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Abstract

Traffic on the Internet is constantly growing more complex and multi-
faceted. This natural evolution is mirrored by novel kinds of malicious
traffic: automated attacks subvert thousands of machines at a time, en-
abling a wide range of subsequent attacks and nuisances such as distribu-
ted denial-of-service attacks and generation of vast amounts of unsolicited
electronic mail. Consequently, there is a strong need to be able to tell ma-
licious traffic from the benign. In this dissertation, I take several steps to-
ward this goal. By leveraging structural aspects of network traffic, typical
as well as malicious activity on computer networks can be fingerprinted
and contrasted.

A first avenue is the analysis of application-level flow content. I investi-
gate the suitability of biological sequence alignment algorithms in the ad-
versarial environment of the networking domain, and introduce a novel
algorithm that is well over an order of magnitude faster than the com-
monly used Smith-Waterman algorithm while maintaining much of its
flexibility. I introduce a novel and highly flexible model of traffic content
based on sequence alignment, Common Substring Graphs, and demon-
strate its versatility in a study of application-level protocol classification.

Switching focus to the malicious, I pioneer the use of honeypots and se-
quence analysis algorithms for automated fingerprinting of malware and
thus demonstrate the feasibility of fully automated network-based mal-
ware signature generation. I propose a second approach to fingerprint-
ing the malicious: Packet Symmetry focuses on network-level structure
and leverages the intuition that well-behaved applications do not trans-
mit vastly more packets than they receive. Traffic analysis confirms the
feasibility of employing packet symmetry for edge-based, ingress-focused
prevention strategies for volume-based attacks.
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1
Introduction

“Mmm. This is good. This is
really good. What is this?”

— Princess Fiona in Shrek.

In this dissertation I introduce novel ways to distinguish malicious traf-
fic from the benign. By taking advantage of structural aspects of network
traffic exposed by suitable filtering of input traffic, typical as well as mali-
cious activity on computer networks can be fingerprinted and contrasted.
I will show how application-level content and network-level flow compo-
sition can be used to extract the structure of application-layer protocols, to
identify malicious flow content, and to prevent certain classes of denial-
of-service attacks.

I motivate the topic of this dissertation and state my thesis in Section 1.1.
Next, I briefly outline the structure of the dissertation in Section 1.2 and
state its contributions explicitly in Section 1.3. Large parts of this disserta-
tion have been previously published; I enumerate those publications Sec-
tion 1.4 and also mention some which address related topics that I have
worked on besides the dissertation.

Finally, it may help the reader to know that several elements of the elec-
tronic version of the dissertation are clickable to ease navigation. URLs are
generally linked. Entries in the table of contents take you to the respective
chapters and sections. Chapter titles and headers link back to the table of
contents, while section numbers link to the beginning of the current chap-
ter. Citations lead to the corresponding entry in the bibliography, where
each entry lists the numbers of all pages on which the entry is cited. Those
numbers link back to to the respective citations throughout the document.
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1.1. MOTIVATION

Motivation1.1

Traffic on the Internet is not only constantly growing in volume, it is also
growing increasingly more complex and multi-faceted. New applications
are introduced constantly, often without clear network-level specifications
or even openly trying to obscure their presence, creating new usage pat-
terns and traffic content. At the same time, older applications decline.
This healthy evolution is challenged by an onslaught of equally inventive
abusive traffic: a poorly secured network edge allows large-scale automa-
tion of system break-ins through the injection of malicious content into
the communication, enabling a wide range of subsequent attacks and nui-
sances such as distributed denial-of-service attacks and generation of vast
amounts of unsolicited electronic mail.

As a consequence, the importance of network traffic monitoring has in-
creased in tandem, for two reasons. First, monitoring is necessary to im-
prove one’s understanding of the typical activity on a network, for example
in order to keep track of current application usage, be able to provision
a network economically, forecast application growth, or validate service
differentiation. Second, traffic is monitored to detect and, ideally, filter out
abusive activity, where abuse is typically defined by site-local administra-
tive policy, and may include the use of undesirable applications, creation
of malicious content, abusive volumes of traffic, aggressive scanning be-
haviour, etc.

Novel approaches to network monitoring are required to help operators
maintain a clear picture of the normal and malicious activity on their net-
works. An essential requirement here is automation: on the one hand, an-
alyst time generally is a scarce resource; on the other, malware has been
shown to propagate at time scales that essentially exclude the possibility
of human analysis.

This dissertation touches on all of these aspects. I argue the following
thesis:

Network traffic exhibits structural properties which, given suitable fil-
tering and vantage points, permit fully automated derivation of finger-
prints of previously unknown network applications and attacks. The
generated fingerprints enable accurate detection as well as filtering of
such network activity.

2



1.2. OUTLINE

Outline1.2

This dissertation is structured as follows. I begin by surveying the de-
velopment of network security over the last decades in Chapter 2, to put
my work in general context. Much of the dissertation dedicates itself to
content-based traffic analysis, for which I lay the foundation in Chapter 3:
I introduce techniques for tracking the message exchange between com-
munication endpoints and use them for the study of sequence analysis
models adapted from the bioinformatics domain. I present variants of se-
quence alignment algorithms suitable for network traffic and outline their
trade-offs, and introduce the consideration of such algorithms from an ad-
versarial perspective. I present a first use of these techniques in Chapter 4
in the form of a content-based model of application-layer protocol activity
found on a network. In Chapter 5 I focus on malicious traffic. I present
techniques for automatically detecting and fingerprinting the characteris-
tics of attacks as they occur, as well as a proactive monitoring and enforce-
ment technique for the prevention of denial-of-service attacks. Finally, I
conclude the dissertation with Chapter 6.

Contributions1.3

In this dissertation I make the following contributions:

• I investigate the suitability of a number of biological sequence align-
ment algorithms in the adversarial network environment, and find
that such algorithms have to be employed with great care in order to
yield the desired results. I introduce a novel variant of the Jacobson-
Vo algorithm that is able to accommodate flexible alignment models
akin to dynamic programming as used by the popular Smith-Water-
man algorithm, while outperforming the latter by a factor of 33 on
average and up to 58.5 times in the best case. (Chapter 3.)

• I introduce Common Substring Graphs (CSGs), a structural model
of flow content taking into account the frequency, length, and loca-
tion of strings common to a set of flows. The model retains informa-
tion about the input flows with high fidelity, making it useful for a

3



1.4. PUBLISHED WORK

number of applications. Using thorough evaluation, I demonstrate
very good suitability of the model for one such application, namely
application-layer protocol classification. (Chapter 4.)

• I pioneer the use of honeypots and sequence analysis algorithms for
automated fingerprinting of malware and demonstrate the feasibil-
ity of fully automated and fast malware signature generation. (Sec-
tion 5.3.)

• I present the notion of Packet Symmetry, a network-level preven-
tion strategy for volume-based attacks, leveraging the insight that
well-behaved applications should not transmit vastly more packets
than they receive. Through traffic analysis I confirm the feasibility
of highly universal packet-level differentiation between benign and
malicious traffic. (Section 5.4.)

Published Work1.4

Individual parts of the work presented in this dissertation have appeared
in the following publications:

• J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. Voelker: Unex-
pected Means of Protocol Inference. Internet Measurement Confer-
ence (IMC), 2006, Rio de Janeiro, Brazil.

• C. Kreibich and J. Crowcroft: Efficient Sequence Alignment of Net-
work Traffic. Internet Measurement Conference (IMC), 2006, Rio de
Janeiro, Brazil.

• C. Kreibich, A. Warfield, J. Crowcroft, S. Hand, and I. Pratt: Us-
ing Packet Symmetry to Curtail Malicious Traffic. Fourth Workshop
on Hot Topics in Networks (HotNets-IV), 2005, College Park/Mary-
land, USA.

• C. Kreibich and J. Crowcroft: Honeycomb — Creating Intrusion De-
tection Signatures Using Honeypots. 2nd Workshop on Hot Topics
in Networks (HotNets-II), 2003, Boston, USA.
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1.4. PUBLISHED WORK

The following article presents a central component of my toolchain for
offline network traffic manipulation and has been used in almost all of the
work listed above.

• C. Kreibich: Design and Implementation of Netdude, a Framework
for Packet Trace Manipulation. Usenix Technical Conference, Freenix
Track, 2004, Boston, USA. Awarded Best Student Paper.

During my work on this dissertation I have contributed to other published
work that is closely related to structural traffic analysis but slightly outside
scope for inclusion:

• H. Dreger, C. Kreibich, R. Sommer, and V. Paxson: Enhancing the Ac-
curacy of Network-based Intrusion Detection with Host-based Con-
text. Conference on Detection of Intrusions and Malware & Vulner-
ability Assessment (DIMVA 2005), Vienna, Austria.

• C. Kreibich and R. Sommer: Policy-controlled Event Management
for Distributed Intrusion Detection. 4th International Workshop on
Distributed Event-Based Systems (DEBS’05), 2005, Columbus/Ohio,
USA.

• A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt: Architecture of
a Network Monitor. Passive and Active Measurements Workshop,
La Jolla, California, 2003.

Much of the work listed above originated from internships with Vern Pax-
son at ICSI in 2004 and 2005.
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2
Background

“And leaving the door open is the worst mistake.”
— Scare instructor in Monsters, Inc.

In this chapter I give an overview of the evolution of network security in
the Internet from its conception to the present day, illustrating the growing
application of content-based traffic analysis techniques for understand-
ing and enforcing site-local traffic management policies on computer net-
works. Since network surveillance gives operators access to potentially
highly sensitive information about the users, it is of great importance to
be aware of the legal implications of such monitoring. Using Germany,
the United Kingdom, and the Unites States as examples, I briefly survey
the relevant legislation. The goal of this chapter is to put into perspective
the techniques I introduce in the remaining chapters of this dissertation.

Network Security2.1

Information has become one of the (if not the) most important asset in our
society. Many pieces of information are public and meant to be accessible
by anyone, while others need to be guarded carefully. In this context, net-
work security is mentioned frequently enough in the media that it is worth
clarifying what exactly I mean by it. When speaking of network security
in this thesis, I adopt the description by Shaffer and Simon [138]:

Network security refers to all hardware and software functions, char-
acteristics, features, operational procedures, accountability measures,
access controls, and administrative and management policy required
to provide an acceptable level of protection for hardware, software,
and information in a network.

6



2.2. EVOLUTION OF NETWORK SECURITY IN THE INTERNET

The goals of network security are no different from those of any effort to
protect information: availability guarantees that requested information can availability,

confidentiality,
integritybe provided when needed, confidentiality restricts access to information to

authorised individuals, while integrity ensures that information remains
unmodified and complete. Attacks on networked systems attempt to ex-
ploit one or more vulnerabilities in those systems that allow the mech-
anisms that enforce these goals to be bypassed. A successful attack can
be composed of many steps; Schneier’s attack trees structure these steps attack trees

[133]. Malicious activity generally means any activity that aims to find or
exploit vulnerabilities.

It is important to note that security is always a trade-off. Network security,
as any security investment, is an additional expenditure and thus subject
to calculations of return on investment (ROI). If an organisation believes
the financial cost imposed by a security breach s smaller than that of the
investment necessary to protect the network, it is unlikely to make that
investment. Methods of risk estimation for ROI calculations are contro-
versial, see the book by Alberts and Dorofee [1] for an example.

Evolution of Network Security in the Internet2.2

In the following I present an overview of the evolution of network security
over the decades, focusing on the awareness, understanding of the prob-
lem, and measures taken, rather than trying to give a complete account
of the history of the Internet. Any historical facts that are not referenced
explicitly are taken from the general literature [111, 121, 64].

1960s2.2.1

The 1960s were dedicated to the exploration of the very fundamentals
of computer networking: cross-platform communication, and the use of
packet switching as opposed to circuit switching, for increased robustness
against structural failures. Baran’s seminal paper [11] addresses security
in the sense of preserving connectivity in the presence of node and link
failures. In contrast to popular opinion, this damage resilience was only

7



2.2. EVOLUTION OF NETWORK SECURITY IN THE INTERNET

one of the motivators besides others, such as J.C.R Licklider’s vision of a
global network infrastructure [96].

1970s2.2.2

By the early 1970s, the Arpanet had become an important platform for col-
laborative research. Email, TCP/IP and Ethernet are developed. Cerf and
Kahn’s TCP/IP paper [25] thoroughly treats addressing, routers, reliable
transfer, and flow control, but has no notion of a threat model or simi-
lar security-focused analysis. In 1979, John Shoch and Jon Hupp of Xerox
PARC develop a small, self-replicating program that finds groups of idle
local machines that the authors want to use instead of the mainframe, for
parallel computations. The program is flawed and causes a large frac-
tion of the local host population to hang. Shoch and Hupp implemented
a worm: a self-contained program that can replicate itself across multiple computer worm

machines autonomously. Network connectivity is a basic requirement for
computer worms, thus increased connectivity also implies a larger poten-
tial attack surface for worms. However, security flaws in the Arpanet are
not a major concern at this point. At this point, attackers are much more
interested in exploring the various ways in which the in-band signalling
channels of the telephony systems can be tricked into permitting cheap
long-distance calls [148].

1980s2.2.3

This decade marks the shift from time-sharing few machines to large de-
ployments of interconnected end-user PCs with a common LAN technol-
ogy, typically Ethernet, and the network officially becomes the Internet.
Access is opened up to basically anyone with the right equipment, and
thus laid the basis for the first well-known security violations on the Inter-
net. Security-related terminology starts to consolidate. James Anderson
lays one of the cornerstones of what is to become the field of intrusion
detection when he establishes the idea of using audit data for detecting
misuse in a 1980 paper [3]. In 1983, Ph.D. student Fred Cohen and his ad-
viser Len Adleman are the first to academically term code that can prop-
agate “in the wild” a computer virus [38]. Cohen’s now commonly used computer virus

8



2.2. EVOLUTION OF NETWORK SECURITY IN THE INTERNET

non-mathematical definition of a virus is as follows:

A virus is a program that can ‘infect’ other programs by modifying
them to include a [...] version of itself.

Prior to Cohen and Adleman, the term had been used in science fiction [66,
21] and code was released that falls in the same category (such as Elk
Cloner [152]). In contrast to worms, viruses require external activity to
propagate. Cohen’s work marks the beginning of the development of a
myriad of different kinds of computer viruses. Szor [152] enumerates the
many digital niches in which viruses appear in great detail.

In 1986, Cliff Stoll accidentally discovers a large-scale international oper-
ation to break into computers in the United States [150]. On 2 Novem-
ber 1988, Robert Morris releases the Morris Worm (also referred to as the Morris worm

Internet Worm), the first Internet-wide uncontrolled self-replicating code
targeting a set of specifically preselected weaknesses in widely deployed
software [145]. It leads to the development of the first Computer Emer-
gency Response Team (CERT) [155]. In 1987, Dorothy Denning publishes
“An Intrusion-Detection Model,” describing a model for profiling normal
behaviour and using deviations from the norm as the signal of misuse [50]. intrusion

detectionThe work establishes the term “intrusion detection” and her model re-
mains the basis of most anomaly-based intrusion detection systems (IDSs)
today. The concept of a firewall as a filtering mechanism for unwanted
traffic appears in the literature in 1988 [103] and leads to a wide array of
implementations across a large design space spanning protocol layers, fil-
tering dynamics, and physical deployment scenarios such as demilitarised
zones.

1990s2.2.4

At the beginning of the decade, vulnerabilities in server software, then
exclusively a UNIX domain, are published regularly. Heber et al. estab-
lish the notion of a specifically network-based intrusion detection sys-
tem (NIDS) in a paper appearing in 1990 [72]. Their system is anomaly- NIDS

based, following Denning’s model. Large-scale break-ins, often facilitated
through unsafe configuration of the rlogin tools, appear in isolation [27,
28]. Social engineering, essentially non-technical means to trick people

9



2.2. EVOLUTION OF NETWORK SECURITY IN THE INTERNET

into handing out sensitive information, finds a new market through email
scams [26]. Attackers attempt to monitor network traffic in strategic loca-
tion in order to extract user account details from the then entirely unen-
crypted traffic [29]. In 1995, the SSH protocol suite appears and with its
ability to encrypt connections ends the era of large-scale password sniffing
from interactive user sessions.

1996 is the year of the first denial-of-service (DoS) attacks, in which attack- DoS

ers flood victim servers with large amounts of request traffic [30] or with
maliciously crafted packets [31, 32, 33], thus crashing or slowing down the
machine or its access links, and preventing it from servicing legitimate re-
quests. Denial-of-service attacks remain one of the largest security threats
on the Internet to the present day. On March 26 1999, the first email-borne
worm and macro virus, Melissa, appears and clogs mail servers around
the planet [34], causing massive financial damage. Estimates vary widely
but are generally placed in the order of hundreds of millions of US dol-
lars. That year also sees the advent of distributed denial-of-service attacks
(DDoS attacks), in which attackers use a large number of subverted ma- DDoS

chines to flood a victim with traffic.

At the end of the decade, two major open-source NIDS implementations
appear: Bro [119] and Snort [128]. Bro becomes the predominant system
for research endeavours, and is the platform for much of the work pre-
sented in this dissertation.

The 1990s are the decade in which the Internet is opening up to commer-
cial use. With it comes the entry into the network, or more precisely, into
the edge, of large numbers of hosts running Microsoft operating systems.
This much younger codebase, combined with a typically weak sense of
security on part of the “operators” of these machines, offers a ripe ground
for exploitation and leads to a shift in attacker focus toward the Windows
operating systems.

2000-Present2.2.5

The boundaries between worms, viruses, and the activities they perform
become increasingly blurred. “Malware” becomes an umbrella term re- malware

ferring to any kind of malicious software. Widespread broadband access
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2.2. EVOLUTION OF NETWORK SECURITY IN THE INTERNET

leads to around-the-clock connectivity of large numbers of poorly guarded
end-user PCs.

The beginning of the new millennium is an era of severe worm outbreaks.
Sadmind, CodeRed, CodeRed II, Nimda, Slammer, Blaster, and Sober re-
peatedly cause significant financial damage, denials of service on affected
systems, and hindered general network operations world-wide [147, 165].
Weaver et al. [164] present a taxonomy of different kinds of computer
worms. Among other things, worms highlight the deficiencies of thinking
of network defense as a perimeter problem: once malware is active inside
the network, defenses against the outside are useless. The widespread use
of wireless networking and laptops exacerbates this problem.

They idea of mining regular networks with traps for the attackers to step
into, termed honeypots, becomes mainstream. Such systems are specifically honeypots

set up for thorough analysis of attacker activity, and little else [146]. Hon-
eypots are a central component of the work I present in Chapter 5.

A major shift in attacks in recent years is commercial motivation for ex- economic
motivesploitation of vulnerabilities. Instead of only bragging about the latest

break-ins, the control of large numbers of machines becomes automated
to the degree that allows attackers to control such botnets for extorting botnets

money: only after payment is the victim relieved of DDoS attacks, or re-
turned encrypted files. Delivery of unsolicited email, often happening
through the infected machine’s legitimate SMTP server, is another com-
mon application. Current botnets have a large command set suitable for
automated updates of the malware, sniffing user input, scanning for vul-
nerabilities, etc. At present, they often use IRC and IRC-like systems as
the communications layer since IRC lends itself well to commanding large
numbers of clients [42, 65]. Economic incentives have also started to be
employed by security vendors: vulnerability markets [132] promise to pay
money to discoverers of new vulnerabilities for the vendor’s privilege of
learning of — and potentially disarming — the vulnerabilities before the
competition.1

1See for example http://labs.idefense.com/vcp.php.
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Arms Races in Network Security2.3

The constant theme in the evolution of network security over the decades
is one of measures and countermeasures, that is, an arms race. When at-
tackers adopted a new strategy, site administrators developed counter-
measures, and vice versa. This phenomenon is in no way unique to the
network security domain but can be observed in any attack/defense sce-
nario. In the field of network security, the anti-virus industry is an embodi-
ment of such a race. Another good example is the introduction of network
intrusion detection systems. After the first systems saw widespread de-
ployment, it quickly became clear that extracting flow content unambigu-
ously is hard, and that there is potential for evading the monitor [125].
IDSs improved their algorithms and additional anti-evasion techniques
were proposed [71, 139], but the arms race has never been clearly decided
in favour of the attackers or the defenders. I discuss this further in Sec-
tion 5.2.1, in the context of finding ways to fingerprint the malicious.

Several aspects of the network security arms race are worth noting. First
of all, it is of limited predictability: external influences can shift motiva-
tions of the involved parties in unforeseeable ways. Second, not taking a
step that makes life harder for the other side is a chance missed, unless
taking that step brings with it negative side effects that are bigger than the
improvement itself. Third, it is also a race in a more literal sense: the in-
volved timescales are constantly decreasing. This holds for both the time
from discovery of a vulnerability to attempted exploitation as well as to
the development of a fix for the vulnerability and of signatures identify-
ing exploitation attempts [6]. The development of a technique to derive
such signatures without human intervention is the main contribution of
Chapter 5 of this dissertation. Fourth, the race is here to stay. While there
can be no doubt that present-day software engineering produces subop-
timal products due to economic disincentives and lacking expertise, no
matter how well the architecture of the future Internet will work, people
will always attempt to attack it. The question is only how easy it will be
for them to succeed. From a technical point of view, the arms race is a
constantly driving factor behind the development of more sophisticated
attack and defence techniques.
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Detecting Malicious Behaviour2.4

Purpose, Mode, and Consequence of Detection2.4.1

There are many reasons why a site might operate an infrastructure for de-
tecting malicious activity. They are closely related to the security policy a
site operates under, that is, detection will be a building block for enforcing
the policy. Typically the goal will be better understanding of activity on
the network and to prevent abuses of system resources. Detection mecha-
nisms can be classified along multiple dimensions.

