt to log in from a differ-
ent IP address could raise a flag leading to the bank tak-
ing a more skeptical posture—say, by querying the user,
in addition to username and password, with additional
“security questions” (e.g., the tired-but-common queries
regarding birth place, dog’s name, ending balance on last
statement, etc.) before granting access; or by increasing
monitoring of that account’s transactions.

Such an implementation could be approximated by a
server cookie the client includes in its request, or by us-
ing the client’s IP address. Bank of America’s SiteKey
[1] is an example of a cookie-based approach. However,
using cookies or IP addresses only loosely couples the
origin of the request with a user (e.g., IP addresses can
be ephemeral for a given computer and cookies repli-
cated and replayed). Our notion of opportunistic per-
sonas can provide a tighter coupling. The user’s web
browser would first generate a key pair and then use the
private key to sign all of its requests. It would also in-
clude the public key with the requests, and the web server

3



would then record the public key included with the user’s
initial account creation. The heightened security pos-
ture could then be instituted when a username/password
comes signed with a different key (or no signature at
all). Since the browser does not have to share the secret
key with anyone and only the secret key can be used to
sign requests that will correctly correlate with the user-
name/password this use of opportunistic personas pro-
vides a tighter origin hint than IP addresses or cookies.

On the other side of things, web servers could provide
clients with a notion of their identity by including public
keys and signatures with their transmission. SSL already
provides this functionality. However rather than just ver-
ifying that a server’s certificate is signed by a known au-
thority, the clients would also generate a factual history
of web sites they have visited. This would allow a web
browser to warn the user when submitting credentials to
a site they had not previously visited, similar to the ap-
proach taken by SSH.

An additional use of opportunistic web server per-
sonas could be in the creation of user passwords. Ross
and colleagues [7] detail a scheme called PwdHash that
makes custom and secure passwords for users for each
web site they visit. The general idea is that when regis-
tering for some web service the browser creates a pass-
word by hashing the user-entered password and the DNS
name of the server. Therefore, if users use the same pass-
words at multiple sites they will in fact end up different
for each site since the DNS name of each site is a com-
ponent of the password. Further, a phisher will not be
able to coax the right password from a user because even
if the user enters their password locally the browser will
turn it into a hash that will be wrong because the phisher
has a different DNS name than the legitimate service.

Consider instead the case where the user’s effective
password is constructed from one that they entered plus
the web server’s public key as provided to the client dur-
ing the registration process. When the user subsequently
needs to provide a password, it can be generated from
the given key ID and the user-entered password (assum-
ing the request from the server is properly signed with
the given key ID). This is similar to PwdHash, except we
factor out reliance on the DNS, which yields consider-
able flexibility. For instance, merging banks could con-
tinue signing their messages with appropriate keys such
that browsers generate the correct passwords even though
the banks no longer actively us their old DNS names. In
other words, the web server adopts a cryptographic per-
sona that only depends on a key pair it generates—not on
the overall information delivery process.

If web servers would sign their content on a per-
message level (rather than at the transport-layer as SSL
does), browsers (users) could verify that they receive le-
gitimate content even if they retrieve the content from

a cache (either local, or a distributed cache like Coral
[3]), or from a content distribution network (CDN). Sites
could, e.g., serve signed index pages and then offload the
remainder of the page transmission to a CDN or proxy.
As long as all objects are signed with the same key, the
browser (user) can trust that all objects came from the
same origin. This again fosters the notion that securing
data itself is of prime importance, given the myriad ways
data can be transmitted.

2.3 Persona Promotion

In the previous two cases we have used opportunistic per-
sonas to determine a rough sense of identity for a particu-
lar purpose. In this section we go a step further—into the
realm of linking a user’s actual identity with a given op-
portunistic persona, which can then be used for a variety
of purposes beyond what opportunistic personas allow.
We feel that while the idea of persona promotion is spec-
ulative, it potentially represents a significant advance in
that it provides for some concreteness in terms of crypto-
graphic identity, without requiring the use of one of the
more heavyweight schemes which non-technical users
can hardly cope with [4]).