Strategy and Policy2.4.1.1

There are two major approaches to detecting malice [8]. First, we can de-
fine what behaviour we see as normal, and report deviation from such
a profile. This is known as anomaly detection and has seen a consider- anomaly

detectionable amount of research over the years. At the network level, the focus is
often on modelling statistical traffic parameters such as connection rates,
transfer volumes, contact habits, etc, frequently with probabilistic classi-
fiers. Alternatively, we can formulate precise signatures of malicious be-
haviour, and detect their occurrence in the network. Such misuse detection misuse detection

has been embraced by industrial vendors early on and mostly consists of
content-based signature detection for binary classification. A major bene-
fit of binary classification, assuming it is correct in its judgement of input
traffic, is that it makes a clear statement that eases processing of the classi-
fied event. I discuss binary classification further in Section 2.4.2.

Anomaly and misuse detection can be combined in whichever way best
serves a site’s security policy. The effect of a detection is similarly up to
policy and could range from warnings issued to the administrator to im-
mediate termination of a machine’s network connectivity. Policy is so im-
portant because there cannot be a single standard for what is worth alert-
ing to. For example, one can ask whether the occurrence of an attempted
Microsoft IIS exploit in a UNIX-only LAN is worth an alarm, or at which
point a scanning source is deemed aggressive enough to ban it from fur-
ther communication. It will depend entirely on the preferences of the local
site.
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Location, Distribution, and Focus2.4.1.2

The field of vision that a detection system has on a network depends
on where it is deployed and strongly affects potential results and perfor-
mance. The more input the system has, the more it can potentially alert to,
but the higher will be the computational requirements. Many deployment
scenarios are feasible; all of them have different advantages and draw-
backs.

Host-based systems can monitor in detail all activity on a host, but are
restricted to just that host. Network-based systems, on the other hand, see
a wide range of activity, but must infer from the network the activity on
the end hosts, which is nontrivial [125]. OS virtualisation in combination
with servicing a large IP address range from a small set of physical hosts
is an interesting way to widen a host-based system’s focus. A key aspect
in network-based monitoring is the depth to which the traffic is analysed.
I will discuss this separately below in Section 3.2. This thesis presents a
variety of techniques ranging from shallow packet counts to deep content
analysis of reassembled traffic flows, combining several of the approaches
outlined above.

Even network-based detectors can only monitor what they observe, and
they too remain blind to highly distributed activity unless the observa-
tions of multiple systems are combined into a larger, distributed detector.
Timely distributed detection is an absolute requirement for stopping fast-
spreading malware, since the chances of stopping such phenomena be-
come extremely small once the infection has crossed its epidemic thresh-
old [109, 166].

Unfortunately, the current sophistication level of distributed monitoring
is rather primitive: I know of no set of sites sharing descriptions of at-
tacker activity in even semi-automated fashion besides elementary shared
blacklists of IP addresses, for example to filter out known originators of
unsolicited electronic mail [123, 17]. This is very far from the sophisti-
cated, fully automated propagation and filtering architectures required to
make real-time containment of Internet-scale epidemics a reality. As an
inital step in that direction, I have contributed to the extension of the Bro
IDS to a fully distributed, event-based system [85], providing a testbed
for experimenting with such infrastructures. The system is fully imple-
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mented, publically available,2 and actively used in test environments at
institutions such as ICIR, Lawrence Berkeley National Laboratory, and
Technische Universität München.

Binary Classification2.4.2

Many kinds of network security systems attempt to detect malicious be-
haviour, for example virus scanners or intrusion detection systems. Like
any detection system, such devices can err in two ways: they can report
a detection when none exists (a false positive), or they can remain silent false positive &

negativeeven though there is malicious activity in progress (a false negative). The
goal is to minimise both kinds of errors while at the same time maximising
detection.

Figure 2.1. Outcome possibilities in binary classification.

Two measures for the degree to which this succeeds are precision Pr and
recall Re, as illustrated in Figure 2.1. Let the circle to the left be the actual precision, recall

set we want to detect, and the one on the right the one we do detect. Thus,
A represents the false negatives, B and C constitute the true and false pos-
itives, respectively, and D comprises the remaining true negatives. Preci-
sion and recall are then defined as follows:

Pr =
B

B + C
Re =

B
A + B

In binary classification, sensitivity Se and specificity Sp measure similar no-
tions. Sensitivity is the same as recall. Specificity is closely related to pre-

2See http://www.bro-ids.org
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cision, but focuses on the entire test set:

Se =
B

A + B
Sp =

D
C + D

The false positive ratio FP is the ratio of false positives to all negatives and
can be expressed through Sp:

FP =
C

C + D
= 1− Sp

The above measures point out two things.

• Firstly, true positives alone do not make a good detector if false pos-
itives are substantial, and vice versa. That is, precision/specificity
and recall need to be evaluated in combination.

• Secondly, and more generally, there exists a duality between know-
ing the benign and detecting the malicious. If we know exactly what
is benign, then anything that falls outside of that definition has to
be malicious, and vice versa. This duality is an underlying theme of
this thesis and will be referred to repeatedly.

In the network security context, false positives can lead to denial of ser-
vice by preventing users from accessing legitimate files, or because legit-
imate network connections are incorrectly terminated [24, 151]. Much of
the security arms race comes down to attackers trying to making it harder
to identify the malicious while the defenders improve their classification
techniques. Chapter 4 of this dissertation is dedicated to the identifica-
tion of the benign, while Chapter 5 discusses approaches that automate
the identification of the malicious.

Legal Implications of Network Monitoring2.5

Monitoring network traffic can easily provide site operators access to po-
tentially sensitive information about their users. Just as is the case with
wiretapping, network monitoring does not exist in a legal vacuum: site op-
erators are typically limited in the way the obtained data may be processed
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and stored. Generally, one has to differentiate between the legal environ-
ment governing the procedures inside corporate networks (affecting the
relationship between employer and employee), and those in place to pro-
tect the privacy of citizens (in their role of customers of service providers).

Corporate Law2.5.1

While details vary strongly from country to country (and possibly from
state to state), corporate law generally provides employers with the possi-
bility to establish acceptable use policies that the employees have to com-
ply with, and allow monitoring and filtering tools to enforce this compli-
ance.

In Germany, employers may monitor employee communication only after
explicit notification, or in case of substantial evidence of resource abuse.
Private use of the employer-provided Internet connection is not sufficient
reason for terminating the work contract without prior warning, or if com-
prising less than 100 hours per year (§626 BGB).

In the United Kingdom, the situation is essentially similar. The Regulation
of Investigatory Powers Act (RIPA) of 2000 [117] states that employers may RIPA

only conduct monitoring if both parties have consented, or if the monitor-
ing is required to conduct the employer’s business. Beyond that, the Data
Protection Act (DPA) [118], most recently revised in 1998, strengthens the DPA

employee’s position by requiring the employer to assess the impact of the
monitoring activity on the user’s privacy, and renders monitoring poten-
tially illegal under certain circumstance even after employee consent.

In the United States, the employee’s position is considerably weaker, as
monitoring can be perfomed even without explicit consent by the em-
ployee. As of 2005, approximately 75% of employers monitor employee
web surfing, 65% block accesses to certain URLs, and around 50% moni-
tor electronic mail [127].

Civil Law2.5.2

Germany introduced data protection laws as early as 1969, making it the
first country in Europe to offer such protection. Today, the Teleservices
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Data Protection Act (TDDSG) [22], introduced 1997, enforces protection TDDSG

of private user data in telecommunication networks that offer communi-
cation as a service. It does not cover policies inside corporate networks.
Users have to be informed about the extent to which personal data are
collected, processed, and used. The service provider may only collect per-
sonal information without explicit consent by the user as far as required
for providing the service, to bill for it, or to enforce legal recourse in case
of abuse. Detailed log files may not be kept for more than six months.

In the United Kingdom, data protection was initially enforced more reluc-
tantly than in Germany. As with corporate law, today’s user rights and
operator responsibilities are addressed by the Regulation of Investigatory
Powers Act Data Protection Act, much resembling the situation in Ger-
many.

In the United States, citizen’s rights to protection of private data are gen-
erally weaker than in Europe. Individuals usually have to take action to
protect their data, for example to prevent credit bureaus from passing on
personal information.3 The Freedom of Information Act (FOIA) [39], most FOIA

recently amended in 2002, ensures the public the right to access to records
held by the U.S. government. Beyond that, there exists no comprehensive
law regulating the treatment of private data; however, there is a wealth
of acts4 governing individual protection aspects, such as the Health In-
surance Portability and Accountability Act (HIPAA) [40], enacted 1996, or HIPAA

the Children’s Online Privacy Protection Act (COPPA) [41], effective as of COPPA

2000. Anderson’s book [4] provides further detail in particular about the
legal differences between Europe and the United States.

Implications for this Dissertation2.5.3

There are certainly far more legal regulations in place at the many sites on
the Internet that I am able to consider in this dissertation. However, given
the examples I have investigated, I believe that the techniques I introduce
in this dissertation do not necessarily require additional legal clearances
beyond those required to do other, similar kinds of monitoring. In partic-
ular, the fully content-based techniques of Chapter 4 help administrators

3See https://www.optoutprescreen.com/opt form.cgi.
4See http://www.informationshield.com/usprivacylaws.html.
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understand the range of known and unknown applications in use on their
networks, which certainly seems an acceptable monitoring target for cor-
porate networks at the very least. The malware fingerprinting techniques
I introduce in Section 5.3 likewise should not pose fundamental problems,
due to the use of honeypots as a traffic source [146]. Finally, the volume-
based filtering technique I introduce in Section 5.4 only requires access to
at most the transport layer, rendering the legal aspects less complicated
than in the previous cases, since access to flow content is not required.

Summary2.6

Detecting malicious activity on today’s networks is a challenge that comes
down to how well one can contrast the benign against the malicious. Lack
of understanding of either side will invariably lead to poor detection per-
formance. Detection mechanisms operate from different vantage points
and at different levels of accuracy. Improvements to any detection strat-
egy do not occur in a vacuum; rather, they are driven by a constant arms
race: while the defenders improve their monitoring infrastructure, the at-
tackers try to conceal and evade. This battle is here to stay, regardless of
what technological improvements the future holds. This evolution is not
exclusively governed by technology: legal requirements try to protect the
users’ rights to data privacy, with details varying strongly from country to
country.

In the following chapters I present ways to enhance the contrast between
the benign and the malicious. The essential tools for doing so are tech-
niques to perform structural traffic analysis, which I introduce next.
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3
Structural Traffic Analysis

“Uh, ‘P’. Okay, ‘P’. ‘Shh-eer...Sher–P. Sher–P.
Shirley? P.–’. Oh! The first line’s ‘P. Sherman’!”

— Dory, in Finding Nemo.

Introduction3.1

In this chapter I present techniques for structural analysis of network traf-
fic. I use the term “structural” to refer explicitly to types of analysis that “Structure”

extract or leverage characteristic properties of traffic flows at the abstrac-
tion levels suitable for the analysis. Examples of such properties might be
patterns in flow content, counts of transmitted packets, etc. I do not mean
traffic analysis for purposes such as detecting steganography, defeating
anonymity, and generally methods that are strongly statistical in nature
(see Section 3.7 for an overview).

I begin by describing the various types of analysis possible by monitoring
network traffic at various abstraction levels, in Section 3.2. Much of the
work I present in the rest of the dissertation uses flow content extracted
at the application layer. Once operating at this abstraction level, it often is
desirable to extract the message dialog of the communicating endpoints.
In Section 3.3, I introduce a technique that achieves this. It serves as the
basis for a number of sequence alignment algorithms that I introduce in
the remainder of this chapter and that will be used in Chapters 4 and 5.
Some of the algorithms are directly inspired by applications in bioinfor-
matics, and it is worth investigating similarities and differences encoun-
tered when moving these algorithms into the networking domain. This
is the topic of Section 3.4. In Section 3.5 I present a number of sequence
alignment strategies and discuss their suitability for network traffic. This
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includes the design, complexity analysis, and performance evaluation of a
novel extension to Jacobson-Vo, an algorithm not previously applied in the
networking domain and able to outperform established algorithms dras-
tically. As I have shown in the previous chapter, attack resilience has to be
a central concern in the design of network applications. Structural traffic
analysis is no exception, therefore I discuss this aspect, and particularly the
implications for the algorithms of Section 3.5, in more detail in Section 3.6.
I conclude the chapter with a survey of related work in Section 3.7.

Abstraction Levels for Network Monitoring3.2

Any kind of network-based traffic analysis necessarily involves inspection
of the packets observed on the wire. Starting from the raw packets, the
analysis can be performed up to varying levels of depth. This depth cor-
responds roughly to the layer in the network layering model at which the
analysis is performed; the higher up, the deeper is the analysis, the more
costly in terms of CPU cycles, and the more invasive to the actual content
transferred in the flows. The following list proceeds upward through the
layers of the OSI network model [173], describing each layer’s relevance
to network monitoring.

• Physical Layer: the physical layer defines how a monitoring station
can tap into the traffic. For shared media this is typically easy since
the standard access method is sufficient to observe all traffic. For op-
tical networks the task is complicated by having to split off a fraction
of the optical input signal to be fed into the monitoring engine.

• Data Link Layer: here one can perform statistical analysis of elemen-
tary attributes of frames passing the location of the monitor, such as
the frame frequency, byte size, and particularly inter-arrival times.
Flow granularity is typically irrelevant at this level, though MAC
addresses can be used to identify LAN-wide endpoints if necessary.

• Network Layer: at this level, analysis leverages per-packet protocol
header information, typically to extract IP addresses and focus flow
granularity to the host-pair level. Technologies such as network ad-
dress translation and proxying weaken the value of IP addresses as
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a unique host identifiers, an issue I will be discussing further in Sec-
tion 5.4.

• Transport Layer: this is the lowest layer carrying end-to-end flow
information. TCP and UDP port numbers allow further narrowing of
flow granularity to individual sessions via its five-tuple of originator five-tuple flow

specificationand recipient IP addresses, port numbers, and IP protocol type.

• Session, Presentation, and Application Layers: these levels of anal-
ysis understand flow content as perceived by the endpoint applica-
tions. They require normalisation of the payload depending on the
transport-layer protocol used: for TCP flows, this requires flow re-
assembly to recombine the individual TCP segments of a connection flow reassembly

into the data streams transmitted by the source host. For connec-
tionless protocols such as UDP, the application-layer flow semantics
depend on the application-layer protocol. Frequently, all packets car-
rying the same IP address/UDP port quadruple are considered as
a single flow, or alternatively, pairs of datagrams are considered a
self-contained request-response dialog (as is the case with DNS, for
example). Some degree of transformation of the application-layer
content may be necessary in order to render the content accessible
as individual data flows. For example, SCTP [149] processing would
require the extraction of individual flows from the multiplexed chan-
nels carried over a single connection. Furthermore, application-level
analysis cannot penetrate encryption without external provision of
keying material or termination of the encrypted channel at the mon-
itoring station.

The trade-off between the different depths is one between the level of in-
formation provided on the one hand, and computational overhead and
state-keeping requirements on the other. The higher the traffic volume
on the observed network, the more stringent are the processing require-
ments [58]. In this dissertation I use analysis techniques at multiple levels:
the content analyses performed in Chapters 4 and 5 operate at the applica-
tion layer, while the one presented later in Section 5.4 can operate at both
the link- and network layers.
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Figure 3.1. Flow reassembly: TCP packets A to E, shown on top, are observed
sequentially on the wire, all belonging to the same connection and going the
same direction. B and C arrive out of order; D is duplicated. The packet
contents are reassembled into the byte stream shown below, using sequence
numbers.

Figure 3.2. Message extraction: payload-carrying TCP packets are reassem-
bled as in flow reassembly, but changes in the direction of payload (packets
D and F) trigger the beginning of new messages. Packets not carrying pay-
load (such as pure ACKs, here shown after packets B and D) have no effect
on message composition.

Flow Reassembly & Heuristic Message Extraction3.3

Analysis of traffic at the application layer requires recombination of the
content of TCP segments (for TCP connections) and UDP datagrams (for
UDP flows), as observed at the monitoring location, into the byte sequences
that the peering applications are exchanging. This byte sequence becomes
the input for flow content analysis algorithms. The recombination process
is challenging for various reasons. TCP implements a clear notion of a
bidirectional byte stream between endpoints, making flow reassembly fea- flow reassembly

sible in principle: TCP sequence numbers, taken from the packet header,
are used for pasting together the streams of bytes as transmitted by the
originating end host as well as possible. This is illustrated in Figure 3.1.
The process is complicated by attackers trying to sneak content past the
reassembler or to attack its state management, both of which will be dis-
cussed further in Section 3.6.2. UDP, on the other hand, provides no con-
text beyond individual datagrams, thus the only faithful content analysis
of UDP flows without knowledge of the application layer protocol can be
done at the packet level, treating every datagram as a separate message.
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Based on flow reassembly, application-layer message extraction takes an- message
extractionother step toward recovering the application-layer activity of the end-host

processes by attempting to split reassembled flows into semantically con-
sistent messages. As an example, in this model a web browser’s HTTP
request (possibly consisting of multiple packets) forms a message going
from the client to the web server, whose response back to the browser is
the second message in the flow. Since TCP provides no hints as to where
in the flow message boundaries are to be found, flow splitting has to be
done heuristically. The strategy I am using is to split unidirectional flows
into messages whenever the monitoring point observes a switch in the
direction of transfer of new application-layer content. This bidirectional
approach is suggested by the causality commonly present between corre-
sponding messages: a server cannot send a reply before the request has
been received.1 In order for this to work, the monitoring point must be
able to observe both directions of the communication, which is compli-
cated in principle by the possibility of asymmetric routing but usually
doable in practise by careful placement of the monitor. Just as is in flow
reassembly, message extraction has to be aware of duplicate transmissions
in order to remain synchronised with the endpoints. The process is illus-
trated in Figure 3.2, and Appendix A.1 shows a Bro policy implementa-
tion of message extraction. I will discuss potential shortcomings of the
approach in Section 3.6.

Assuming one is not only interested in the first few dozen bytes of a flow,
message extraction has two major advantages. First, when comparing cor-
responding message pairs, it provides a means to detect the beginning of
such messages. This would be significantly harder if only operating at
flow granularity. Second, it helps to reduce runtime overhead: For any
string operation with super-linear runtime in size of its input strings, the
cost of repeated computation on individual messages will be smaller than
that on the entire flow. Assume a string comparison operation of strings
S1 and S2 of lengths s1 and s2, respectively, requires O(s1s2) runtime. As I
will show in the next section, this is frequently the case. If flows consist of
m messages, each of length n, then the total cost for message-pair compar-

1The degree to which a balance ensues between the volumes of data sent and received
by the communication endpoints is itself a useful structural property and will be the topic
of Section 5.4.
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Figure 3.3. Comparison of entire flows vs. corresponding messages. Focus-
ing on corresponding message pairs, shown as shaded areas, yields substan-
tial computational savings.

ison using this algorithm will be O(m n2) as opposed to O(m2n2)—keeping
runtime linear in the number of messages as opposed to quadratic. Fig-
ure 3.3 illustrates this.

At present, flow reassembly is considered reliable at line speeds of several
gigabits per second when realised in hardware [135], and several hundred
megabits per second in software [58]. Message extraction only slightly
complicates the reassembly process by tracking the directionality of con-
secutive novel payload and can thus be expected to achieve comparable
throughput rates.

Sequence Alignment Algorithms3.4

Once operating at the application level, byte sequences (or byte strings) are a
natural abstraction of flow content. Many algorithms are available to op-
erate on structural patterns in such strings. For example, regular expres-
sions encode a known content pattern and permit detection of that pattern
in flows. They are a cornerstone of misuse detection in network monitor-
ing. Another goal is to identify content common to a set of flows. In this
dissertation, I use several such sequence analysis techniques; more specifi-
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cally, I will employ and adapt several sequence alignment algorithms. Very sequence
alignmentgenerally, these algorithms try to find and align similar regions in the in-

put strings, and are frequently used in the bioinformatics domain.

Inspiration from Bioinformatics3.4.1

The field of bioinformatics aims to develop techniques which enable the
analysis of DNA sequences. These sequences make up the genome of liv-
ing organisms and are massively long strings of four different nucleotides:
adenine, cytosine, guanine, and thymine. A frequent challenge given DNA
sequences is motif detection, i.e., the detection of patterns of nucleotides that motif detection

are of some biological significance. Research on motif detection has bene-
fited the development of many exact as well as approximate string search
algorithms as well as more elaborate techniques for inferring second-level
properties, for example using Hidden Markov Models [60]. The paral-
lels to network traffic analysis are straightforward: 256 single-byte values
replace the four nucleotides, network flows are the equivalent of DNA se-
quences, and motifs are patterns relevant to the purpose of the traffic anal-
ysis. Computation of common substrings is a frequent theme in sequence
analysis. Chapters 4 and 5 will both be making use of these techniques.

Similarities to Biology3.4.2

Gusfield [68] justifies the importance of sequence analysis techniques in
biology stating that

In biomolecular sequences [...], high sequence similarity usually im-
plies significant functional or structural similarity.

This observation holds true when substituting biomolecular sequences
with byte sequences in computer networks. In biology, the sequence al-
phabet consists of the four nucleotides adenine, cytosine, guanine, and
thymine, comprising a life form’s DNA.2 In network flows, the obvious
equivalent to nucleotides is the byte, yielding an alphabet of 256 possi-

2More precisely, the genetic code for creating proteins based on the DNA sequence
operates at the granularity of codons, consisting of sequences of three nucleotides at a
time, yielding 43 = 64 different codons. Since the algorithms operating on DNS sequences
however typically operate at the nucleotide level, I focus on the lower level of abstraction.
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ble characters. The parts of the DNA sequence affecting an organism’s
functions are the ones carrying genes, while the rest is commonly referred
to as “junk DNA”. In network flows, arguably all parts of the network
flow serve some purpose, though the functioning of the application-layer
protocols involved critically depends on certain regions of the flow carry-
ing the correct “genes”, protocol-intrinsic strings such as GET and POST for
HTTP, USER and PASS for FTP, etc. If one wanted to stretch the analogy fur-
ther, one could call the payload carried by an application-layer protocol
the junk DNA of the flow, as it serves no active function in the protocol
state machine.

As I will show in Chapter 4, high sequence similarity among key regions
in multiple flows strongly indicates the presence of the same application-
layer protocols. Gusfield goes on to point out that the reverse implication,
inferring sequence from function, is not necessarily true in bioinformat-
ics. This certainly is a similarly valid statement for network flows: similar
protocol functionality does not necessarily imply similar sequences. For
example, file transfers clearly are implemented in many different ways,
and both FTP and HTTP, among many others, can serve this purpose.

Differences from Biology3.4.3

The similarity to the DNA setting is striking, but has its limits. Three
differences are of immediate practical significance. First, the desirable
timescales for operating on the sequences are different. While off-line pro-
cessing of network traces clearly has its uses, applications such as the ones
relating to containment of Internet epidemics, will require very fast on-
line processing of input sequences. Such a requirement does not exist in
bioinformatics, where the need for fast algorithms is mostly motivated by
processing very large sequences. Note however that while sequences anal-
ysed in bioinformatics can get large, that is not necessarily the case: the av-
erage length of sequences stored in the GenBank database has remained
close to 1,000 nucleotide pairs [23, 63], a length realistic for sequence anal-
ysis problem settings when operating on network flows as well [172, 84].
Second, there is a strong need for fully automated and precise operation in
the networking domain, whereas in bioinformatics heuristic approaches
are often used to get an initial approximation of an alignment that may
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then be optimised manually [73, 59]. Third, he difference in input alpha-
bet sizes means that sequence alignment algorithms can operate on more
fine-grained input and more flexible alignment scoring schemes are con-
ceivable. At the same time, however, per-possible-character statistics will
require more state, and the overall complexity of the alignment models
may increase as well depending on their sophistication.

Other differences are more abstract, but nevertheless affect the effective-
ness of the algorithms when applied to network flows. The most signifi-
cant is the observation that nature at most introduces limited random mu-
tation, while the network security domain has to deal with a potentially
malicious modification and obfuscation by a conscious adversary. There-
fore, the algorithms have to be designed with the forethought of being
actively attacked and evaded. Furthermore, the notion of random muta-
tion and its modelling in approximate sequence alignment algorithms is
only of limited applicability in network traffic: flow content does not gen-
erally undergo random mutation, rather, the protocols evolve using more
or less well-specified implementations and payloads are highly variable
by definition. See Section 3.7 for work that explicitly models protocol and
content evolution.

String Alignment Models for Network Traffic3.5

Flow reassembly and message extraction provide byte strings suitable as
input for alignment algorithms. As I will show in the remainder of the
dissertation, extracting alignments from network flows enables a number
of applications relevant to network security monitoring.

An alignment generally describes which parts of a set of input strings are
found in all of the input strings, and which parts vary. In textual proto-
cols, these might be common keywords (such as ‘HTTP’ or ‘PASS’); in bi-
nary protocols commonalities exist when fields in different flows have the
same values. Precise alignments find exact commonalities among the com-
pared strings, while approximate alignments allow for limited deviation be- precise vs.

approximate
alignmenttween alignments of sequences. These deviations are expressed through

the notion of edit operations required to transform one input string into the
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other. The editing operations for non-matching string elements are inser-
tions, deletions, and substitutions. To compute a distance metric between
sets of edits, a penalty function assigns each editing operation a particular
score. An alignment then is the resulting pairing of individual elements
of a string given a set of edit operations, and the lower the accumula-
tive penalty for transforming one input string into the other, the better the
alignment found.

Two strings can be aligned globally or locally. Global alignment implies global vs. local
alignmentthe underlying assumption that two strings essentially line up well and

that only minor misalignments have to be figured out. In contrast, local
alignment assumes no inherent similarity between strings in general and
focuses on finding islands of similarity. As an example, the following is a
global alignment of the two strings ‘SECURITY’ and ‘SURE THING’ (‘X’ is a
match, ‘×’ a mismatch, ‘+’ an insertion, and ‘−’ a deletion):

SECUR____ITY

S__URE THING

X−−XX+ + + + X××

Below is a local alignment of ‘A REASSURING FACT’ to ‘NO SURE THING’.
Since the precise nature of the gaps between similar substrings is less im-
portant now, I only highlight the matches, though often edit operations
might still be important within the aligned substrings:3

A REASSUR____ING FACT

NO SURE THING

XXX XXXX

The classical approach to computing alignments is the algorithm proposed
by Smith and Waterman [141]. Different variants can compute local or
global alignments; when the latter is done, the algorithm is commonly
referred to as Needleman-Wunsch [112].4 The difference lies mainly in
the scoring: local alignment maximises an alignment score, while global
alignment minimises the edit distance.

3Note that whitespace is included in the alignment. Where the existence of whitespace
is important and not typographically obvious, I indicate it with ‘ ’ symbols.

4Gusfield [68] points out that Needleman and Wunsch only discussed the global align-
ment problem, but proposed a different (and slower) algorithm.
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Longest Common Substrings3.5.1

A simple alignment procedure is to find a string common to both input
strings and to maximise the length of that substring. This is referred to
as the longest common substring problem in the literature, however I will
refer to it as the longest common region (LCR), to differentiate the abbrevi- longest common

region (LCR)ation from longest common subsequences, which I introduce in the next
section.

Given strings S1 and S2 of lengths s1 and s2, respectively, the LCR problem
can be solved in O(s1 + s2) using suffix trees. Gusfield defines suffix trees suffix trees

as follows [68]:

A suffix tree T for an m-character string S is a rooted directed tree
with exactly m leaves numbered 1 to m. Each internal node, other
than the root, has at least two children and each edge is labelled with
a nonempty substring of S. No two edges out of a node can have
edge-labels beginning with the same character. The key feature of
the suffix tree is that for any leaf i, the concatenation of the edge-
labels on the path from the root to leaf i exactly spells out the suffix
of S that starts at position i. That is, it spells out S[i..m].

Furthermore, to ensure that each suffix is unique and thus cannot coin-
cide with any prefix of another suffix, a non-alphabet stop character is
appended to the input strings prior to suffix tree construction. Several al-
gorithms exist for building a suffix tree in time linear to the input string
size [167, 101]. I have chosen Ukkonen’s algorithm [154] for my experi-
ments, which achieves the linear time bound by building the suffix tree
incrementally, carefully leveraging existing structure, and avoiding per-
character scanning operations whenever possible. My implementation
comprises roughly 1200 lines of C and is publically available as a stand-
alone library, libstree.5 The fact that it generalises the notion of a string
has made it popular and lead to its use in other work [94].

Once a single-string suffix tree can be built in linear time, the extension to
multiple strings is straightforward: each edge in the tree is labelled with
the numbers of the strings that contribute this edge. At this point, the
LCR problem is equivalent to finding the longest path from the root of the
suffix tree that has been contributed by all input strings. The algorithm

5See http://www.cl.cam.ac.uk/∼cpk25/libstree for details.
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Figure 3.4. The suffix tree for strings ‘GET / HTTP’ and ‘HTML’. End-of-string
markers are shown as $ symbols. The blue leafs and leaf labels correspond
to the first input string, the red ones to the second. The prefixes of suffixes
common to both strings are in bold. The LCR is ‘HT’, since it is the longest
accumulative path label common to both strings.

effectively finds the longest common prefix of a set of suffixes comprising
all input strings. Figure 3.4 illustrates the suffix tree structure in the LCR
computation on two input strings.

The advantage of this LCR algorithm is that it is fast and can easily be
extended to multiple input strings; its disadvantage is that it returns only a
single common substring. I will present an LCR application in Section 5.3.

Longest Common Subsequences3.5.2

The natural extension of LCRs is the computation of alignments consist-
ing of multiple common substrings. Such an alignment is called the longest
common subsequence (LCS) of the input sequences. A common subsequence longest common

subsequence
(LCS)is a sequence of common substrings of two strings, possibly together with

the offsets into the two strings at which the commonalities occur; a longest
common subsequence is the common subsequence of maximum cumula-
tive length. Consider the following HTTP URL request strings:

‘GET / HTTP/1.1’
‘GET /cgi/HT/TP/cvs?ver=1.1 HTTP/1.0’

Their LCSs have length 13, but note the plural. There are a number of LCSs
with that maximum length, such as the following:
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‘GET /’ - ‘ HTTP/1.’
‘GET /’ - ‘HT’ - ‘TP/’ - ‘1.1’
‘GET ’ - ‘/HT’ - ‘TP/’ - ‘1.1’
‘GET ’ - ‘/’ - ‘ HTTP/1.’
‘GET ’ - ‘/’ - ‘HT’ - ‘TP/’ - ‘1.1’

The key difference is that the LCSs vary in the number of gaps: the first one
has just one gap while the last one contains 4. Depending on the goals
of the LCS computation we could leave it up to the dynamics of the algo-
rithm which version we obtain, or ensure the computation of a particular
variant. My point here is thus not to show a simplistic example of the
iconic HTTP ‘GET’ string working flawlessly, but rather the opposite: even
for such a classic example, the algorithm can be mislead easily without
attention to the details.

The algorithms I present in the next sections compute an LCS with the
minimum number of gaps and longest possible substrings. I argue that in the gap

minimisationnetworking context, this yields the most meaningful results. In context
of the HTTP protocol, for example, the LCS ‘GET /’ - ‘ HTTP/1.’ is more
meaningful than ‘GET ’ - ‘/’ - ‘HT’ - ‘TP/’ - ‘1.1’, since the former captures
the semantic meaning of the alignment (the HTTP request method and
the protocol version), while the latter contains disjointed substrings with
potentially higher probability of individual occurrence, such as ‘/’). Fur-
thermore, short common substrings can lead to incorrect results if, when
given an LCS, we ask for substrings of at least a minimum number of char-
acters. In the above example, if the algorithm produces LCS ‘GET ’ - ‘/’ -
‘HT’ - ‘TP/’ - ‘1.1’ and the minimum string length requirement is five char-
acters, no result would be found even though an LCS fulfilling that length
restriction does in fact exist, namely the one minimising the number of
gaps.

I next present two LCS-computing algorithms that minimise gaps while
maximising common substring length, and compare their relative perfor-
mances on a wide range of network traffic.
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R E A S S U R I N G
N ←0 ↖0 ↖0 ↖0 ↖0 ↖0 ↖0 ↖0 ↖1 ←1
O ↑0 ↑0 ↑0 ↑0 ↑0 ↑0 ↑0 ↑0 ↑1 ↑1

↑0 ↑0 ↑0 ↑0 ↑0 ↑0 ↑0 ↑0 ↑1 ↑1
S ↑0 ↑0 ↑0 ↖1 ↖1 ←1 ←1 ←1 ↑1 ↑1
U ↑0 ↑0 ↑0 ↑1 ↑1 ↖101 ←101 ←101 ←101 ←101
R ←1 ←1 ←1 ↑1 ↑1 ↑101 ↖201 ←201 ←201 ←201
E ↑1 ↖101 ←101 ←101 ←101 ↑101 ↑201 ↑201 ↑201 ↑201

↑1 ↑101 ↑101 ↑101 ↑101 ↑101 ↑201 ↑201 ↑201 ↑201
T ↑1 ↑101 ↑101 ↑101 ↑101 ↑101 ↑201 ↑201 ↑201 ↑201
H ↑1 ↑101 ↑101 ↑101 ↑101 ↑101 ↑201 ↑201 ↑201 ↑201
I ↑1 ↑101 ↑101 ↑101 ↑101 ↑101 ↑201 ↖202 ←202 ←202
N ↑1 ↑101 ↑101 ↑101 ↑101 ↑101 ↑201 ↑202 ↖302 ←302
G ↑1 ↑101 ↑101 ↑101 ↑101 ↑101 ↑201 ↑202 ↑302 ↖402

Figure 3.5. A Smith-Waterman matrix, computing the longest-common sub-
sequence of strings ‘REASSURING’ and ‘NO SURE THING’. The best LCS is ‘SUR’
- ‘ING’, indicated by cells shaded in dark grey. Common substrings can be
found along diagonals; trace-back paths not following a diagonal indicate
gaps between the common substrings. Notice how suboptimal possible align-
ments such as ‘RE’ are not included since the back-pointer path from the last
cell walks past them.

Smith-Waterman: Dynamic Programming3.5.3

Given a pair of input strings S1 and S2 of lengths s1 and s2, respectively,
Smith-Waterman uses dynamic programming to compute the LCS incre-
mentally, requiring O(s1s2) space and time.6 The algorithm operates by
filling a matrix row-by-row, recording in each cell the best alignment of
the prefixes of S1 and S2 up to the cell’s row/column indices by picking an
edit operation on the pair of characters at the current row/column. These edit operation

operations can (i) skip characters of either string, (ii) align the characters
directly, or (iii) accept mismatching characters via substitution. Each oper-
ation is assigned a cost/score, and the best resulting alignment is the one
with the highest score (for local alignment) or lowest cost (for global align-
ment). The alignment can be extracted by walking backward through the
matrix, starting in the bottom-right corner, following the decision taken at
each cell.

In my implementation I use a scoring function for computing alignments; affine alignment
scoringmy affine alignment scoring uses an alignment start score of 1 for every

6Fast implementations are feasible by leveraging FPGAs or GPUs [115, 158]. The space
requirement can be pushed down to O(s) with s = min(s1, s2) while at most doubling
worst case time [68].
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first matching character after a gap and strongly enforces continued align-
ments using an alignment growth score of 100 for further matching char-
acters. Gaps are penalised relatively by leaving the sequence score unaf-
fected. Similar results could be obtained by penalising gaps more strongly,
relative to a more modest encouragement of aligned regions. As men-
tioned earlier, this model ignores the possibility of per-character-pair byte
substitution scores by computing exact common subsequences interleaved
with gap regions. Not only does this simplify the approach, it also avoids
the need to develop a robust scoring scheme for character distributions.
The derivation of general yet robust substitution scores is highly problem-
specific and generally non-trivial [60, 68]. It is a topic for future research
how to apply the concept to sequence alignments of network flows. Fig-
ure 3.5 shows an example of Smith-Waterman with the scoring scheme just
described.

Smith-Waterman’s strength lies in its flexibility: given the completeness
of information about S1 and S2 stored in the completed matrix, variations
are readily implemented. For example, it is easy to adapt the implemen-
tation to return all common substrings (ACS) of at least a given minimum all common

substrings
(ACS)length still within O(s1s2), since we can register separately all common

substrings as they exceed the minimum length, and continuously check
whether growing common substrings have already been registered. I will
show the importance of this particular variant in Section 3.6 and use it
later on in Section 4.3.

Jacobson-Vo: Combinatorial Reduction3.5.4

Jacobson and Vo [78] and Pevzner and Waterman [122] independently pre-
sented a method for computing LCSs that works fundamentally differ-
ently from Smith-Waterman, and potentially faster. I summarise its oper-
ation in this section and show that unfortunately Jacobson-Vo has a short-
coming: the LCSs it produces neither necessarily minimise the number
of gaps, nor maximise common substrings. As outlined in Section 3.5.2,
these goals are highly desirable, and Section 3.5.5 will discuss a way to
overcome this limitation and analyse its effect on performance.

Jacobson-Vo reduces a related combinatorial problem for which there is a
potentially faster solution than O(s1s2) to the LCS problem. This combi- longest

increasing
subsequence
(LIS)34
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natorial problem is the identification of a longest increasing subsequence
(LIS) in a sequence of numbers. I will first present the workings of the
algorithm pragmatically and later summarise the reasoning behind each
step. Consider the following input strings S1 and S2 of lengths s1 = 10 and
s2 = 17, respectively:

‘GET / HTTP’

‘GET /a/a.HTM HTTP’

The algorithm is based on the observation that an LIS has a one-to-one
correspondence with an LCS if the sequence of numbers is produced from
the input strings in the following fashion: iterating over the characters in
S1, one lists once per occurring character all indices in S2 at which that
character occurs, in descending order. This yields:

G → 0 / → 6 4

E → 1 H → 13 9

T → 15 14 10 2 P → 16

→ 12 3

These character occurrence lists are then concatenated into a numerical
sequence Π of length π. For S1 and S2 the beginning of Π looks as follows
(dots indicate occurrence list merge points):

0 · 1 · 15 14 10 2 · 12 3 · 6 4 · 12 3 · 13 9 · . . .

Given Π, the next step is greedy extraction of a cover of Π. A cover is a set
of subsequences with non-increasing indices that in combination comprise
all numbers in Π. One can perform this extraction in a tabular fashion
by building up each subsequence in one column into a subsequence table. subsequence

tableLet Sn be the nth non-increasing subsequence. An arbitrary element in S i

is denoted ei, and I S1
ei

and I S2
ei

are ei’s indices in S1 and S2, respectively.
Context will make it clear which table is being referred to.

Iterating over the elements of Π, one selects for each element the leftmost
subsequence (i.e., column in the table) that the element can extend. Ex-
tension is possible whenever the last number in a sequence is larger than
or equal to the new element. If no subsequence fulfils this requirement, a
new one is added to the table. For the example above, the resulting subse-
quence table is as follows:

To extract an LCS, first an arbitrary element in the last subsequence is se-
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 0   1  15  12   6  12  13  15  15  16  
        14   3   4   9  10  14  
        10   3          10  14  
         2  
         2  
         2  

lected. Afterward, the remaining subsequences are scanned downward
in right-to-left order, selecting the first element ei in each S i for which
I S2

ei
< I S2

ei+1
, where ei+1 is the element chosen in S i+1. The resulting sequence

of S2 indices is an LCS of S1 and S2:

 0   1  15  12   6  12  13  15  15  16  
        14   3   4   9  10  14  
        10   3          10  14  
         2  
         2  
         2  

Using this procedure, the resulting LCS is ‘GET ’ - ‘/’ - ‘ HTTP’. It requires
some thought to see how this construction computes LCSs. The original
papers and Gusfield present the required lemmata in detail, so I settle for
summarising them here as follows:

1. The existence of a cover C of Π consisting of c non-increasing sub-
sequences and of an increasing subsequence I, also of length c, that
selects exactly one element from each of the non-increasing subse-
quences mean that C is a smallest cover and I is a longest increasing
subsequence. This follows from the fact that the indices of each sub-
sequence are non-increasing and an increasing subsequence can thus
contain at most one element from each non-increasing subsequence.7

2. The nature of the cover construction guarantees that for every ele-
ment ei in S i, there is an element ei−1 in S i−1 such that I S2

ei−1
< I S2

ei
,

forms a two-element increasing subsequence. Since an increasing
subsequence of length c can thus be constructed by selecting exactly
one element from each resulting subsequence, the number of sub-

7For all practical purposes the role of the increasing subsequence is that of the LCS,
so in order to avoid confusion with the non-increasing subsequences that make up the
subsequence table, I will refer to the increasing subsequence as LCS whenever possible,
and mean non-increasing subsequences whenever I just speak of a subsequence.
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sequences equals the length of the increasing subsequence, and the
greedily constructed cover is thus a smallest cover.

3. Note that each element in Π not only specifies an index in S2, but
also one in S1 if we keep track of the S1 index that contributed an
occurrence list to Π. Consider the beginning of Π shown above for
S1 and S2, this time also tracking the corresponding S1 indices in the
lower numbers:
0 · 1 · 15 14 10 2 · 12 3 · 6 4 · 12 3 · 13 9 · . . .
0 1 2 3 4 5 6

Thus every increasing subsequence of length l in Π specifies exactly
one common subsequence among S1 and S2 of length l, and each LIS
of Π corresponds to an LCS of S1 and S2.

To estimate the runtime complexity of this procedure, observe that the last
numbers of the subsequences are sorted in increasing order at all times
when scanning the table left-to-right. We can thus find the correct col-
umn for insertion via binary search. Let S1 be the shorter of the two
strings, without loss of generality. Since there can never be more than
s1 sequences in the table and we insert π elements in total, this algorithm
runs in O(π log s1).

Improving Jacobson-Vo: Targeted LCS Selection3.5.5

Note that for S1 and S2, standard Jacobson-Vo yields ‘GET ’ - ‘/’ - ‘ HTTP’,
an LCS that violates the goals of gap minimisation and substring max-
imisation. I will now extend the algorithm in a number steps to over-
come this limitation, borrowing several concepts from Smith-Waterman:
I introduce dynamic programming to Jacobson-Vo to track incrementally
the LCS that yields the smallest number of gaps and longest-possible sub-
strings throughout the computation, and collect the optimal LCS via back-
pointer traversal. As I will show, these extensions render Jacobson-Vo
gap-minimising and substring-maximising, while retaining the same al-
gorithmic complexity as the original algorithm. Finally, I compare the per-
formance of Smith-Waterman to that of unmodified Jacobson-Vo as well
as the extended version when applied to a representative spectrum of net-
work traffic, and show that that the extended Jacobson-Vo algorithm in-
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volves negligible runtime overhead compared to the original algorithm
while running up to almost 60 times faster than Smith-Waterman.

Path Selection through Dynamic Programming3.5.5.1

The unmodified Jacobson-Vo algorithm does not consider possible alter-
natives in the selection of each subsequence’s LCS member. The first step
therefore is to consider the choices we have whenever an LCS member in
S i−1 is selected after having selected one in S i. Adding the S1 indices of
each element in Π to the subsequence table (in small type), we obtain the
following:

 0   1  15  12   6  12  13  15  15  16  
        14   3   4   9  10  14  
        10   3          10  14  
         2  
         2  
         2  

 0    1    2    3    4    5    6    7    8    9  

           2    3    4    6    7    7  

           2    5              8    8  

           2  

           7  

           8  

Observe that while the S2 indices are non-increasing in each subsequence
when reading top-down, the S1 indices are non-decreasing. This follows
from the mechanics of the algorithm—later insertions into the table appear
further down in the subsequences and are made using elements further to
the right in Π, and those elements have equal or larger S1 indices. Assume
now that we have just chosen an element ei+1 in S i+1. Since every element
in S i has least one element in S i−1 that can be chosen as its predecessor,
we can pick any element ei in S i as LCS member subject to the condition
that I S1

ei
< I S1

ei+1
and I S2

ei
< I S2

ei+1
since only then does ei appear before ei+1

in both S1 and S2. Given the opposite growth directions of the indices in
each subsequence in the table, this means that for each ei+1 there exists a
window of possible predecessors in subsequence i, and, by symmetry, for predecessor/

successor
windoweach ei there exists a window of possible successors in subsequence i + 1.