We start with two examples of applications that re-
volve around personal contacts: audio/video conferenc-
ing (à la Skype) and calendaring. As above, these appli-
cations can opportunistically generate keys and use them
to sign the content they generate (A/V streams and meet-
ing invitations/RSVPs, respectively). Since both of these
applications involve personal contact it may be possi-
ble to promote the personas to actual identities. This
could be done explicitly, with the calendar tool asking
the user whether the people who RSVPed were in fact in
the meeting or with the A/V tool asking the user to in-
dicate if they know the person with whom they are con-
versing. More implicitly, we could also use the signal of
carrying on a conversation for a certain length of time to
indicate that the other party is well-known and we can
then assume the identity in the “buddy list” is accurate.7

In both cases the indication would trigger the user to sign
the peer’s key to indicate trust in the given identity.

The developed notion of identity could be be exported
to share trust across applications. It would be fairly
straightforward for the calendar or A/V tool to simply ex-
port keys and new signatures to a personal or even a pub-
lic key server. Key servers are already prevalent and this
would in turn make the keys broadly available. Other ap-
plications could then also interface with these key servers
to learn about promoted personas.

7Of course, if such techniques were well-known there could be ob-
vious social engineering tricks to try to coax people to stay on the line
for the requisite amount of time.

4



A vulnerability of the calendar application is an at-
tacker intercepting a meeting invitation, forging a re-
sponse based on their own key and also inserting the
meeting on the intended recipient’s calendar such that
they attend the meeting and have their supposed key val-
idated by the other attendees. In this case, the attacker
will have a key that has been signed as belonging to some
third party. This problem only manifests itself before a
user has verified an invitee, which means the window of
opportunity does not make this a likely avenue for at-
tack. A danger for A/V applications is that computers
may have multiple users who share an account which is
under one person’s name, such as when a family com-
puter uses only Mom’s Skype identifier. In this case,
the persona will not precisely map to an individual. If
the A/V client is explicitly interacting with the user this
may be reasonably easy to handle, but the implicit no-
tion of observing a conversation will perhaps associate
the wrong identity with the key.8

One logistical problem with the overall notion of per-
sona promotion is that personal contact applications may
not derive much benefit from this operation. Hence, there
may be little incentive for application developers to help
establish a hard-and-fast notion of identity in a general
fashion. Two paths we envision could help with this
problem. First, if a personal contact tool provides a “plu-
gin” architecture then it is possible that independent de-
velopers could add the functionality sketched in this sec-
tion without relying on the application developer. A sec-
ond possibility is that of a tool that is part of a larger suite
of tools offered by some particular vendor (e.g., iCal and
iChat within OSX). In this case, the developer may have
incentive to add this feature to a personal contact tool to
benefit other tools (e.g., a mail reader) in their suite.

A second problem is that the people someone sets up
meetings with or talks to likely represent only a fraction
of the people one interacts with on a regular basis. This
seemingly imposes a limit on the usefulness of the ap-
proach. However, we note that the people one meets with
and talks to are likely to represent the set of people with
whom it is the most important to securely communicate
(e.g., by encrypting a confidential memo or sharing an
internal budget). In addition, as with PGP, a web of trust
can be formed such that one can gain confidence in iden-
tities even in the absence of personal contact.

3 Discussion

From the examples in the previous section we can distill
a set of guidelines for using opportunistic personas.

First, consideration of the use of personas versus

8On the other hand, if the persona is known to be a “group persona”
and is promoted to a “group key,” the implicit scheme may still be fine.

highly vetted cryptographic identities for various appli-
cations must always be framed in terms of trade-offs.
The point of personas is to extract strength (often the
benefit of greater ease-of-use, and hence practical de-
ployability) by giving up strength elsewhere (the weaker
tie to an actual identity). Thus, such uses should ex-
plicitly identify the benefits to gain, where a key facet
concerns an understanding of the scope within which an
opportunistic persona is relevant.