More formally, the sets of elements Wp(ei) in the predecessor window of ei

and Ws(ei) in its successor window are defined as

Wp(ei) =
{

ei−1 ∈ S i−1 : I S1
ei−1

< I S1
ei
∧ I S2

ei−1
< I S2

ei

}
Ws(ei) =

{
ei+1 ∈ S i+1 : I S1

ei+1
> I S1

ei
∧ I S2

ei+1
> I S2

ei

}
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Returning to our running example, we see that Wp(125) = {64,44}, i.e.,
when choosing the predecessor of element 125 (up to which there are no
alternatives since window size is always 1) we can choose between 64

and 44. If we choose the latter, we end up with the desired LCS ‘GET /’
- ‘ HTTP/1.’:

 0   1  15  12   6  12  13  15  15  16  
        14   3   4   9  10  14  
        10   3          10  14  
         2  
         2  
         2  

 0    1    2    3    4    5    6    7    8    9  

           2    3    4    6    7    7  

           2    5              8    8  

           2  

           7  

           8  

Thus the goal is to use the limited freedom in selecting LCS members to
minimise gap counts and maximise substring lengths in the resulting LCS.
By tracking those properties incrementally on all possible paths through
the table and identifying the path with least gaps and longest substrings,
the algorithm will compute the desired LCS. This LCS is collected by tra-
versing the table left-to-right from the element in the last subsequence
with the highest score, using back-pointers. Note that the search still starts
in the last subsequence, since scanning right-to-left has the benefit of elim-
inating more elements from consideration. As in the original approach,
all elements of the last subsequence are potential starting points. The core
strategy is to perform a parallel downward scan of pairs of subsequences ad- parallel

scanningjacent in the table. If the table contains n subsequences, the first scan uses
Sn−1 and Sn, the second Sn−2 and Sn−1, etc., until eventually S1 and S2 are
reached.8

Assume the scan currently examines S i and S i+1. The scan considers all
elements in S i in top-down order that have a non-empty window in S i+1,
ignoring the ones at the beginning of S i with too high an S2 index as well
as those at the end of the subsequence with too high an S1 index. The
elements linked by back-pointers thus form a corridor through the subse-
quence table, and the upper boundary of the corridor is the LCS selected
by the original Jacobson-Vo algorithm. This is illustrated in Figure 3.6.

As the scan proceeds from one S i element to the next, the successor win-

8Single-column tables don’t permit this approach, however their occurrence means
that the LCSs consist only of a single character and any member of the sole column will
do.
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Figure 3.6. Corridor of linked LCS elements (shaded in grey background)
through an idealised subsequence table. The elements along the upper
boundary of the corridor (in white) form the LCS selected by the original
Jacobson-Vo algorithm.

dow Ws(ei) moves down S i+1. Let the currently considered element in sub-
sequence i be ei. The idea is to compute alignment scores, akin to Smith-
Waterman, incrementally for all LCSs as they are considered, tracking the
best-scoring one. As with Smith-Waterman, it depends on the alignment
model whether “best” means maximisation (of alignment similarity) or
minimisation (of edit distances). Alignment scores can penalise gaps and
encourage long common substrings, but also realise other alignment poli-
cies. By prefixing ei to the partial LCSs starting with the elements in Ws(ei)
and ending in Sn, ei’s score can be computed for each LCS depending on
whether ei introduces a gap, starts a common substring, or extends one.
The best-scoring element e∗i+1 ∈Ws(ei) is remembered by setting ei’s back-
pointer to e∗i+1, and storing the corresponding best score in ei.

In order to be able to score common substrings differently from gaps,
the algorithm must be able to track common substrings as they occur.
Common substrings consisting of at least two characters exist whenever
two LCS elements ei and ei+1 have the property that I S1

ei
+1 = I S1

ei+1
and

I S2
ei

+1 = I S2
ei+1

. To notice when this is the case, the algorithm tracks the the
element inside Ws(ei) whose S1 and S2 indices are as close as possible to,
but strictly larger than, e1’s. Let this element be called ei’s neighbour, de- (direct) LCS

neighbournoted en
i . A direct neighbour is a neighbour en

i for which I S1
ei

+1 = I S1
en

i
and

I S2
ei

+1 = I S2
en

i
, i.e., one that ei can extend as a common substring. To for-

malise the neighbour definition, let the distance D of subsequence mem-
bers ei and ei+1 be defined as D(ei, ei+1) = (I S1

ei+1
−I S1

ei
) + (I S2

ei+1
−I S2

ei
). Then

40



3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

12  15  
12  14  
10  11  
 9  11  
 8  10  
 7   9  

 5    7  

 6    8  

 7    8  

 7    9  

 8    9  

 9    10  
 6   8   9    12  

12  15  
12  14  
10  11  
 9  11  
 8  10  
 7   9  

 5    7  

 6    8  

 7    8  

 7    9  

 8    9  

 9    10  
 6   8   9    12  

12  15  
12  14  
10  11  
 9  11  
 8  10  
 7   9  

 5    7  

 6    8  

 7    8  

 7    9  

 8    9  

 9    10  
 6   8   9    12  

Figure 3.7. Parallel subsequence scanning with sliding windows. As the iter-
ation proceeds over the left sequence’s elements 107, 97, and 88, the window
of possible successor elements in the right subsequence slides downward, up-
dating the top and bottom boundaries of the window accordingly. The dotted
border indicates the previous window. Along with the window boundaries,
the current element’s neighbour (shown with lighter background) moves
down as well: while 107 can extend the substring ending at 118, for 97 and
88 the introduction of a gap is unavoidable. (The string indices shown are
hypothetical and not related to the running example.)

en
i is defined as follows:

en
i = e ∈Ws(ei) : I S1

e > I S1
ei
∧ I S2

e > I S2
ei
∧ D(ei, e) = min

e′∈Ws(ei)

[
D(ei, e′)

]
The neighbour always resides within Ws, since it is a legitimate successor
of ei, all of which are by definition contained in Ws. As the elements in-
side ei’s window are considered, a direct neighbour can be scored in a way
that ensures extension of an existing common substring as opposed to in-
troducing a gap. Figure 3.7 illustrates sliding windows with neighbour
tracking.

The introduction of alignment scoring to the algorithm adds significant
flexibility to the algorithm, since many different scoring models are con-
ceivable. Below I show the subsequence table for the running example,
with each visited element’s alignment score in the top right corner, show-
ing previous pointers where set, and using a scoring scheme that quadrati-
cally favours longer common substrings (by adding the length of the com-
mon substring to the score, for each substring character) while linearly
increasing the score for gaps:

The subsequence elements in grey are outside of the corridor and not con-
sidered for back-pointer linking.
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Overcoming Greedy Substring Extension3.5.5.2

The modified Jacobson-Vo algorithm is now gap-minimising if a scoring
scheme favouring common substrings over gaps is used, because such
a scoring scheme will never introduce a gap if it can extend a common
substring. Whichever path has the least amount of gaps globally will be
the one with the largest overall score. One problem remains, however:
the greediness of common substring extension means that a common se-
quence will always be extended when possible due to its locally higher
score, even when it would be beneficial to stop a substring and begin a
new one. This situation occurs when one common substring’s suffix is a
later common substring’s prefix and is illustrated in Figure 3.8.

Thankfully the problem is easy to fix: in addition to tracking with every
element ei the globally best score it obtains by linking with the best element global & local

score trackingin S i+1, we now also track the local score the element has when following
the common substring it is part of through to the end. If this common sub-
string turns out to be longer than the one it overlaps with, the local score
will eventually exceed the global one and take its stead. What’s left to do
is to adjust the back-pointer that cuts off the tail of the longer substring
back into the substring.

Complexity Analysis3.5.5.3

The extended Jacobson-Vo is identical to the original one as far as con-
struction of the subsequence table is concerned. After that, it differs in the
following ways:

• The parallel scanning phase for setting back-pointers does not exist
in the original version.

• In the original version, the LCS is collected by potentially scanning
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a

b

Figure 3.8. Overlap of an longer, earlier common substring (in white, top)
with a shorter, later one (bottom). For maximising common substrings, the
algorithm must not select link (b), as it would cut off the tail of the longer
common substring. Instead, it should follow the longer common substring to
its end by using link (a).

all members of the table at most once, while in the extended version
LCS collection is a matter of iterating over just the optimal LCS’s
members exactly once.

It is clear that the extended variant’s runtime complexity cannot beat the
original algorithm’s O(π log s1), since the extended variant does additional
work. The question is how costly the extension of the algorithm is. The
parallel scanning phase considers every element in the left subsequence
at most once, implying O(π) additional cost. Naı̈vely, for each element
ei in S i, every element in Ws(ei) must be considered. This implies a non-
constant amount of additional work per Π element which would certainly
affect the overall runtime complexity negatively.

The following observation comes to the rescue: unless ei’s neighbour in
Ws(ei) is direct, all elements in the window are going to introduce gaps.
In this case, and unless our alignment model scores different gaps differ-
ently, there is no reason to consider each window member. We only need
to know which window member’s score is best, and update that score ac-
cording to our scoring schema. This trick reduces the amount of work
needed per ei element to a constant, since we only need to track the best-
scoring node in the window and ei’s neighbour. Three pointers suffice,
and since the parallel scanning phase only slides the window over each
subsequence once, each of those pointers will similarly visit each member
of Π at most once.
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At this point, the runtime complexity depends on the effort required to
track the best-scoring node in the window. By storing the window ele-
ments in a priority queue, we can access the best-scoring element in con-
stant time. More precisely, it is not necessary to store all window members,
but only one representative of each different score present in the window.
Assume the window members have n different scores in total, and the pri-
ority queue thus contains n elements. As the window moves downward
over a subsequence, new elements are inserted into the priority queue as
the low window boundary advances. Using a heap, this can be done in
O(log n). At the same time, existing elements need to be removed from
the priority queue whenever a member falls out of the window as the top
boundary advances. Removal can likewise be done in O(log n). Access
to the element that is to be removed can be gained in constant time if we
maintain an array that maps the scores present in the priority queue to its
members.

To estimate the maximum size n of the priority queue, we need to bound
the maximum size that a subsequence of Π can obtain. Note that a single
occurrence list can exist in a subsequence at most once in its entirety, and
an occurrence list can be at most of size s2. Beyond that, a subsequence
can only grow by repeating the bottom-most index repeatedly, which can
occur at most s1 times. Therefore size of a subsequence is bounded from
above by s1 + s2.

We can now summarise the runtime complexity of the extended Jacobson-
Vo algorithm. As in the original approach, we insert each member of Π

into the subsequence table using binary search, requiring O(π log s1). The
parallel scanning phase visits each element in Π at most once in the left
subsequence, while each element in the right subsequence is at most once
inserted into the priority queue and removed from it, which takes at most
O

(
log(s1 + s2)

)
. Combining subsequence table construction and parallel

scanning phase, we obtain O
(
π

(
log s1 + log(s1 + s2)

))
. Since normally

we can assume s1 ≈ s2 and thus O(s1 + s2) = O(s1), thus O(2π log s1) =
O(π log s1).

Remarkably, extending Jacobson-Vo to target gap-minimising and sub-
string-maximising LCSs does not hurt the runtime complexity bound, mak-
ing only modest assumptions about the scoring schema, namely uniform
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gap penalties.

Practical Speed-ups3.5.5.4

Two more observations help improve performance in practise. They are
applicable to both the original and extended algorithm, and are both re-
lated to finding the subsequence to which to append elements of Π when
constructing the subsequence table.

First, note that subsequent insertions into Π of members of an occurrence
list never occur further to the right than earlier insertions, i.e., the column
indices of the subsequences elements are appended to are monotonically
(but not necessarily strictly monotonically) decreasing. This follows from
the fact that remaining elements in the occurrence list will be at most equal
in size, or smaller. Hence, subsequent binary searches do not need to con- minimal binary

search
boundariessider the full width of the subsequence table, but can instead place the

right boundary at the column of last insertion. For example, the insertion
of sequence 15 14 10 2 corresponding to the second ‘T’ in ‘GET / HTTP’
occurs in columns 9, 8, 7, and 2, so the actual number of columns to be
considered before each of those insertions is 8 (leading to the creation of
the 9th column), 9, 8, and 7, instead of 8 for the first and 9 for all remaining
ones.

Second, it is worth considering whether binary search is actually neces-
sary. I have found that when considering network traffic, subsequence lo- subsequence

localitycality, that is, repeated insertions of consecutive Π members into the same
subsequence, is high. I present an evaluation of this claim in the next sec-
tion. Let the subsequence the previous Π member was inserted into be
S i. Then, prefix the binary search with a constant-time check determin-
ing whether the next Π member is too large for subsequence S i−1 while
admissible by S i, and if so, insert the element into S i and skip the binary
search.

Evaluation3.5.5.5

I have implemented Smith-Waterman and the original as well as extended
Jacobson-Vo variants in roughly 500 and 600 lines of C++, respectively.
The implementation was done using the framework of the Bro IDS [119].
My implementation of Jacobson-Vo is shown in Appendix A.2. To evaluate
the implementations’ performance, I selected a number of popular servers
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Prefix Length
Protocol 50 100 250 500 1000 2000

FTP 9,870 9,730 5,460 7 7 7
HTTP 10,000 10,000 8,778 561 7 7

HTTPS 10,000 10,000 9,870 9,316 2,346 630
SSH 10,000 10,000 10,000 9,730 8,385 5,253

SMTP 10,000 7,381 1,431 1,271 703 136

DNS 496 7 7 7 7 7
DHCP 10,000 10,000 10,000 7 7 7

NetBios NS 10,000 7 7 7 7 7
SNMP 5,778 3,828 1,596 7 7 7
Syslog 3,655 435 7 7 7 7

Table 3.1. Number of LCS computations per service and prefix length, TCP
protocols on top, UDP ones below.

Prefix Length 50 100 250 500 1000 2000

Avg. Speed-up 1.8 5.0 10.7 20.1 28.7 33.0

Table 3.2. Average speed-up of extended Jacobson-Vo compared to Smith-
Waterman, for various flow prefix lengths.

from a one-day full-content trace of the Computer Laboratory’s uplink. I
selected TCP services running FTP, HTTP, HTTPS, SSH, and SMTP as well
as UDP services for DNS, DHCP, NetBios NS, SNMP, and Syslog, picking
n = 142 flows each so that I could perform

(n
2

)
> 10,000 LCS computations

among flows pairs of the same service, an operation more meaningful than
cross-service alignments. I reassembled the originator→ responder flows
using Bro and stored them in reassembled form for further analysis. Next I
measured the runtime for pairwise LCS computations with minimum sub-
string length 1 of the flows belonging to the same service, averaged over
the accumulative runtime of 100 iterations, and varied the string length in
separate runs among 50, 100, 250, 500, 1000, and 2000 bytes. Since the run-
times of all algorithms are deterministic, I observed very little variation in
runtimes and 100 iterations seems a reasonable number of data points for
obtaining an good average.

The experiments were conducted on an otherwise idle Pentium 4 running
at 2.53GHz and with 512MB of memory. Since flows of at least 2000 bytes
are less frequent in the dataset than those of at least 50 bytes, the actual
number of string pairs varied per protocol. I chose 100 comparisons as
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Figure 3.9. Performance comparison of Smith-Waterman, extended Jacobson-
Vo, and unmodified Jacobson-Vo applied to intra-protocol alignments of var-
ious TCP and UDP protocol flows at different flow prefix lengths. Error bars
(often barely noticeable) indicate the minimum and maximum runtime for
each experiment.
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Figure 3.10. Behaviour of various Jacobson-Vo aspects with TCP and UDP
protocol flows: subsequence locality during Π element insertions (green),
length of LCS relative to min(s1, s2) (blue), length of Π relative to s1× s2 (red),
and coverage of corridors relative to entire subsequence table (turquoise).
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the lower bound to investigate, to ensure that idiosyncrasies in individ-
ual string pairs do not strongly affect the results. The results shown to
not diverge noticeably from those obtained when using 150 comparisons
as the minimum. The actual number of comparisons made per service
and prefix length are shown in Table 3.1. Figure 3.9 shows the perfor-
mance comparison for all protocols at various prefix length, including the
speedup factors of Jacobson-Vo over Smith-Waterman. While the differ-
ence in runtime between the Jacobson-Vo variants and Smith-Waterman is
initially tiny, Smith-Waterman quickly requires substantially more time to
complete than the Jacobson-Vo variants as the prefix length increases. The
extended Jacobson-Vo algorithm is up to 33 times faster on average (see Ta-
ble 3.2) with the best speed-up factor being 58.5 for HTTPS flows of 2000
bytes, and the extended algorithm’s additional workload is so marginal
that the difference to the original algorithm is barely noticeable.

There are two cases where extended Jacobson-Vo is not the clear win-
ner: NetBios NS and, more strongly, DHCP. To understand the reason, I
repeated the alignment experiment just described, now measuring four
different properties of extended Jacobson-Vo that may affect the runtime
during the experiment. These properties are as follows. First, the local-
ity of insertions into the subsequence table, i.e., the fraction of insertions
that happen in the same column as the previous one, indicates how much
time the algorithm saves by avoiding binary searches for the right column
for insertion. Second, the length of the resulting LCS relative to the in-
put string length indicates how much time is spent trying to find the right
column for insertion during binary search, and for traversing the table to
identify the right LCS. Third, the length of Π relative to s1 · s2 gives an
indication of the overall amount of work Jacobson-Vo has to do relative
to Smith-Waterman (recall that the runtime performance of Jacobson-Vo is
largely determined by the length of Π). Fourth, and finally, the coverage
captures the fraction of elements in the subsequence table that are visited
during the traversal phase at the end of the algorithm, selecting the opti-
mal LCS. The higher the coverage, the more time is spent in that phase of
the algorithm. Consider Figure 3.10. With NetBios NS and DHCP in par-
ticular, Π is substantially larger than s1 · s2, indicating a likely cause for the
worse performance. At the same time, relative LCS length is not substan-
tially higher than with other protocols and thus can not explain the slower
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runtime. Likewise, DHCP exhibits worse performance even though its
subsequence locality is among the highest in the dataset. Finally, sub-
sequence table coverage also does not explain DHCP’s behaviour, since
DHCP’s coverage is among the lowest of the dataset.

In summary, these observations confirm that the length of Π is the defin-
ing factor when comparing Jacobson-Vo to Smith-Waterman. Another ob-
servvation confirms the results: Jacobson-Vo tends to perform better on
content with a high number of characters in random distribution [68]. In-
deed, both DHCP and NetBios NS contain a large number of zero-bytes
and are of highly fixed structure: the LCSs reach up to 93% of the input
string length for DHCP and 97% for NetBios NS, indicating that the in-
put strings are nearly identical. Second, the encrypted HTTPS has high
randomisation in large parts of the content, and brings out overall best
performance. Knowledge of a protocol’s statistical content distribution is
thus a guideline for the choice of alignment algorithm.

Attacks and Caveats3.6

Attacks on structural traffic analysis can be broadly classified into two cat-
egories: algorithmic complexity and evasion. Threats to application in-
tegrity through means such as buffer overflows and related attacks are a
universal problem of the state of the art of software engineering and not
included in this classification.

Algorithmic Complexity3.6.1

Algorithmic complexity attacks potentially affect all layers of the network
model. They work by feeding input to applications that makes their algo-
rithms exhibit worst-case performance in space and time, potential lead-
ing to denial of service. An example of a vulnerability in this category is
an algorithm with a hashtable that uses a fixed hash function, and feeding
input to the table that causes all table entries to be mapped to the same
overflow chain. Crosby and Wallach [45] present this attack category in
detail.
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In the presence of an adversary who can control the sequence of indi-
vidual packet transmission, TCP stream reassembly must carefully pre-
vent out-of-order reception of TCP segments from consuming unneces-
sary amounts of memory [52]. Beyond that, flow message extraction as
presented in Section 3.3 must prevent message state from becoming stale
and clogging up the state tables and consuming unnecessary amounts of
memory. By using per-flow statekeeping timeouts as described by Dreger
et al. [58], we can ensure that all state will eventually be destroyed. The
challenge is reduced to one of finding the right expiration timeouts.

Evasion3.6.2

Evasion attacks are another threat present across all network layers. I have
mentioned them briefly in Section 2.3. The goal of these attacks is to sneak
content past detection systems by exploiting divergence between the mon-
itors’ model of the protocol state machines of the flow endpoints and their
actual states. Ptacek and Newsham [125] list the possibilities in detail. traffic

normalisationThere are ways to make evasion harder, for example by normalising traffic
before presenting it to the monitor [71, 163], passively and actively map-
ping the networks a monitor is observing [139], or feeding host-based con-
text to the monitor to reduce ambiguity [56].

Flow message extraction possesses at least the same potential for evasion
as TCP flow reassembly, since the latter is a requirement for the former.
Potential for evasion is present due to inconsistent handling of duplicate
content at the endpoints [125]. Message extraction will always work as
long as both ends of the flow do not transmit messages simultaneously.
The approach is rendered more complicated in the following cases:

• Interactive sessions that transmit user input at per-keystroke granu-
larity, for example in the Telnet and rlogin services. These services
are hardly used today. The monitoring application can be made
aware of this special case by looking for tiny per-packet payloads
that are echoed back to the originator.

• Applications that treat originator→ responder and responder→ ori-
ginator flows as independent data channels, as is the case when tun-
neling multiple sessions through a single flow. The presence of mul-
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tiple sessions in a single tunnel connection obfuscates the per-session
message exchange, rendering message extraction infeasible. Exam-
ples of cases where this occurs are SCTP, where monitoring would
have to be aware of individual channels inside the streams, and SSH,
where encryption renders individual channels inaccessible.

Interestingly, the sequence alignment algorithms presented in this chapter
also present potential for evasion, though only of minor scope. The dif-
ference to biology is particularly evident here through the presence of a
malicious adversary.

• Longest common region: Computation of LCRs using suffix trees
has no inherent potential for evasion. Whatever is the longest com-
mon region between two strings will be returned. The danger with
LCRs is that an attacker may be able to inject long, identical sub-
strings into multiple flows, thus causing the LCR computation into
reporting these injected strings. It depends on the application setting
whether this is a shortcoming or not. I will discuss this issue further
in Chapter 5.

• Smith-Waterman: Smith-Waterman’s flexibility turns into a weak-
ness if the attacker knows the properties of the alignment model
used. Most elementally, with knowledge of the minimum common
substring length used, the attacker can try to keep below this thresh-
old the length of all substrings that have to be present in the flows
for an attack to succeed. It is therefore generally desirable to keep
the minimum substring length as small as possible.

If Smith-Waterman is used for LCS computations, then sequencing at-
tacks are a threat. They potentially allow the attacker to conceal the sequencing

attackspresence of crucial substrings common to the input flows. Assume
the attacker has to include strings ‘AA’ and ‘BB’ in the attack flow for
the exploit to succeed. Assuming the exploit allows sufficient free-
dom of flow content, the attacker can then include an innocuous de-
coy string to confuse the LCS computation. I now show two variants
of such confusion.

First, by swapping a later common substring with an earlier one in
one of the strings, the attacker can prevent any common substrings
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between the swapped strings as long as the remaining common sub-
sequence is still longest. Assume the attacker chooses ‘PASSWORD’ as
the decoy and consider the following two strings:

AABB PASSWORD

AA PASSWORD BB

Despite ‘BB’ being present in both strings, it is not reported as a
common substring since it is not part of the LCS, which is ‘AA’ -
‘ PASSWORD’. If the decoys are longer than the attack-critical strings in
total, the attacker can evade detection of the relevant bits altogether
by placing the decoys on different sides of the critical strings (‘x’ and
‘y’ stand for arbitrary content unique to each string):

xxxxxxxx AABB PASSWORD

PASSWORD AABB yyyyyyyy

Since ‘PASSWORD’ is longer than ‘AABB’, the LCS of the two strings is
‘PASSWORD’ and the attacker has managed to evade detection of the
attack-relevant strings ‘AA’ and ‘BB’. By adjusting the position of the
decoy string, subsets of the critical strings can also be hidden selec-
tively.

Two aspects significantly weaken this attack. First, using an ACS-
computing variant of Smith-Waterman, the attack-critical common
substrings will be detected anyway. Second, once more than a sin-
gle pair of flows with the same attack is observed by the monitor, it
is increasingly more likely that an LCS detecting the important sub-
strings will be computed. This follows immediately if the attacker
changes the decoy strings, and also holds when the attacker uses the
same decoy strings repeatedly, since there are only a limited number
of possible insertion points in the LCS for the decoy strings.

A related, but weaker and more subtle variant are location attacks. location attacks

Assume an attacker has to include a certain set of strings in a flow
at certain offsets for an exploit to succeed. By including these strings
repeatedly in the attack flows, in different concatenations, and in dif-
ferent locations, it depends on subtleties in the implementation of the
algorithm and the scoring model which LCS is returned. Depending
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on the leeway the exploit allows, the attacker has a real chance to ob-
fuscate the location that is crucial to making the attack succeed. On
the other hand, the repeated inclusion of the attack-critical informa-
tion only increases the chance of detection when a Smith-Waterman
variant such as ACS is used.

• Jacobson-Vo: In both the original and the extended version, this al-
gorithm suffers from a shortcoming that permits sequencing attacks
similar to LCS computations using Smith-Waterman, when given
sufficiently flexible attack vectors. The weakness is caused by the fact
that Jacobson-Vo always computes LCSs and cannot switch to a differ-
ent computation such as ACS as readily as Smith-Waterman, because
LCSs are at the very heart of the algorithm. Just as with Smith-
Waterman, however, the observation of larger numbers of attack-
carrying flows renders sequencing attacks more difficult.

Note that these attacks on sequence alignment are intrinsic to the algo-
rithms and in no way depend on the networking domain to succeed. They
apply equally in other domains, for example if they were to be applied
in host-based environments to fingerprint binary code or system call se-
quences.

Related Work3.7

Traffic analysis is a vast field of which I cover but a fraction in this chapter.
This section attempts to put structural traffic analysis in general, and the
methods I introduced in particular, in relation to other ways of investigat-
ing network traffic.

Other Forms of Traffic Analysis3.7.1

As mentioned in Section 3.2, structural traffic analysis is feasible across all
layers of the network model. In this dissertation, I mostly discuss methods
operating at the application layer, with the exception of Section 5.4, which
presents a method that operates at lower layers. Other methods of struc-
tural analysis are conceivable and have been presented in the literature,
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for example analysis of the structure of communication patterns[79, 81, 80]. communication
patternsThis line of work typically aims to classify traffic according to classes of ap-

plications or protocols, which is the topic of Chapter 4 and thus discussed
in more detail there.

Other types of traffic analysis aim to detect weaknesses in aspects of indi-
vidual distributed applications. In context of privacy-enhancing commu-
nication services[55], traffic analysis aims to assign network-level activ-
ity to individual communicating entities[110]. In context of cryptographic
protocols, traffic analysis aims to identify weaknesses in individual as-
pects of the protocols. An enormous body exists on variants of statistical
traffic analysis at low levels of the network model for predicting traffic
queueing behaviour, router buffer size requirements, and quality of ser-
vice guarantees.

Detection of Commonality3.7.2

The application of sequence alignment algorithms to network flows with
the purpose of detecting commonality among the flows has emerged only
recently. Generally, detecting commonality is useful at varying levels of
accuracy and granularity. At the high-accuracy end, the context has typi-
cally been automated malware signature generation, which I will discuss malware

signature
generationin detail in Chapter 5. Newsome et al. [114] use Smith-Waterman for LCS

computations. Their description indicates that their alignment model is
minimising gaps through penalties. They do not, however, leverage the
precise offset information of the LCS substrings that Smith-Waterman pro-
vides. Given the time-critical environment of their system, they would
most likely benefit from using Jacobson-Vo instead. Cui et al. [48] use
a variant of Needleman-Wunsch for global alignment, trying to identify
varying regions among multiple flows for application-level session replay.
They guide the alignment process using a constraint matrix that prohibits
classes of characters from being paired at certain offsets into the flows.
They furthermore develop a message extraction strategy similar to the one
I propose.

A second-level application of alignment information is the derivation of
ancestral hierarchy among different instances. Beddoe [13] mentions this
possibility in the context of protocol implementations. The recent prolif-
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eration of IRC protocol variants for “proprietary” botnet command and
control channels could be a fruitful subject for exploring the viability of
this approach.

Another line of work satisfies itself with detecting individual strings that
occur frequently in a pool of flows, without precise alignment information.
While sacrificing detail, these algorithms allow operation on a per-flow
granularity instead of flow pairs at higher speeds. Kim and Karp [83] pre-
sented Autograph, which extracts frequent common substrings using Ra-
bin fingerprints as previously used in the file system domain to detect re- Rabin

fingerprintsdundant content. To automatically determine common substring lengths,
they use a breakmark that has to be defined ahead of time. Singh et al. [140]
likewise base their approach on Rabin fingerprints, but use no adaptive
partitioning technique and instead require fixing the common substring
length ahead of time.

Generalising the notion of common content, Bloom filters [18] detect com- Bloom filters

monality more approximately still and with the presence of false positives.
Their use has been proposed in the literature for applications as diverse as
object location in peer-to-peer networks [47], geographic routing [88], de-
tecting “heavy-hitter” traffic flows [61], IP traceback [142] as well as IP pre-
fix and signature matching [53, 54]. Related is the notion of sketches [87], sketches

which are compact probabilistic summaries of common traffic properties
specifically designed to detect changes to those commonalities in high-
bandwidth environments.

Summary3.8

In this chapter I have presented traffic analysis strategies feasible at differ-
ent layers in the OSI network model. I have shown how the application-
layer message flow can be extracted heuristically from reassembled flows.
Next, I presented several sequence alignment algorithms adapted from
bioinformatics that can operate on these messages, and discussed the com-
monalities and differences incurred when moving these algorithms into
the network security domain.

The algorithms presented include longest common region (LCR) compu-
tation using suffix trees, flexible gap-minimising longest common sub-
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sequence (LCS) computation using the dynamic programming approach
proposed by Smith and Waterman, and fast LCS computation using the
combinatorial algorithm introduced by Jacobson and Vo. Smith-Water-
man’s major advantage is its flexibility, which allows it to compute other
alignments easily, such as all common substrings (ACS). I then introduced
a novel variant of Jacobson-Vo that adds support for flexible alignment
models to the algorithm while leaving the runtime complexity bounds
intact and causing practically no noticeable overhead in practise. In my
evaluation I have shown that this variant computes LCSs up to almost 60
times faster than Smith-Waterman. I then discussed attacks on structural
traffic analysis and pointed out the potential of evasion attacks in the var-
ious sequence alignment algorithms, which stresses a crucial difference in
the network-based application setting compared to the biological environ-
ment the algorithms were developed in: a malicious adversary.

In the next chapter I will put to use some of the algorithms introduced
above to learn the structure of application-layer protocols and apply it to
the problem of traffic classification.
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4
Fingerprinting the Normal

“What the...? Who are you supposed to be?”
— Mr. Incredible in The Incredibles.

Introduction4.1

Equipped with models of byte sequences and techniques to extract com-
monalities therefrom, I now present techniques for improving the under-
standing of “normal” behaviour on a network. By “normal”, I here mean
investigation without explicit focus on malicious activity. Normal beha-
viour on a network is largely characterised by the mixture of applications
carried by it, and Section 4.2 outlines the difficulty identifying this range
of applications on typical networks in operation today. As will be shown,
even perfectly benign use of current network applications leads to a com-
plex mixture of network activity that can often puzzle the administrator.
However, as pointed out in Section 2.4.2, good understanding of the nor-
mal is a requirement for accurate detection of the malicious. I motivate
the use of content-based traffic analysis as a possible solution and argue
that high input fidelity is an important goal of traffic models that are in-
tended for a wide range of uses. In Section 4.3, I introduce such a model:
taking some of the sequence analysis algorithms introduced in the previ-
ous chapter as building blocks, I propose common substring graphs (CSGs),
a content-based model of flow content suitable for a wide variety of future
applications. I thoroughly evaluate the structural properties of CSGs and
their runtime behaviour in Section 4.4 and present the task of classifying
application-layer protocols as a detailed use case, comparing CSGs to two
lower-fidelity traffic models. Finally, I review related work in Section 4.6
and summarise the chapter in Section 4.7.
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Characteristics of Application-Layer Traffic4.2

The Internet architecture uses the concept of port numbers to associate
services to end hosts. In the past, the Internet has relied on the notion of
well known ports as the means of identifying the application-layer proto-
col a server is using. These well-known ports are standardised de jure by
IANA [75]. However, in recent years a number of factors have caused a IANA port

numbersshift to an increasingly divergent de facto usage of those port numbers.
For example, the widespread adoption of firewalling has made ports that
typically carry mission-critical applications (such as TCP ports 80 and 25
for HTTP and mail traffic, respectively) much less likely to incur any fil-
tering, causing entirely different applications to switch to these ports or
tunnel their traffic through the native protocol where possible. Another
typical scenario is the use of dynamically allocated ports to separate appli-
cation instances, or to explicitly avoid obvious classification. The popular
Skype service initialises its listening port randomly at installation, entirely Skype

abandoning the notion of well known ports for normal clients [12]. Finally,
some applications use non-standard ports explicitly to avoid classification.
Peer-to-peer applications routinely allow users to change the default port
for this purpose and some use combinations of tunnelling and dynamic
port selection to avoid detection [137]. We can expect this trend of irreg-
ular port use to increase further in the future. The decreasing value of
port numbers for determining flow content undermines the accuracy of port number

obsolescencenetwork security enforcement, since filtering and access policies are often
predicated on the assumption that individual application-layer protocols
running on certain ports.

None of the typical enforcement mechanisms deployed today can deal
with meandering port number usage without manual inspection or tun-
ing. Thus, there is a strong need for techniques that can identify net-
worked applications without considering well-known port numbers. Since
it is hard to predict the requirements future tools might demand from such
a fingerprinting tool, I argue that the input modelling technique should
strive for fidelity, i.e., its operation should impose as little loss of informa-
tion about the input traffic as possible. For example, irreversible abstrac-
tions of the input due to hashing, partitioning, or filtering all invariably
reduce the operational flexibility of future model applications.
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In this chapter I introduce and evaluate a technique called common sub-
string graphs (CGSs) for modelling application-layer protocol activity us-
ing network flow content, that achieves this goal. The model is based on
complete protocol-typical substrings in combination with the positions in the
input flows that these substrings occur at and maintains this information
in its entirety for querying after the model build-up phase. CSGs imme-
diately enable elementary operations such as the incremental creation of a
protocol model from a set of input flows, the pairwise comparison of CSGs
to each other to produce a similarity measure between two models of traf-
fic, and the matching of individual flows against CSGs, highlighting the
use of protocol-intrinsic content in the flow. This renders CSGs useful for
a wide range of analysis purposes such as protocol classification, demon-
strated later in the chapter, and whitelisting of protocol-intrinsic content
in flows, as discussed later in Section 5.3.3. The throughput achieved by
these elementary operations, evaluated in Section 4.4.5, is high enough to
allow a wide range of applications with on-line or nearly on-line require-
ments assuming suitable input filtering is performed, but not sufficient for
handling full traffic load in high-bandwidth environments. There, lower-
fidelity modelling techniques should be employed as far as the application
permits.

The central idea behind CSGs is as follows. By comparing the contents of
flows handled by the same destination service (i.e., destination host and
listening port on that host1), sets of some strings will be common to many
compared flows. By capturing the frequency, position, and sequence of
such substrings in a graph we obtain a structural model that captures ac-
curately the typical “look” of the application-layer protocol used by the
service.

Protocol Modelling with Common Substring Graphs4.3

The intuition behind CSGs is as follows: if multiple flows carrying the
same protocol exhibit common substrings, comparing many such flows
will most frequently yield those substrings that are most common in the

1Multiple destination hosts are possible in case of load balancing, anycast, etc — what
matters is that a unique destination service instance is analysed.
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protocol. By using LCSs, not only can we identify what these commonal-
ities are, but we also expose their sequence and location in the flows. By
furthermore comparing many of the resulting LCSs and combining redun-
dant parts in them, frequency patterns in substrings and LCSs will emerge
that are suitable for classification. CSGs capture much more structural in-
formation about flows they are built from than other content fingerprint-
ing methods such as content n-grams or byte product distributions. In
particular, CSGs

• are not based on a fixed token length but rather use longest common
subsequences between flows,

• capture all of the sequences in which common substrings occur, in-
cluding their offsets in the flows,

• ignore all byte sequences that share no commonalities with other
flows,

• track the frequency with which individual substrings, as well as se-
quences thereof, occur.

I will now formalise these concepts. A CSG is a directed graph

G = (N, A, P, ns, ne)

in which the nodes N are labelled and the set of arcs A can contain multi-
ple instances between the same pair of nodes: a CSG is a labelled multidi-
graph. P is the set of paths in the graph. Paths p = (n1, ..., ni) are defined
as the sequence of nodes starting from n1 and ending in ni in the graph,
connected by arcs. P(n) is the number of paths running through a node n.
(If context doesn’t clarify which graph is being referred to, I will use sub-
scripts to indicate membership, as in NG, PG, etc.) A CSG has fixed start
and end nodes ns and ne. Each path originates from ns and terminates in
ne, i.e., PG(ns) = PG(ne) = |PG|. These nodes are ignored for all other pur-
poses; for example, when dealing with a path with a single node on it, we
mean a path originating at the start node, visiting the single node, and ter-
minating at the end node. Along the path, a single node can occur multiple
times; that is, the path may loop. The node labels correspond to common
substrings between different flows, and paths represent the sequences of
such common substrings that have been observed between flows. CSGs

61



4.3. PROTOCOL MODELLING WITH COMMON SUBSTRING GRAPHS

Figure 4.1. Constructing a CSG: introduction of a new path with subsequent
merging of nodes. (a) A CSG with a single, three-node path. (b) An LCS
(in white) is inserted as a new path. (c) New node A already exists and is
therefore merged with the existing node. (d) New node D overlaps partially
with existing nodes B and C. (e) Nodes B, C, and D are split along the over-
lap boundaries. (f) Identically labelled nodes resulting from the splits are
merged. The insertion is complete.

grow at the granularity of new paths being inserted. Let the LCS between
two strings s1 and s2 be L(s1, s2) and its cumulative length be |L(s1, s2)|. For
ease of explanation, nodes are synonymous with their labels, thus for ex-
ample when saying that a node has overlap with another node, we mean
that their labels overlap, and L(n1, n2) is the LCS of the labels of nodes n1

and n2. |ni| denotes the length of the label of node ni. Labels are unique,
i.e., there is only a single node with a given label at any one time.

Local alignment is computed using Smith-Waterman as described in Sec-
tion 3.5.3. I now describe four elementary operations on CSGs in more
detail. These operations are (i) construction of a CSG out of input flows,
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Figure 4.2. Scoring a flow against a CSG. The labels of nodes A, B, and C occur
in the flow at the bottom. The shaded area in the graph indicates all paths
considered for the scoring function. While the path containing A-C would
constitute the largest overlap with the flow, it is not considered because A
and C occur in opposite order in the flow. The best overlap is with the path
containing A-B: the final score is (a + b)/ f .

(ii) comparison of CSGs to each other to obtain a measure of similarity,
(iii) merging of multiple CSGs into one, and (iv) scoring the degree to
which a given flow fits a CSG. Together, they enable a wide range of CSG
applications, as I will exemplify by their use in protocol classification in
Section 4.4.4.

Construction4.3.1

Insertion of a flow into a CSG works as follows. A flow is inserted as a
new, single-node path. If there are no other paths in the CSG, the insertion
process is complete. Otherwise, we compute the LCSs between the flow
and the labels of the existing nodes. Where nodes are identical to a com-
mon substring, they are merged into a single node carrying all the merged
nodes’ paths. Where nodes overlap partially, they are split into neighbour-
ing nodes and the new, identical nodes are merged. We only split nodes at
those offsets that don’t cause the creation of labels shorter than a minimum
allowable string length.

For purposes of analysing protocol-specific aspects of the flows that are in-
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Figure 4.3. Detail of a CSG for the HTTP requests comprising a single website
download. The numbers in each node represent the number of paths going
through it.

serted into a graph, it is beneficial to differentiate between a new flow and
the commonalities it has with the existing nodes in a graph. I therefore
have implemented a slightly different but functionally equivalent inser-
tion strategy that uses flow pools: a new flow is compared against the flows flow pools

in the pool, and LCSs are extracted in the process. Instead of the flow it-
self we then insert the LCSs into the CSG as a path in which each node
corresponds to a substring in the LCS. The node merge and split processes
during insertion of an LCS are shown in Figure 4.1.

Since many flows will be inserted into a CSG, state management becomes
an issue. I limit the number of nodes that a CSG can grow to using a two-
stage scheme in combination with monitoring node use frequency through
a least recently used list. The list keeps the recently used nodes at the front,
while the others percolate to its tail. A hard limit imposes an absolute maxi-
mum number of nodes in the CSG. If more nodes would exist in the graph
than the hard limit allows, least recently used nodes are removed from
the graph until the limit is obeyed. To reduce the risk of evicting nodes
prematurely, I use an additional, smaller soft limit, exceeding of which can
also lead to node removal but only if the affected nodes are not important
to the graph’s structure. In order to quantify the importance of a node n
to its graph G I define as the weight of a node the ratio of the number of

64



4.3. PROTOCOL MODELLING WITH COMMON SUBSTRING GRAPHS

paths that are running through the node to the total number of paths in
the graph:

WG(n) =
PG(n)
|PG|

I say a node is heavy when this fraction is close to 1. As I will show in
Section 4.4, only a small number of nodes in a CSG loaded with network
flows is heavy. Soft limits only evict a node if its weight is below a mini-
mum weight threshold. Removal of a node leads to a change of the node
sequence of all paths going through the node; redundant paths may now
exist. I avoid those at all times by enforcing a uniqueness invariant: no
two paths have the same sequence of nodes at any one time. Where dupli-
cate paths would occur, they are suppressed and a per-path redundancy
counter is incremented. I do not limit the number of different paths in the
mesh because it has not become an issue in practise. Should path elimi-
nation become necessary, an eviction scheme similar to the one for nodes
could be implemented easily.

Comparison4.3.2

In order to compare two CSGs, a graph similarity measure is needed.
The measure I have implemented is a variant of feature-based graph dis-
tances [130]: the two features used for the computation are the weights
and labels of the graph nodes. Our intuition is that for two CSGs to be
highly similar, they must have nodes that exhibit high similarity in their
labelling while at the same time having comparable weight. I have de-
cided against the use of path node sequencing as a source of similarity
information for performance reasons: the number of nodes in a graph is
tightly controlled, while I currently do not enforce a limit on the number
of paths.

When comparing two CSGs G and H I first sort NG and NH by the length
of the node labels, in descending order. Iterating over the nodes in this
order, I then do a pairwise comparison (ni, n j) ∈ NG× NH, finding for ev-
ery node ni ∈ NG the node n j ∈ NH that provides the largest label overlap,
i.e., for which |L(ni, n j)| is maximised. Let the LCS yielding ni’s maximum
overlap with the nodes of NH be denoted as Lmax(ni, NH). The sorting of
the nodes allows us to abort the search once considering nodes that are
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shorter than the best match previously encountered, so this algorithm is
in O(|NG| · |NH|). The score contributed by node ni to the similarity is then
the ratio of the best overlap size to the node label’s total length, multi-
plied by PG(ni) to factor in ni’s importance. The scores of all nodes are
summarised and normalised, resulting in our similarity measure S(G, H)
between two graphs G and H:

S(G, H) =
∑

ni∈NG

PG(ni)
|Lmax(ni, NH)|

|ni|

∑
ni∈NG

PG(ni)

Merging4.3.3

The way the merge operation proceeds depends on whether the CSG that
is being merged into another one needs to remain intact or not. If it does,
then merging a CSG G into H is done on a path-by-path basis by dupli-
cating each path p ∈ PG, inserting it as a new LCS into H, and copying
over the redundancy count. If G is no longer required, all paths can be
unhooked from the start and end nodes, re-hooked into H, and a single
pass made over G’s old nodes to merge them into H.