Second, not only does employment of personas
weaken ties to identities, but doing so also potentially
opens up new avenues of attacks. To this end, one needs
to assess the implications of compromise of a given per-
sona key: How does a particular use of an opportunis-
tic identity change the security equation in such circum-
stances? Even if keys remain protected, one must give
thought to possibly increased opportunities for man-in-
the-middle attacks (since the two endpoints of a conver-
sation may have less confidence that they can soundly
share a session key) or social engineering (attackers
leveraging implicit decision-making regarding what trust
to place in personas in order to trick users into taking ac-
tions that will falsely reflect trust; essentially, a form of
“mimicry” attack).

Finally, one needs to examine what additional work
might be placed on users, versus the user-interaction
simplifications that occur when employing opportunis-
tic personas. This includes an assessment of what sort
of user behaviors to leverage for implicit management
of persona trust; opportunities for introducing ties be-
tween multiple personas; and the degree to which users
can fruitfully develop correct intuitions and expectations
regarding how personas behave, analogous to how users
understand the properties of personas in alternate do-
mains (such as “caller ID”).

4 Summary

We have sketched opportunistic personas—i.e., broadly
using a rough notion of cryptographic identity that can
be generated as-needed. While a persona is not as air-
tight as a traditional identity in cryptographic systems,
we show several examples whereby personas mitigate
problems even if they do not solve the entire problem. In
addition, while the underlying notion has been used be-
fore (e.g., in SSH), we have attempted to distill general
concepts and show how personas can offer power beyond
securing data transport. We have aimed to illustrate the
potential power of the scheme sufficiently for develop-
ers to consider the trade-offs of its possible application
to their protocol and application design efforts. We hope
that the community will join in with further exploring
such ideas.

5



5 Acknowledgments

We thank Ethan Blanton for discussions involving these
issues. This work was supported in part by the National
Science Foundation under grants ITR/ANI-0205519,
NSF-0433702 and CNS-0626539, for which we are
grateful. This work was also supported by a fellowship
within the Postdoc-Programme of the German Academic
Exchange Service (DAAD). Parts of this work were pro-
duced under the auspices of the Institute for Information
Infrastructure Protection (I3P) research program. The
I3P is managed by Dartmouth College, and supported
under Award number 2003-TK-TX-0003 from the U.S.
Department of Homeland Security, Science and Tech-
nology Directorate. Points of view in this document are
those of the author(s) and do not necessarily represent
the official position of the U.S. Department of Home-
land Security, the Science and Technology Directorate,
the National Science Foundation, the I3P, or Dartmouth
College.

References

[1] SiteKey at Bank of America. http://www.
bankofamerica.com/privacy/sitekey/.

[2] M. Crispin. Internet Message Access Protocol - Ver-
sion 4rev1, March 2003. RFC 3501.

[3] Michael Freedman, Eric Freudenthal, and David
Mazieres. Democratizing Content Publication with
Coral. In Proc. USENIX/ACM Symposium on Net-
worked Systems Design and Implementation, March
2004.

[4] Peter Gutmann. Plug-and-Play PKI: A PKI Your
Mother Can Use. In Proc. USENIX Security Sym-
posium, 2003.

[5] Yih-Chun Hu, David McGrew, Adrian Perrig, Brian
Weis, and Dan Wendlandt. (R)Evolutionary Boot-
strapping of a Global PKI for Securing BGP. In
Proc. ACM HotNets, 2006.

[6] S. Kent and K. Seo. Security Architecture for the
Internet Protocol, December 2005. RFC 4301.

[7] Blake Ross, Collin Jackson, Nicholas Miyake, Dan
Boneh, and John C. Mitchell. Stronger Password
Authentication Using Browser Extensions. In Proc.
USENIX Security Symposium, 2005.

[8] J. Touch, D. Black, and Y. Wang. Problem and Ap-
plicability Statement for Better Than Nothing Secu-
rity (BTNS), February 2007. Intenet-Draft draft-ietf-
btns-prob-and-applic-05.txt (work in progress).

[9] T. Ylonen and C. Lonvick. The Secure Shell (SSH)
Protocol Architecture, January 2006. RFC 4251.

6