Scoring4.3.4

To be able to classify flows given a set of CSGs loaded with traffic, one
needs a method to determine the similarity between an arbitrary flow and
a CSG as a numerical value in the [0,1] interval. Intuitively I do this by
trying to overlay the flow into the CSG as well as possible, using existing
paths. More precisely, I first scan the flow for occurrences of each CSG
node’s label in the flow, keeping track of the nodes that matched and the
locations of any matches. This is an exact string matching problem and
many algorithms are available in the literature to solve it [68]. I am cur-
rently using a simple memcmp()-iterative approach. The union of paths
going through the matched nodes is a candidate set of paths among which
I then find the one that has the largest number of matched nodes in the
same order in which they occurred in the input flow. Note that this gives
us the exact sequence, location, and extent of all substrings in the flow
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that are typical to the traffic the CSG has been loaded with—when using
a single protocol’s traffic, one can expect to get just the protocol-intrinsic
strings “highlighted” in the flow. Finally, to get a numerical outcome I sum
up the total length of the matching nodes’ labels on that path and divide
by the flow length, yielding 1 for perfect overlap and 0 for no similarity.
Figure 4.2 illustrates the process.

Evaluation4.4

I implemented CSGs as an extension to the Bro IDS to make them acces-
sible to a wide range of future network monitoring tasks and, developed
in parallel, in a separate framework explicitly designed for testing clas-
sification performance. In the following sections I present an evaluation
of CSGs investigating structural aspects, classification performance, and
run-time behaviour.

Terminology4.4.1

In this section, I use the term session to refer to all traffic exchanged be-
tween two endpoints, using the same quintuple of originator and respon-
der IP address, originator and responder port numbers, and IP protocol
(TCP or UDP). A session consists of two flows, one containing all pack-
ets in originator→ responder direction while the other one comprises all
packets in responder→ originator direction. A TCP session thus contains
all traffic belonging to a single TCP connection. A UDP session consists of
all packets exchanged within a quintuple with packet inter-arrival times
below 10s, the passing of which marks the end of the session. Given the
lacking notion of a connection in UDP, a reasonable interval for separat-
ing individual “connections” must be used, and 10s has proven to be a
reasonable value in practice.

Input Traffic4.4.2

I used three different sets of real-world, full-packet network traffic traces
to evaluate CSGs. The first set was collected at the uplink of the Computer
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Laboratory of the University of Cambridge, UK, on 23 November 2003
over a period of 24 hours. This set will be referred to below as the Cam-
bridge trace. The second set consists of traces collected from the uplink of
UCSD’s Computer Science & Engineering Department, ranging from 30
minutes to 2.5 hours, collected between 30 November 2005 and 7 Febru-
ary 2006. I will be referring to this set as the UCSD traces. The third set,
UCSD-w, consists of a five-day capture of the wireless network at UCSD’s
Computer Science & Engineering Department, starting on 17 April 2006.

Graph Structure4.4.3

The structure of a CSG (i.e., properties such as its size, the distribution of
node frequencies, and path lengths) can influence its usefulness for cap-
turing protocol-specific aspects. CSGs have four parameters: soft/hard
maximum node limits, eviction weight threshold, and minimum string
length. I suggest a soft/hard node limit of 200/500 nodes, a minimum
weight threshold of 10%, and 4-byte minimum string length as reason-
able default choices. To validate that these settings are sound, I used
the Cambridge traces and selected 4 major TCP protocols (FTP, SMTP,
HTTP, HTTPS) and 4 UDP ones (DNS, NTP, NetBIOS Nameservice, and
SrvLoc) and for each of them collected 1000 sessions from destination ser-
vices manually inspected to guarantee they were indeed running the in-
tended protocol. In three separate runs with minimum string lengths of
2-4 bytes, 8 CSGs were loaded with each session’s first message while I
recorded node growth and usage. Figure 4.4 shows the number of nodes
in each graph during the construction. The protocols exhibit fairly dif-
ferent growth behaviours, but all of them tolerate the 200-node soft limit.
HTTP repeatedly pushes beyond the limit but never loses nodes at the
eviction weight threshold. Figure 4.5 shows the frequency distribution of
each CSG’s nodes after 1000 insertions. In all CSGs except for the FTP one,
at least 75% of the 200 nodes carry only a single path. The FTP CSG only
grew to 11 nodes in the 2-byte minimum length run, explaining the cruder
distribution. Minimum string length seems to matter little. Thus, my CSG
settings seem tolerant enough not to hinder natural graph evolution.

Figures 4.6 and 4.7 show examples of real-world CSGs for protocols DNS,
DHCP, HTTP, and SMTP after insertions of 1000 LCSs into each CSG.
Darker nodes represent nodes carrying more paths. The visual representa-
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Figure 4.4. CSG node growth during insertion of 1000 sessions, for minimum
string lengths of 2, 3, and 4 bytes, with a soft node limit of 200 nodes. En-
forcement of the hard node limit of 500 nodes never becomes necessary.
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Figure 4.5. CSG node frequencies after 1000 insertions, for minimum string
lengths of 2, 3, and 4 bytes.
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Figure 4.6. CSGs for UDP protocols DNS (top) and DHCP (bottom), flow pre-
fix length 100 bytes, soft node limit 100 nodes. Heavier nodes are rendered in
a darker background. Observe that only a small number of nodes are heavy.
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Figure 4.7. CSGs for TCP protocols HTTP (top) and SMTP (bottom), flow
prefix length 100 bytes, soft node limit 100 nodes. Heavier nodes are ren-
dered in a darker background. Observe that only a small number of nodes
are heavy.
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tion mirrors the observation from Figure 4.5 that for all protocols, a small
number of nodes carry the majority of CSG paths. There is also a distinc-
tive structural difference between binary protocols such as DHCP, where
alternative paths often have highly similar nodes, and text-based protocols
such as SMTP, where the resulting overall structure is more complex.

Protocol Classification4.4.4

The work I present in this section was done in collaboration with Justin
Ma, Kirill Levchenko, Stefan Savage, and Geoff Voelker of the University
of California at San Diego. I contributed to the classification framework
itself, integrated CSGs into it, and performed parts of the evaluation.

A major application of CSGs is protocol classification: given a session’s traf-
fic, the goal is to determine the application-layer protocols present in the
session’s flows, regardless of the session’s transport-layer port numbers. As
pointed out in Section 4.2, port numbers as the traditional means of clas-
sification are becoming increasingly unreliable. To investigate how well
CSGs are suited for the task, we implemented a framework for investigat-
ing multiple classification techniques. The details of the work are avail-
able in a technical report published at UCSD [99] and the corresponding
paper [98].

The framework operates as follows. Starting from the assumption that all
sessions destined to the same host and port form an equivalence class of
application-layer protocol usage, equivalence classes are built for all ses-
sions observed in the input traffic. Each such equivalence class’s sessions
are stored in a cell. For each equivalence class, each session’s flow pair
is collected, reassembled if necessary, and inserted into two CSGs using
the method described in Section 4.3.1, one for each direction. In our ex-
periments, we constrained ourselves to just the first 64 bytes of each flow
and ignored any subsequent data. Flow reassembly thus often was not
required. The CSGs of each pair of cells that have accumulated at least
500 sessions using the method presented in Section 4.3.2 are then com-
pared in a pair-wise fashion and cells with greatest similarity are merged
iteratively, as described in Section 4.3.3, in an agglomerative hierarchical
clustering. As merging proceeds, the merge threshold increases monotoni-
cally until eventually all cells have been merged into a single “supercell.”
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Figure 4.8. The protocol classification framework. (a) Flows are mapped to
flow keys, stored in a hashtable. Each flow key points to a cell; the cells are
only lightly loaded and have not yet been promoted. (b) More flows have
been added, multiple flow keys now point to the same cells. The first cells
have been promoted for merging. (c) Cells have begun merging.

Such a sequence of merges along with the merge thresholds at which they
occur is illustrated in Figure 4.9. Along the sequence of merges, that con-
stellation of cells is selected which comes closest to our goal of merging
only those cells that contain the same application-layer protocol by find-
ing the clustering that minimises the number of misclassifications in each
cell. At this point, each cell is labelled with the application-layer protocol
the majority of sessions in it exhibit. Figure 4.8 illustrates the cell build-up
process. Once the cell configuration is obtained, we can use the frame-
work to classify new sessions by scoring them against cells using the op-
eration presented in Section 4.3.4 and classifying a session as carrying the
application-layer protocol of the cell it most closely resembles.

We compared CSGs to two other content-based models of network pro-
tocols. I only summarise them here; the full description can be found in
the paper [98]. Both models are specifically selected for the classification
task and of lower input fidelity than CSGs. The first is a Markov process
model which represents a protocol as a Markov chain with 256 nodes, one Markov process

modelfor each possible byte value. The transition probabilities of each Markov
chain are derived from the totality of sessions present in a cell, separately
for each direction, by adding up the occurrences of transitions among sub-
sequent bytes. Sessions are scored by performing random walks over
the cells’ Markov chains, where the walks consist of a number of steps
equal to the flow prefix length used. Note that this model completely ig-
nores positional information about byte occurrences inside the flows, since
the Markov chain transition probabilities sum up the byte occurrences in
their entirety. The second model, which we termed product distributions, product

distributionsfactors in positional information more strongly. Here, a 256-element his-
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Figure 4.9. Iterative merging of cells while increasing the merge threshold.
The horizontal line across the graph indicates the resulting merge threshold.

togram is maintained for every byte offset and each direction of a session’s
flows. Each histogram bin corresponds to a possible byte value and counts
the number of occurrences of each byte value at the histogram’s offset. As
the model is trained, the histograms accumulate precise information about
the frequency of individual bytes’ occurrences at different offsets. In con-
trast to CSGs, no information is stored about consecutive strings occurring
at different offsets.

In order to be able to evaluate classification accuracy, we required a clas-
sification oracle. We chose Ethereal 0.10.14 2 for this purpose, despite the
fact that it clearly is a weak oracle since it relies almost exclusively on well-
known ports to label flows.3 For our traffic sets, this weakness did not
seem to matter. For better classification, the regular expression set from
the L7 project [91] could be used.

Each of the trace sets was split into two halves, using the first half to train
the models and the second for classification. The overall classification re-
sults are shown in Table 4.1. Product distributions achieve best accuracy,
followed by CSGs, and Markov processes come last. The good perfor-

2http://www.ethereal.com
3Ethereal uses signature-like heuristic in a small subset of protocol analysers, for ex-

ample for RPC.
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CAMBRIDGE UCSD-W UCSD
flows novelty flows novelty flows novelty

226,046 1.18% 403,752 0.51% 1,064,844 1.12%

total learned total learned total learned

Product 1.68% 0.50% 1.78% 1.28% 4.15% 3.03%
Markov 3.33% 2.15% 4.26% 3.75% 9.97% 8.85%

CSG 2.08% 0.90% 4.72% 4.21% 6.19% 5.06%

Table 4.1. Overall traffic statistics (top) and classification accuracies for the
three content models (bottom), for the three trace sets. Novelty percentages
indicate the fraction of protocols occurring in the test sets but not the train-
ing sets. The “total” columns show the overall misclassification encountered
in the test trace sets, while the “learned” columns list the misclassifications
among flows labelled with protocols that were present in the training sets.

mance of product distributions largely stems from the fact that they are
able to fingerprint frequently occurring distributions of individual byte
values at fixed offsets, as typically found in binary protocols. While the
substring-based approach taken by CSGs is better at picking up freely
movable strings and their sequencing, this does not translate into a deci-
sive advantage in the classification task. It does however mean that CSGs
are generally better at classifying text-based protocols than binary ones.
Since text-based protocols however typically also have strings occurring
at fixed offsets (such as the beginning of the flows, in particular), product
distributions generally work well in those cases as well. The Markov pro-
cess model cannot leverage any information about different offsets into
the flows and suffers accordingly. These observations are confirmed by
the detailed confusion ratios for CSGs shown in Table 4.2 and the overall
accuracy ratios presented in Table 4.3: the larger contributors to the over-
all classification error are generally binary protocols. DNS, in particular,
is a major culprit. Note that encrypted protocols are not generally hard
to classify, assuming the connection setup is observable: the example of
SSH shows that such scenarios are handled well in general, and CSGs are
in fact performing better than both other models in this case. This would
clearly no longer be the case if flow monitoring was cold-started in the
middle of an already encrypted exchange. In this case, CSGs would strug-
gle to find enough structure to build a model from, while the other models
would likely build a useful model of the homogeneously distributed “line
noise” of encrypted content.

76



4.4. EVALUATION
C

A
M

B
R

ID
G

E
U

C
SD

-W
U

C
SD

to
ta

l
er

ro
r

pr
ot

oc
ol

s
to

ta
l

er
ro

r
pr

ot
oc

ol
s

to
ta

l
er

ro
r

pr
ot

oc
ol

s

59
83

0.
69

6%
FT

P-
D

A
TA
→

H
TT

P
15

08
9

0.
86

5%
EN

IP
→

D
N

S
11

37
9

0.
58

5%
IS

A
K

M
P
→

D
N

S
16

35
0.

19
0%

FT
P-

D
A

TA
→

SA
P/

SD
P

97
13

0.
55

7%
D

N
S
→

N
BN

S
11

26
5

0.
58

0%
Y

PS
ER

V
→

D
H

C
P

15
47

0.
18

0%
SR

V
LO

C
→

N
FS

63
58

0.
36

4%
EN

IP
→

PO
P

83
91

0.
43

2%
SS

L
→

SM
T

P
14

88
0.

17
3%

N
FS
→

D
N

S
50

79
0.

29
1%

M
D

N
S
→

D
N

S
69

28
0.

35
6%

PO
P
→

SM
T

P
11

45
0.

13
3%

N
TP
→

D
N

S
42

12
0.

24
1%

EN
IP
→

M
SN

M
S

58
52

0.
30

1%
C

LD
A

P
→

LD
A

P
10

00
0.

11
6%

D
N

S
→

N
BN

S
35

02
0.

20
1%

EN
IP
→

H
TT

P
56

49
0.

29
1%

Po
rt

m
ap
→

N
FS

79
5

0.
09

2%
A

ut
o-

R
P
→

N
FS

30
28

0.
17

4%
IS

A
K

M
P
→

D
N

S
46

71
0.

24
0%

R
A

D
IU

S
→

H
T

T
P

65
9

0.
07

7%
N

TP
→

N
FS

26
68

0.
15

3%
EN

IP
→

C
LD

A
P

45
71

0.
23

5%
D

N
S
→

N
BN

S
38

3
0.

04
5%

SN
M

P
→

SS
L

24
21

0.
13

9%
N

TP
→

R
U

D
P

35
64

0.
18

3%
SS

L
→

H
T

T
P

33
7

0.
03

9%
FT

P-
D

A
TA
→

FT
P

21
75

0.
12

5%
EN

IP
→

SN
M

P
27

36
0.

14
1%

H
T

T
P
→

SM
T

P
32

8
0.

03
8%

PO
P
→

FT
P

18
79

0.
10

8%
EN

IP
→

IM
A

P
24

12
0.

12
4%

SN
M

P
→

D
N

S
25

1
0.

02
9%

FT
P-

D
A

TA
→

SS
H

18
67

0.
10

7%
EN

IP
→

A
IM

22
16

0.
11

4%
H

T
T

P
→

So
ck

s
24

9
0.

02
9%

SR
V

LO
C
→

SS
D

P
16

60
0.

09
5%

N
TP
→

N
BN

S
20

09
0.

10
3%

D
N

S
→

IS
A

K
M

P
19

3
0.

02
2%

Sy
sl

og
→

H
TT

P
16

01
0.

09
2%

EN
IP
→

C
U

PS
17

92
0.

09
2%

K
R

B5
→

Sl
am

m
er

19
2

0.
02

2%
Po

rt
m

ap
→

N
FS

14
46

0.
08

3%
EN

IP
→

BO
O

TP
17

86
0.

09
2%

Y
PS

ER
V
→

N
FS

13
1

0.
01

5%
BR

O
W

SE
R
→

N
BN

S
13

38
0.

07
7%

EN
IP
→

N
BN

S
17

32
0.

08
9%

D
N

S
→

D
H

C
P

13
0

0.
01

5%
Sy

sl
og
→

SS
H

12
84

0.
07

4%
EN

IP
→

SM
TP

14
64

0.
07

5%
N

BS
S
→

Po
rt

m
ap

94
0.

01
1%

N
TP
→

N
BN

S
94

1
0.

05
4%

M
A

N
O

LI
TO
→

N
BN

S
13

11
0.

06
7%

SS
D

P
→

H
T

T
P

85
0.

01
0%

FT
P-

D
A

TA
→

SS
D

P
93

1
0.

05
3%

R
X
→

R
U

D
P

12
24

0.
06

3%
N

T
P
→

D
C

ER
PC

83
0.

01
0%

FT
P-

D
A

TA
→

IM
A

P
79

8
0.

04
6%

U
D

PE
N

C
A

P
→

N
TP

11
40

0.
05

9%
N

T
P
→

M
es

se
ng

er
79

0.
00

9%
FT

P-
D

A
TA
→

N
FS

78
1

0.
04

5%
SS

L
→

R
X

11
29

0.
05

8%
SS

L
→

D
N

S
78

0.
00

9%
Sy

sl
og
→

SA
P/

SD
P

72
4

0.
04

1%
N

TP
→

BO
O

TP
92

2
0.

04
7%

X
D

M
C

P
→

D
N

S
63

0.
00

7%
FT

P-
D

A
TA
→

N
BN

S
59

3
0.

03
4%

IS
A

K
M

P
→

M
D

N
S

91
4

0.
04

7%
R

IP
v1
→

SR
V

LO
C

60
0.

00
7%

H
SR

P
→

R
A

D
IU

S
58

0
0.

03
3%

EN
IP
→

ST
U

N
91

3
0.

04
7%

FT
P-

D
A

TA
→

SM
TP

58
0.

00
7%

D
N

S
→

N
TP

53
8

0.
03

1%
M

A
N

O
LI

TO
→

M
D

N
S

87
6

0.
04

5%
R

X
→

N
T

P
56

0.
00

7%
N

TP
→

H
TT

P
52

4
0.

03
0%

IS
A

K
M

P
→

N
TP

85
3

0.
04

4%
Sy

sl
og
→

H
T

T
P

56
0.

00
7%

FT
P
→

SM
TP

42
3

0.
02

4%
U

D
PE

N
C

A
P
→

D
C

ER
PC

84
5

0.
04

3%
IS

A
K

M
P
→

SM
B

43
0.

00
5%

FT
P-

D
A

TA
→

SM
TP

34
9

0.
02

0%
M

D
N

S
→

BO
O

TP
84

5
0.

04
3%

EC
H

O
→

H
T

T
P

42
0.

00
5%

N
FS
→

N
BN

S
34

6
0.

02
0%

H
SR

P
→

D
N

S
83

8
0.

04
3%

W
H

O
→

H
T

T
P

41
0.

00
5%

N
BN

S
→

D
N

S
29

3
0.

01
7%

Bi
tT

or
re

nt
→

D
N

S
83

2
0.

04
3%

R
T

SP
→

H
T

T
P

Ta
bl

e
4.

2.
Th

e
to

p
30

pr
ot

oc
ol

m
is

cl
as

si
fic

at
io

ns
fo

r
C

SG
s,

fo
r

ea
ch

of
th

e
th

re
e

tr
ac

e
se

ts
,s

or
te

d
in

de
sc

en
d-

in
g

or
de

r.
M

is
cl

as
si

fie
d

pr
ot

oc
ol

flo
w

s
ar

e
sh

ow
n

in
bo

th
ab

so
lu

te
nu

m
be

rs
an

d
pe

rc
en

ta
ge

s
th

ey
co

nt
ri

bu
te

to
th

e
ov

er
al

le
rr

or
.I

ta
lic

is
ed

lis
ti

ng
s

in
di

ca
te

no
ve

lp
ro

to
co

ls
th

at
w

er
e

no
ti

n
th

e
tr

ai
ni

ng
se

t.

77



4.4. EVALUATION

Pr
od

uc
t

M
ar

ko
v

C
SG

pr
ot

oc
ol

%
er

r.%
pr

ec
.%

re
c.

%
er

r.%
pr

ec
.%

re
c.

%
er

r.%
pr

ec
.%

re
c.

%

CAMBRIDGE

D
N

S
26

.2
8

0.
09

99
.9

4
99

.7
8

0.
61

97
.8

9
99

.9
7

0.
45

98
.8

2
99

.5
2

H
TT

P
12

.2
4

0.
07

10
0.

00
99

.9
9

0.
09

10
0.

00
99

.9
8

0.
74

99
.9

1
99

.9
9

N
BN

S
44

.8
9

0.
35

10
0.

00
99

.2
5

0.
40

99
.8

2
99

.3
1

0.
17

99
.7

1
99

.9
9

N
TP

5.
29

0.
00

10
0.

00
10

0.
00

1.
19

99
.9

6
77

.8
4

0.
25

99
.8

3
95

.6
5

SS
H

0.
22

0.
14

68
.3

9
10

0.
00

1.
10

17
.3

9
10

0.
00

0.
05

99
.2

2
10

0.
00

UCSD-W

D
N

S
23

.1
4

0.
04

99
.8

8
99

.9
3

0.
29

98
.8

8
99

.9
9

1.
97

94
.3

7
97

.5
9

H
TT

P
0.

67
0.

27
76

.0
2

97
.5

4
0.

09
90

.6
8

99
.9

3
0.

22
76

.8
7

99
.3

8
N

BN
S

6.
94

0.
00

10
0.

00
10

0.
00

1.
96

78
.0

6
10

0.
00

0.
81

90
.3

4
99

.9
7

N
TP

0.
57

0.
01

99
.9

5
99

.7
2

0.
51

10
0.

00
11

.2
9

0.
40

86
.6

5
48

.7
6

SS
H

0.
44

0.
17

75
.2

8
10

0.
00

0.
00

99
.6

3
10

0.
00

0.
00

99
.9

9
10

0.
00

UCSD

D
N

S
54

.7
8

0.
26

99
.9

0
99

.9
5

1.
90

97
.1

3
99

.9
8

1.
43

98
.4

7
99

.1
5

H
TT

P
9.

17
0.

38
97

.4
6

99
.6

2
0.

33
97

.2
1

99
.7

2
1.

21
95

.1
4

97
.1

9
N

BN
S

7.
03

0.
01

10
0.

00
99

.8
1

1.
25

85
.6

6
99

.8
1

0.
33

96
.0

4
99

.4
5

N
TP

6.
70

0.
02

99
.9

9
99

.9
4

5.
39

78
.0

7
29

.6
1

0.
36

99
.8

2
96

.5
8

SS
H

0.
08

0.
08

68
.8

1
81

.8
2

0.
09

0.
00

0.
00

0.
03

95
.4

0
82

.0
1

Ta
bl

e
4.

3.
To

ta
lc

la
ss

ifi
ca

ti
on

er
ro

r,
pr

ec
is

io
n,

an
d

re
ca

ll
of

se
le

ct
ed

pr
ot

oc
ol

s,
fo

r
al

lt
he

tr
af

fic
m

od
el

s
an

d
tr

ac
e

se
ts

.T
he

pe
rc

en
ta

ge
co

lu
m

n
fo

llo
w

in
g

th
e

pr
ot

oc
ol

s
is

th
e

pr
op

or
ti

on
of

th
e

pr
ot

oc
ol

in
th

e
en

ti
re

tr
ac

e.

78



4.4. EVALUATION

50 100 150 200
0

0.5

1

1.5

x 10−3 CSG constr., 1000−byte prefix

Soft node limit

Av
g.

 ti
m

e 
(s

)

50 100 250 500 1000
0

0.5

1

1.5
x 10−3 CSG constr., 200−node soft limit

Flow prefix (bytes)

Av
g.

 ti
m

e 
(s

)

50 100 150 200
0

0.01

0.02

0.03

0.04
CSG comparison

Soft node limit

Av
g.

 ti
m

e 
(s

)

50 100 150 200
0

1

2

3

4

5

6
x 10−4 CSG flow scoring

Soft node limit

Av
g.

 ti
m

e 
(s

)

Figure 4.10. Performance of CSG construction with varying soft node limits
and flow prefix sizes (top left and top right, respectively), comparison (bot-
tom left), and flow scoring (bottom right). Error bars are omitted since do
significant variation was noticeable.

Runtime Behaviour4.4.5

To evaluate the runtime performance of the CSG operations, I first selected
1000 flows of a representative set of application layer protocols: DNS,
DHCP, NTP, NetBios NS, SNMP, SrvLoc, and Syslog for UDP, and FTP’s
command channel, SSH, SMTP, HTTP, POP3, IMAP, and HTTPS for TCP.
All experiments were made on an otherwise idle Pentium 4 running at
2.53GHz and 512MB of memory, the same machine used in Section 3.5.5.5.

To measure CSG creation performance, I then averaged the times needed
to insert 1000 LCSs into individual CSGs per protocol. In separate runs I
adjusted the soft node limit between 50 and 200 nodes while using a flow
prefix of 1000 bytes, and the flow prefix size from 50 to 1000 bytes while
using a soft node limit of 200 nodes. In the former experiment, my im-
plementation of CSGs can insert LCSs at a rate of 1,243 to 761 per second,
while in the latter the rate varies from 5,764 to likewise 761 per second.
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4.5. DISCUSSION

The average insertion rate across the two experiments is 1,092 insertions
per second. Note that these results do not include the time required to
obtain the common substrings that were inserted. Recall Section 3.5.5.5
for the runtime requirements to obtain LCSs using Smith-Waterman and
Jacobson-Vo, but also note that depending on the application, CSGs do not
necessarily require common substrings as input but can also use entire
strings, since content unique to individual flows will quickly be pushed
out of the CSG.

Next, I measured the time needed to compare CSGs to each other by load-
ing into memory all CSGs created during the construction experiment
with the same soft node limit, performing pairwise comparisons among
each of those sets 10 times, and computing the average time needed. The
comparison rate ranges from 177 to 30 per second. These rates are signifi-
cantly lower than those needed for CSG construction, but note that traffic
model comparison is often less frequently required than LCS insertions or
flow scoring, which I investigated next.

Again using the CSGs of varying soft node limits built during the CSG
creation experiment, I created a random mixture of 1000 flows from all
protocols in the dataset and measured for each application-layer protocol
the average time needed to score those flows against each of the CSGs.
Scoring performance ranges from 5,630 to 2,334 flows per second.

Figure 4.10 summarises these results.

Discussion4.5

The evaluation shows that CSGs perform well when used as traffic classi-
fiers. When compared to other traffic models, they score worse than prod-
uct distributions, but better than Markov models. Not surprisingly, CSG’s
classification results are best when analysing text-based protocols with
protocol-typical strings that are different from those of the other protocols,
such as HTTP or IMAP. Classification of binary protocols is complicated
by two factors. First, binary protocols do not necessarily have protocol-
intrinsic tokens that naturally delimit semantic entities in the flows. This
results in greater difficulty for sequence alignment algorithms to identify
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definitive commonalities. Product distributions manage to overcome this
hurdle due to their single-byte granularity. Second, several binary pro-
tocols exhibit presence of zero-byte strings, sometimes in close proximity
(such as with DNS vs. NTP), which further complicates accurate differen-
tiation.

On the other hand, product distributions are not without shortcomings:
CSGs offer the unique benefit of providing protocol-intrinsic substrings in
their entirety and with precise information about the whereabouts of their
occurrence along with their frequencies. This makes them much easier
to translate into content-based signatures that are immediately useful to
present-day IDSs. CSG’s main strength, the focus on common substrings,
is also its main weakness: only substrings that were observed during train-
ing can later be used for classification. Binary protocols make the presence
of such strings less certain, though the fact that I used a minimum string
length of 4 bytes while achieving good classification results shows that this
is not a fundamental hurdle.

The runtime performance of CSGs is good even though they are more
complex than more statistical models, such as product distributions. The
traffic volumes at which CSGs can operate at line speeds will strongly de-
pend on how CSGs are used. In high-bandwidth environments, sampling
could be used to selectively reduce the load on ports with high traffic vol-
umes during model construction. Once the model is built, CSG compar-
ison and flow scoring are read-only operations on the CSGs and can be
parallelised with ease.

Over time, network traffic undergoes shifts in application-layer content as
new applications are introduced, older ones are phased out, and existing
ones update their protocol implementations. I have not investigated such
“drift” issues and leave them for future work.

Related Work4.6

The work I have presented in this chapter falls under the broad umbrella
of traffic profiling, which has been researched quite thoroughly. It is of-
ten the precursor for anomaly detection, because detecting deviation from
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the norm first requires a solid understanding of the norm. Much as in at-
tack detection, traffic classification has been attempted with methods at
varying depths of traffic inspection. I group the reviewed work roughly
in increasing order of depth of analysis, i.e., going from lower to higher
levels in the OSI network model.

Recent work by Karagiannis et al. has investigated transport-layer con-
tact patterns among sets of hosts, trying to delineate emerging patterns
for different classes of application-layer services (e.g., peer-to-peer appli-
cations vs. email) [79, 81]. Their approaches work well, but cannot distin-
guish among different protocols exhibiting similar contact patterns. Such
patterns are orthogonal to CSGs and both approaches could be combined
well.

Using a more statistical approach than Karagiannis et al. , Lakhina et al.
[92] likewise employ transport-layer features for classification. Their goal
is to identify anomalies, not necessarily of types known in advance, in
large flow sets. They use entropy as the main feature, and obtain mean-
ingful clusters for several well-known types of anomalies. Similar to our
Cell framework, their approach supports fully unsupervised classification.

Several efforts have used manually generated signatures as the core engine
of flow identification [51, 137, 80]. Manually generated signatures have
two significant drawbacks: first, one has to know in advance what pro-
tocol one is actually looking for; second, manual signature generation is
tedious and prone to errors on the sides of false positives or negatives. Sta-
tistical learning techniques can help with the latter problem, as has been
demonstrated by Haffner et al. [69]. Not only can CSGs provide such sig-
natures without manual intervention; they can also provide information
about the relative frequencies with which elements of such signatures do
occur in practise.

Moore and Papagiannaki [104] use a set of 9 classifiers operating at mul-
tiple levels of the network model and varying levels of complexity. They
suggest a classification procedure using incrementally more classifiers, con-
necting them through causal reasoning. In contrast to our work, their ap-
proach is not fully automated, classifies at the granularity of 10 different
classes of applications, and only manages to achieve or exceed our level
of accuracy if 8 or 9 of their classifiers are used. Zuev and Moore [174]
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employ network-level packet headers as features for supervised Bayesian
classification. Using flows manually labelled as a baseline, they classify
the packets into 10 general application classes and achieve accuracies rang-
ing from 66% to 83%. The advantage of their approach is that access to
flow-level content is not required; however, their accuracy is significantly
worse than ours.

Zander et al. [171] suggest a framework for unsupervised protocol clas-
sification using Expectation Maximisation [49] to derive classes of traffic
based on elementary statistical features such as packet inter-arrival times,
packet length distribution, and flow size and duration. Their work fo-
cuses on the automated selection of good features for individual traces
and currently gives no information on classification accuracy, whereas our
framework focuses on fully automated classification of traffic given a fixed
feature set.

A problem similar to the classification of flow content is that of classi-
fying file types. Li et al. [93] use n-gram profiles for this purpose and
achieve good accuracy; their work is similar to the product distributions in
our traffic classification framework. Another application using a product-
distribution-like is presented by Tang and Chen [153], who use byte dis-
tributions to fingerprint exploits in flow content.

Another general way of fingerprinting the normal is through specification
and enforcement of adherence to such specification. Normalisation of net-
work traffic [71, 163] consists of first formulating what constitutes compli-
ant traffic, then detecting deviation from that profile, and finally deciding
how and whether the deviation can be corrected without adversely affect-
ing the end-to-end functionality of the traffic flows.

Finally, Cui et al. [48] likewise employ sequence analysis in a protocol-
agnostic fashion, but use it model global commonality in application-layer
sessions with the intent to replay protocol exchanges at one endpoint of
the communication.
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Summary4.7

In this chapter I have illustrated the importance and difficulty of gain-
ing accurate understanding of the application-layer protocols present in
a network. The main contribution of the chapter is the introduction of
a new model of network flows, called common substring graphs (CSGs).
CSGs use sequence alignment to collect protocol-typical substrings and
associate these substrings with the positions and frequency with which
they occur in the input flows. CSGs are a high-fidelity content model: the
content strings and their positional distributions remain fully accessible
after model build-up, making CSGs useful in a wide range of applications.
CSGs provide elementary operations such as the incremental construction
of a content model from a set of input flows, pairwise comparison of CSGs
to each other to measure similarity between two models, and the matching
of individual flows against CSGs, highlighting the use of protocol-intrinsic
content in the flow. As an example of a CSG application, I have investi-
gated their suitability for classifying application-layer protocols. CSGs are
able to classify individual application-layer protocols with an error rate
ranging from 2.08% in the best to 6.19% in the worst case. When compared
to product distributions and Markov process models, CSGs offer the best
compromise between classification accuracy and detail of flow content.
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5
Fingerprinting the Malicious

“Sergeant. Establish a recon post downstairs.
Code Red. You know what to do.”

— Woody in Toy Story.

Introduction5.1

In the previous chapter I addressed the problem of extracting the structure
of application-layer protocols in the absence of reliable transport-layer la-
belling. The techniques presented can be used to derive a baseline of what
constitutes normal activity. In this chapter, I will narrow the focus to the
identification of malicious activity in network traffic. I begin by showing
ways to do so by contrasting malicious traffic against the normal in Sec-
tion 5.2, and derive ways to capture the essence of such malice in two
forms: a content-based one in Section 5.3, namely automatically generated
signatures for the identification of attack exploits as they are attempted,
and a more statistical one, Packet Symmetry, which can be used proactively
to prevent volume-based attacks from entering the network core, in Sec-
tion 5.4. I survey related work in Section 5.5, and conclude the chapter
with a summary in Section 5.6.

Defining Malice5.2

Network traffic is considered malicious when it violates a site’s security
policy, for example by gaining an attacker access to end hosts, or by ren-
dering services offered by the site unreachable to its legitimate users. Op-
erating specifically on malicious traffic is thus predicated on two require-
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ments: first, one requires a means of specifying what constitutes malice;
second, there must be a way to apply this specification to detect traffic
matching the specification. The challenges are to derive a suitable specifi-
cation and to turn it into a classifier that can detect traffic affected by the
specification with suitable accuracy (recall Section 2.4.2).

In this chapter I focus on two kinds of malicious behaviour: (i) content-
based exploitation of vulnerabilities in networked applications due to care-
fully crafted payload, and (ii) volume-based attacks such as aggressive
scanning and denial of service.

Content-based Attacks5.2.1

A large class of attacks on networked computers aims to exploit vulnera-
bilities in the software running on end systems. Feeding unexpected in-
put to applications not processing such input in a robust fashion can cause
these applications to crash or, as is more frequently attempted, coerce the
software into executing code fed to it by the attacker. The last bit is crucial:
in order for an attack to succeed, the offending content has to be carried to
the victim machines over the network. Therefore, identification of those
parts of a network flow that contain the exploit is one possibility of defin-
ing malice. Content-based traffic signatures are a major pillar of intrusion
detection; the idea here is to express concisely the characteristics of the ex-
ploit as it is observable on the wire, and react according to a site’s policy
when a signature matches live traffic.

This approach to defining and detecting malice is not without problems:

• First, it requires that traffic is not encrypted, since encrypted traffic encryption as a
threatcompletely obscures the actual flow content. This has been known

for a long time, but has not become as fundamental an obstacle to
content-based detection as one would assume. The main reason is
the fact that many major applications (such as the World Wide Web
or electronic mail) do not necessarily require encryption. Strong coun-
ter-arguments to this line of thought are the emergence of new ap-
plications that heavily use encryption and could be used as exploit
vectors (such as Skype [12, 16] and VoIP in general), and the possibil-
ity for attackers to employ encryption in their own communication
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infrastructures such as botnets.

• Second, while there is a duality between vulnerabilities present in
host software and the exploits that attack them, this is not necessar- vulnerability vs.

exploitsily a one-to-one relationship: it is frequently possible to encode the
exploit in a number of different ways that still allow the attack to
succeed. Such polymorphism of exploits is a threat to content-based polymorphism

signatures, since they significantly raise the bar of the accuracy re-
quired from a signature set — polymorphism drastically increases
the chance of false negatives. It is worth noting however that there
is no universal agreement on the exact extent of the polymorphism
threat. While a high degree of polymorphism has been demonstrated
for some vulnerabilities [44], the amount of invariant content an at-
tacker can not work around depends strongly on the vulnerability.
Polymorphism underlines the importance of avoiding enumerating
badness [126]: engaging in an arms race with attackers to find a sig- enumerating

badnessnature for every variant of an attack, instead of managing to capture
the essence of the vulnerability in a smaller set of signatures remain-
ing constant over time.

• Third, detection of attempted exploitation as it occurs is inherently
reactive in nature. Clearly, it is preferable to protect a site’s infrastruc- reactive

measuresture proactively. Ideally, software would just be written with less
vulnerabilities, but while this is a vast research field in itself [4], it
is unlikely to become widespread any time soon. A fundamental
hurdle is the fact that the economics of the software industry do not
hold the creators of software liable for errors, leading to insufficient
incentive to make software secure from the outset [134]. More in-
cremental yet proactive measures do exist though; one example is
fast and automated patch handling to fix vulnerabilities as soon as
they are fixed by the vendors. This is becoming more and more of
a basic requirement, since attackers are trying to derive the vulner-
ability from the patches, and the delay between published software
updates and appearance of exploits for the corrected vulnerabilities
is ever-decreasing [156, 157].

Despite these problems, content-based attack detection remains one of the
most important strategies when monitoring a network, and the work I
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present in Section 5.3 aims to improve one of the most tedious aspects of
content-based defence: identification of attack-crucial elements present in
network traffic.

Volume-based Attacks5.2.2

Volume-based attacks are orthogonal to payload-based ones: in contrast to
the latter, the content of traffic comprising such an attack matters little, it
is the presence of the attack traffic and the amount of it that is problematic.
In volume-based attacks, malice is defined by the presence of enough un-
wanted traffic to crash the victim machines or to prevent legitimate users
from reaching them. Since the content of such traffic matters little, it is just
as hard to come up with precise attack signatures as with some content-
based attacks, however the danger here is one of high false positive rates, potential false

positivescausing substantial collateral damage by dropping legitimate clients’ traf-
fic along with the attacker’s.

Compared to content-based attacks, the sources of volume-based ones are
frequently much harder to identify since spoofing source addresses is fea- source address

spoofingsible, given enough machines to spoof from. The advent of large-scale
botnets with potentially hundreds of thousands of attacking machines has botnet threat

made this one of the most dominant threats to the Internet, and much
work has been done to tackle it. While the majority of existing work in
this space proposes reactive mechanisms that attempt to establish intri-
cate and wide-spread filtering once a site detects that it is under attack,
the work I present in Section 5.4 takes a more proactive stance: by making
the detection of abusive volumes of traffic pervasive and placing it close to
the sources of the attack streams, large-scale denial-of-service attacks are
made drastically more difficult.

Automated Signature Generation using Honeypots5.3

In recent years, honeypots (briefly mentioned in Section 2.2), essentially de-
coy computer resources instrumented to monitor and log the activities of
entities that probe, attack or compromise them [146], have become popu-
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lar. Honeypots come in many shapes and sizes; examples include dummy
items in a database, low-interaction network components such as precon- honeypot

interaction
levelsfigured traffic sinks, or full-interaction hosts with real operating systems

and services. Initially only used to observe manually the ways a broken-
into machine is put to use, they are increasingly being leveraged as ora-
cles for malice. This follows from the fact that activity on honeypots can
be considered suspicious by definition, as they serve no purpose in benign
interaction. Ideally, they should never see any traffic. Unfortunately, hon-
eypot activity cannot automatically be considered malicious, since the In-
ternet today carries a substantial amount of largely benign “background
radiation” consisting of backscatter, misconfigurations, and a large array
of broken traffic whose genesis is barely explicable (more on this in Sec-
tion 5.5). Nevertheless, honeypots currently are among the best network-
based implementations of a malice oracle available. The work I present
in this section was among the first to recognise the potential of honeypots
for automated analysis of malicious traffic and its ideas have been used
and extended by a large body of recent work that I will discuss in detail in
Section 5.5.

At present, the creation of exploit signatures for detection of content-based
attacks is a tedious, manual process that requires detailed knowledge of
both the vulnerability and the attack vectors it is supposed to capture.
Simplistic signatures tend to generate large numbers of false positives, too
specific ones cause false negatives. To overcome these issues, I have de-
veloped Honeycomb, a system that generates signatures for malicious net-
work traffic automatically. The hypothesis is that by applying pattern- automated

signature
generationdetection techniques and packet header conformance tests to traffic cap-

tured on honeypots, one can identify the elements in those flows charac-
teristic to attacks, and express them in form of content-bases signatures.
The purpose of the system was to find out whether such an approach can
be made to work and highlight the relative difficulties involved. The sys-
tem is an extension of honeyd, a popular low-interaction open-source hon-
eypot. honeyd simulates hosts with individual networking personalities. It
intercepts traffic sent to nonexistent hosts and uses the simulated systems
to respond to this traffic. Each host’s personality can be individually con-
figured in terms of OS type (as far as detectable by common fingerprinting
tools) and running network services (termed subsystems).
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My implementation spots patterns in traffic previously seen on the hon-
eypot: parts of flows in the traffic are aligned and compared, and the re-
sulting commonalities are one of the input streams for the signatures the
system generates. My original implementation used a suffix-tree based
LCR algorithm as introduced in Section 3.5.1 to spot similarities in the
payloads. Recall that the suffix tree implementation allows computation
of the LCR in linear time; among the several algorithms that have been
proposed to build suitable suffix trees [167, 101, 154] I used my imple-
mentation of Ukkonen’s algorithm as provided by the libstree library
previously mentioned in Section 3.5.1.

Honeycomb’s source code has been publically available from the outset1

and the system remains the only automatic signature generator with avail-
able source code to date.

Architecture5.3.1

I have added two new concepts to honeyd: a plugin infrastructure, and
event callback hooks. The plugin infrastructure allows the development
of extensions that remain logically separated from the honeyd codebase,
while the event hooks provide a mechanism to integrate the plugins into
the activities inside the honeypot. Event hooks allow a plugin to be in-
formed when packets are received and sent, when data is passed to and
received from the subsystems and to receive updates about honeyd’s con-
nection state. Honeycomb is implemented as a honeyd plugin. Figure 5.1
illustrates the architecture.

Integrating the system into honeyd has several advantages over imple-
menting a standalone bump-in-the-wire design from scratch:

• No duplication of effort: the system needs access to network traf-
fic. For a standalone application, libpcap[100] would be an obvious
choice. honeyd already does this: it inspects the network traffic using
libpcap and passes the relevant packets to the network stacks of the
simulated hosts and eventually to their configured subsystems. My
approach is a minimum-effort solution that avoids performance hits
by making use of packet data already transferred to userspace.

1See http://www.cl.cam.ac.uk/∼cpk25/honeycomb/ for details.
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Figure 5.1. Honeycomb’s architecture, illustrated as a typical honeyd setup.
honeyd is simulating a number of different machines, each running a number
of pre-configured services. The Honeycomb plugin has hooked itself into the
wire to see in- and outgoing connections, and into honeyd’s connection state
management.

• Sufficiently realistic response traffic: honeyd is not passively listening
to traffic going in and out of the honeypot, rather, it actively creates
the traffic coming out of it through the simulated network stacks and
the configured subsystems. This creation of traffic is readily config-
urable and fully under the control of the user; an advantage when
experimenting with signature generation compared to more faithful
virtualisation environments.

• Avoidance of cold-start issues: a major advantage from the state
management perspective lies in the fact that integrating Honeycomb
into honeyd avoids desynchronisation from the current state of con-
nections: when honeyd receives a packet that starts a new connection
(whether in a legal fashion or not), Honeycomb knows that this starts
the connection. The question whether it may have missed the be-
ginning of the connection is a non-issue, in contrast to other systems
that use the bump-in-the-wire approach[71, 125].

Signature Creation Algorithm5.3.1.1

The philosophy behind the approach is to keep the system free of any
knowledge specific to certain application layer protocols; Honeycomb’s
operation should be fully protocol-agnostic. Thus, each received packet
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Figure 5.2. High-level overview of Honeycomb’s signature creation algo-
rithm.

causes Honeycomb to initiate the same sequence of activities:

• If there is existing connection state for the new packet, that state is
updated, otherwise new state is created. At the same time, the time-
stamp of the new packet is used to potentially time out and expunge
outdated connection state.

• If the packet is outbound, processing stops at this point.

• Honeycomb performs protocol header field analysis at the network
and transport layers.

• For each stored connection state:

– Honeycomb performs protocol header comparison in order to
detect matching IP networks, initial TCP sequence numbers,
etc.

– If the connections have the same destination port, Honeycomb
attempts pattern detection on the exchanged flow content.

• If no useful signature was created in the previous step, processing

92



5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

stops. Otherwise, the signature is used to augment the signature pool
as described in Section 5.3.1.5.

• Periodically, the signature pool is logged in a configurable manner,
for example by appending the Bro representation of the signatures
to a file on disk.

Figure 5.2 illustrates the algorithm. Each activity is explained in more de-
tail in the following sections.

Connection Tracking5.3.1.2

Honeycomb maintains state for a limited number of TCP and UDP con-
nections, but has rather unique requirements concerning connection state-
keeping. Since the aim is to generate signatures by comparing new traffic
in the honeypot to flows seen previously, it cannot release all connection
state immediately when a connection is terminated. Instead, Honeycomb
only marks connections as terminated but keeps them around as long as
possible, or until it can be sure that there is no benefit in storing them any
longer.

Connections that have exchanged lots of information are potentially more
valuable for detecting matches with new traffic. The system must prevent
aggressive port scans from overflowing the connection hashtables which
would cause the valuable connections to be dropped. Therefore, both UDP
and TCP connections are stored in a two-stage fashion: Connections are
at first stored in a “handshake” table and move to an “established” table
when actual payload is exchanged. In this manner, high-rate connection
attempts cannot cause the more valuable established-connection states to
be dropped.

The system performs flow reassembly and message extraction as described
in Section 3.3: for TCP, Honeycomb reassembles flows up to a configurable
total maximum of bytes exchanged in the connection. It stores the re-
assembled stream as a list of exchanged messages up to a maximum al-
lowed size, where a message is all the payload data that was transmitted
in one direction without any payload (i.e., at most pure ACKs) going the
other way. For example, a typical HTTP request is stored as two messages:
one for the HTTP request and one for the HTTP reply. For UDP, messages
are similarly created for all payload data going in one direction without
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payload data going the other way. Figure 5.3 illustrates the idea.

Packet Exchange
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SYN−ACK
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Connection terminated

200 Bytes + ACK
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FIN
ACK

Message 1
100 Bytes

100 Bytes

Initial Packet

Message 3

Message 2
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300 Bytes

Figure 5.3. A TCP packet exchange (left) and the way Honeycomb traces the
connection (right). The packet initiating the connection is copied separately;
afterwards, two 100-Byte payloads are received and assembled as one mes-
sage. 200 Bytes follow in response, forming a new message. This in turn is
answered by another 300 Bytes, forming the final message. The successful
completion of the TCP teardown triggers the labelling of the connection as
“terminated”.

Protocol Analysis5.3.1.3

After updating connection state, Honeycomb creates an empty signature
record for the flow and starts inspecting the packet. Each signature record
has a unique identifier and stores discovered facts (i.e., characteristic prop-
erties) about the currently investigated traffic independently of any par-
ticular NIDS signature language. The signature record is then augmented
continuously throughout the detection process, maintaining a count of the
number of facts recorded2.

Honeycomb performs protocol analysis at the network and transport lay-
ers for IP, TCP and UDP packet headers, using the header-walking tech-
nique previously used in traffic normalisation [71]. Instead of correcting
detected anomalies, it records them in the signature, for example invalid

2The terms “signature record” and “signature” are used interchangeably here except
for cases when I want to stress the difference between a signature record and a NIDS-
specific signature string produced from the record.
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IP fragmentation offsets or unusual TCP flag combinations. Note that for
these checks, Honeycomb does not need to perform any comparison to
previously seen packets. We refer to a signature at this point as the analy-
sis signature.

Honeycomb then performs header comparison with each currently stored
connection of the same type (TCP or UDP). If the stored connection has
already moved to the second-level hashtable, Honeycomb tries to look up
the corresponding message and uses the headers associated with that mes-
sage. If no such message can be found, the next connection is investigated.
If the connection is still in the first-level hashtable, the initial packet is used
for the comparison.

If any overlaps are detected (e.g., matching IP identifiers or address ranges),
the analysis signature is cloned and becomes specific to the currently com-
pared flows. The discovered facts are then recorded in the new signature.

Pattern Detection in Flow Content5.3.1.4

After protocol analysis, Honeycomb proceeds to the analysis of the re-
assembled flow content. Honeycomb applies the LCR algorithm to binary
strings built out of the exchanged messages. It does this in two different
ways, illustrated in Figures 5.4 and 5.5.

• Horizontal Detection: Assume that the number of messages in the
current connection after the connection state update is n. Honey-
comb then attempts pattern detection on the nth messages of all cur-
rently stored connections with the same destination port at the hon-
eypot by applying the LCR algorithm to the payload strings directly.

• Vertical Detection: Honeycomb also concatenates incoming messages
of an individual connection up to a configurable maximum num-
ber of bytes and feeds the concatenated messages of two different
connections to the LCR algorithm. The point here is that horizontal
detection will fail to extract meaningful messages from interactive
sessions like Telnet and thus won’t be able to detect meaningful flow
commonalities, whereas vertical detection will still work. Further-
more, vertical detection is also guaranteed to mask directional TCP
dynamics, since the concatenation effectively recovers the reassem-
bled streams per direction.
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Figure 5.4. Horizontal pattern detection: two messages at the same depth
into the stream are passed as input to the LCR algorithm for detection.

In either case, if a common substring is found that exceeds a configurable
minimum length, the substring is added to the signature as a new payload
byte pattern.

Signature Lifecycle5.3.1.5

If the signature record contains no facts at this point, processing of the
current packet ends. Otherwise, Honeycomb checks hows the signature
can be used to improve the signature pool, which represents the recent
history of detected signatures.

The signature pool is implemented as a queue with configurable maxi-
mum size; once more signatures are detected than can be stored in the
pool, old ones are dropped. Dropped signatures are not lost, since the
contents of the signature pool are reported in regular intervals (see Sec-
tion 5.3.1.6).

Honeycomb tries to reduce the number of reported signatures as much as
possible by performing signature aggregation. I have defined two relational
operators for the generated signatures for this purpose:

• sig1 = sig2: signature identity. This operator evaluates to true when
sig1 and sig2 match in all attributes except those which can be ex-
pressed as lists in resulting signatures (e.g., ephemeral source port
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Figure 5.5. Vertical pattern detection: for both connections, several incoming
messages are concatenated into one string and then passed as input to the
LCR algorithm for detection.

numbers). An example would be a simple SYN portscan that is not
IP source spoofed: the incoming packets share common source IP
addresses and TCP SYN flags, but the destination ports vary.

• sig1 ⊂ sig2: signature sig1 defines only a subset of sig2’s facts. This
particularly includes any payload patterns detected by the LCR al-
gorithm: A byte sequence b1 is considered weaker than b2 when b1 is
a substring of b2.

If a new signature is a superset of an existing one, the new signature im-
proves the old one, otherwise the new signature is added to the pool as a
new entry.
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Signature Output5.3.1.6

The contents of the signature pool are periodically reported to an output
module which implements the actual logging of the signature records. At
the moment, there are modules that convert the signature records into Bro
or pseudo-Snort format,3 and a module that dumps the signature strings
to a file.

The periodic reporting scheme is an easy way to make sure all signatures
are reported while in the signature pool and also allows for tracking of the
evolution of signature records through the signature identifier in a post-
processing stage.

Evaluation5.3.2
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Figure 5.6. Distribution of TCP and UDP traffic destination ports in packets
directed at the honeypot, as observed in the 24 hours.

The implementation consists of roughly 9000 lines of C code, with about
3000 lines for the libstree library. I tested system on an unfiltered cable
modem connection in three consecutive sessions, covering a total period
of three days. I was particularly interested in the traffic patterns and sig-
natures created for a typical home-user connection, which can be assumed
to be often only weakly protected, if at all. Furthermore, a larger honeynet
that would potentially see higher traffic volumes was unavailable at the
time.

3Honeycomb requires the ability to define a list of non-contiguous ports, and Snort’s
signature language currently does not permit this.
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Traffic Characteristics5.3.2.1

During the 24-hour period, honeyd captured 224 KB of traffic, comprising
557 TCP connections, 145 UDP connections and 27 ICMP pings. Figure 5.6
shows the distribution of the ports requested at the honeypot, in terms of
numbers of connections.

Signature Detection5.3.2.2

Honeycomb created 38 signatures for hosts that just probed common ports.
25 signatures were created containing flow content strings. These are rel-
atively long; on average they contain 136 bytes. The longest strings are
those describing worms: Honeycomb managed to create precise signa-
tures for the Slammer and CodeRed II worms, see Figures 5.7 and 5.8.
Note that these are the overlaps after 6 hits of Slammer and 3 CodeRed II
hits, so they are not just accidental long matches between single pairs of
flows, and are thus more reliable than a match found in only two flows.
Also, Honeycomb did not report the typical HTTP GET string for CodeRed
II; rather, it reported the longer string of bytes following afterwards.
alert udp any any -> 192.168.169.2/32 1434 (msg: "Honeycomb Fri Jul 18 11h46m33 2003 "; content: "|04 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 DC C9 B0|B|EB 0E 01 01 01 01 01 01 01|p|AE|B |01|p|AE|B|90 90 90 90 90 90 90 90|h
|DC C9 B0|B|B8 01 01 01 01|1|C9 B1 18|P|E2 FD|5 |01 01 01 05|P|89 E5|Qh.dllhel32hkernQhounthickChGetTf|B9|llQh32.dhws2_f
|B9|etQhsockf|B9|toQhsend|BE 18 10 AE|B|8D|E|D4|P|FF 16|P|8D|E|E0|P|8D|E|F0|P|FF 16|P|BE 10 10 AE|B|8B 1E 8B 03|=U
|8B EC|Qt|05 BE 1C 10 AE|B|FF 16 FF D0|1|C9|QQP|81 F1 03 01 04 9B 81 F1 01 01 01 01|Q|8D|E|CC|P|8B|E|C0|P|FF 16|j|11|
j|02|j|02 FF D0|P|8D|E|C4|P|8B|E|C0|P|FF 16 89 C6 09 DB 81 F3|<a|D9 FF 8B|E|B4 8D 0C|@|8D 14 88 C1 E2 04 01 C2 C1 E2 08|
)|C2 8D 04 90 01 D8 89|E|B4|j|10 8D|E|B0|P1|C9|Qf|81 F1|x|01|Q|8D|E|03|P|8B|E|AC|P|FF D6 EB|"; )

Figure 5.7. Signature Honeycomb created for the Slammer Worm.

alert tcp 80.0.0.0/8 any -> 192.168.169.2/32 80 (msg: "Honeycomb Mon May 5 16h59m09 2003 "; flags: A; flow: established;
content: "u|08 81|˜0|9A 02 00 00 0F 84 C4 00 00 00 C7|F0|9A 02 00 00 E8 0A 00 00 00|CodeRedII|00 8B 1C|$|FF|U|D8|f|0B C0
0F 95 85|8|FE FF FF C7 85|P|FE FF FF 01 00 00 00|j|00 8D 85|P|FE FF FF|P|8D 85|8|FE FF FF|P|8B|E|08 FF|p|08 FF 90 84 00
00 00 80 BD|8|FE FF FF 01|thS|FF|U|D4 FF|U|EC 01|E|84|i|BD|T|FE FF FF|,|01 00 00 81 C7|,|01 00 00 E8 D2 04 00 00 F7 D0
0F AF C7 89|F4|8D|E|88|Pj|00 FF|u|08 E8 05 00 00 00 E9 01 FF FF FF|j|00|j|00 FF|U|F0|P|FF|U|D0|Ou|D2 E8|;|05 00 00|i|BD|
T|FE FF FF 00|\&|05 81 C7 00|\&|05|W|FF|U|E8|j|00|j|16 FF|U|8C|j|FF FF|U|E8 EB F9 8B|F4)E|84|jd|FF|U|E8 8D 85|<|FE FF FF|
P|FF|U|C0 0F B7 85|<|FE FF FF|=|88 88 00 00|s|CF 0F B7 85|>|FE FF FF 83 F8 0A|s|C3|f|C7 85|p|FF FF FF 02 00|f|C7 85|r
|FF FF FF 00|P|E8|d|04 00 00 89 9D|t|FF FF FF|j|00|j|01|j|02 FF|U|B8 83 F8 FF|t|F2 89|E|80|j|01|Th˜f|04 80 FF|u|80 FF|U
|A4|Yj|10 8D 85|p|FF FF FF|P|FF|u|80 FF|U|B0 BB 01 00 00 00 0B C0|tK3|DB FF|U|94|=3’|00 00|u?|C7 85|h|FF FF FF 0A 00 00
00 C7 85|l|FF FF FF 00 00 00 00 C7 85|‘|FF FF FF 01 00 00 00 8B|E|80 89 85|d|FF FF FF 8D 85|h|FF FF FF|Pj|00 8D 85|‘|FF
FF FF|Pj|00|j|01 FF|U|A0 93|j|00|Th˜f|04 80 FF|u|80 FF|U|A4|Y|83 FB 01|u1|E8 00 00 00 00|X-|D3 03 00 00|j|00|h|EA 0E 00
00|P|FF|u|80 FF|U|AC|=|EA 0E 00 00|u|11|j|00|j|01 8D 85|\|FE FF FF|P|FF|u|80 FF|U|A8 FF|u|80 FF|U|B4 E9 E7 FE FF FF BB
00 00 DF|w|81 C3 00 00 01 00 81 FB 00 00 00|xu|05 BB 00 00 F0 BF|‘|E8 0E 00 00 00 8B|d$|08|dg|8F|"; )

Figure 5.8. Signature Honeycomb created for the CodeRed II Worm.

Performance Overhead5.3.2.3

I measured the performance overhead involved when running Honey-
comb compared to normal honeyd operation; the results are displayed in
Figure 5.9.

99



5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1
Honeycomb Performance Overhead

Received Packets

Pr
oc

es
sin

g 
Ti

m
e 

(s
)

Honeycomb
Honeyd alone

Figure 5.9. Performance overhead when running Honeycomb. The packet
processing times are almost entirely dominated by Honeycomb, so the
honeyd part is hardly visible.

Discussion5.3.3

Honeycomb was one of the first if not the first system to use honeypots
for automating the network-based analysis of attacks as they occur. Many
lessons have been learned since its conception, both about the way Hon-
eycomb does things as well as about the things Honeycomb did not yet
address.

Evasion of Signature Generation Algorithm5.3.3.1

The choice of LCR computation for signature generation is likely a bad
one. Assuming sufficient freedom in flow content, all an attacker has to
do to evade detection of valuable attack-relevant strings is to place a de-
coy string of length greater than the attack-relevant ones into the flows,
and the LCR computation will not return the desired result. However,
as pointed out in Section 3.6.2, LCS algorithms such as Smith-Waterman
and Jacobson-Vo, while more appropriate, also need to be used with care.
A solid fallback if the performance of Smith-Waterman is sufficient is the
use of an ACS-computing variant of Smith-Waterman. It is guaranteed
to highlight all common substrings between any pair of flows and thus
feeds the maximum amount of and most consistent combination of com-
mon substrings into the signature generator.

Note however that given the high length of the common substrings re-
ported by the LCR algorithm, it is quite unlikely that sequences of com-
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mon substrings computed via some other means than LCR would have
omitted the ones reported by LCR. At most, those algorithms would have
reported additional common substrings, some of which may not be desir-
able, as I will discuss next.

Leveraging Application-Layer Protocol Knowledge5.3.3.2

The protocol-agnostic approach employed by Honeycomb is clearly ben-
eficial. Having to encode protocol knowledge would at the very least be
tedious (if the protocol specification if known) and in the worst case be
impossible (in case the workings of a protocol are unknown). However,
the ability to use protocol-specific knowledge without understanding of a
protocol’s exact operation would be highly beneficial to solve the problem
of mistaking highly frequent protocol-intrinsic strings for malicious con-
tent. The goal here is to automate the discovery of such substrings and
treat them accordingly. Such automated whitelisting of protocol-intrinsic automated

substring
whitelistingsubstring could very likely be provided by the CSGs as presented in Sec-

tion 4.3 or, since the full flexibility of CSGs is likely not necessary, a simpli-
fied version thereof. Note that the goal is generally not going to be to drop
such protocol-intrinsic strings altogether, but rather to recognise when sig-
natures would be constructed that consist of nothing but such substrings.

Signature Distillation5.3.3.3

Honeycomb has no signature postprocessing stage taking over once sig-
natures are logged to the output file. Indeed, one of the most common
complaints I have received by other users since Honeycomb’s source code
has been available is that it produces too many signatures. Solid signature
distillation, that is, the on-line recognition of redundantly generated sig-
natures and partial commonalities among sets of generated signatures is
a component missing from all systems proposed in the literature to date.
Some systems do not consider live operation at all and satisfy themselves
with operating on fixed malicious and benign flow pools, though the the
main research goal of such systems is the analysis of specific properties of
the signature generators, such as false positive rates [94].

It is worth noting that to the best of my knowledge, no other system ex-
cept Honeycomb has combined protocol header analysis with flow con-
tent analysis in the signature generation process. I believe that protocol
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header analysis remains valuable since scripted attack tools often exhibit
idiosyncrasies in the traffic they generate; these idiosyncrasies stand a
good chance of being picked up by the header analysis.

Performance5.3.3.4

The runtime performance evaluation of Honeycomb is preliminary. In
my experiments with sequence alignment algorithms in general and flow
pools in context of the CSG work in Chapter 4 I have found that it is
rarely the runtime requirements of sequence alignment algorithms per se
that cause performance bottlenecks, but rather the state-keeping context
in which they are applied. For example, while it might be prohibitively
slow to run a given algorithm on all pairwise combinations of a new flow
message and the corresponding ones in a flow pool, it might very well be
feasible to perform the computation on just those message pairs that have
the greatest potential to yield substantial common substrings. It is a topic
of future work to devise flow pooling and scanning strategies that clev-
erly use knowledge of the content of flows contained in a pool to reduce
the amount of work required.

Automatic Signature Enforcement5.3.3.5

The Holy Grail of automated signature generators is fast distribution and
automated enforcement of generated signatures, for example to contain
a worm epidemic in its early stages. Such a degree of automation has
only been discussed theoretically to date, for example by Moore et al.
[109] and Weaver and Paxson [165]. It is generally assumed that auto-
mated containment will be difficult to achieve, not only due to the tight
timescales required, but also the ideal pervasiveness of the enforcement
architecture and the issues of large-scale collaboration, trust issues, etc. It
is worth pointing out that automatic signature creation for the purpose of
containing an expanding epidemic is different from accumulating exploit-
specific signatures in general: in the former case, generated signatures
would serve as an aid in an emergency situation but may not be meant
as a long-term solution, much like the interim relief character proposed by
Wang et al. [161].

Nevertheless, an automated signature creator that captures the “Zeitgeist”
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of current malicious activity on the Internet, in the spirit of dshield.org4

would be highly beneficial to many institutions. On the other hand, the
existence of an automated containment infrastructure would open up in-
teresting new questions. For example, given such an infrastructure, the
faster malware spreads, the more obvious its activity will be and thus the
quicker it will be battled by the containment system. It might thus become
more important for malware to operate stealthily to avoid early detection.

Detection and Evasion of Honeypot Architectures5.3.3.6

It can be expected that in the foreseeable future only a comparatively small
number of institutions will be running large-scale honeyfarms monitor-
ing substantial ranges of the IP address space. This opens up the ques-
tion of when or whether attackers are taking active steps to evade such
honeynets [15]. While currently the likely truth is that attackers do not
feel sufficiently threatened by the existing monitoring infrastructures, this
might well change in the future. The problem is that big honeyfarms are
not agile, that is, their address ranges cannot easily be changed. A po-
tential alternative is to “outsource” the collection of unwanted traffic to
large numbers of willing participants: by running a tunnelling daemon
on such machines that forwards traffic arriving on participating end hosts
on ports that are closed (e.g., via GRE), the breadth of vision of a hon-
eyfarm could potentially be extended significantly. On the other hand,
such a move causes incentive for the attackers to launch large-scale chaff
attacks that feed garbage into the monitoring system. Furthermore, sim-
ilarly to current malware being able to disable antivirus software upon
machine compromise, the malware might learn to disable such tunnelling
daemons. Hardware-based virtualisation techniques [37, 76] could solve
this problem by sufficiently protecting the integrity of the tunnelling dae-
mon.

Honeypots are also lacking agility in another sense: they can only serve
information about exploits for which they serve the matching vulnerabil-
ities. With most software packages receiving updates and patches on a
regular basis, it can become a management challenge to provide relevant
attack surfaces.

4http://www.dshield.org
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Curtailing Malicious Traffic with Packet Symmetry5.4

I now move on to an entirely different approach to fingerprinting malice,
using the structure of network traffic at a much lower level in the network
model. I here present the work I contributed to a collaboration with An-
drew Warfield, Jon Crowcroft, and Steven Hand [86].

Packet Asymmetry as a Badness Oracle5.4.1

The idea of this work is to leverage packet dynamics as a classifier for
identifying badness: by monitoring the symmetry ratio of the number of
outgoing packets to the number of received ones, one obtains a simple yet
flexible detector that allows the gradual throttling of sources ranging from
individual hosts to larger aggregates proportionally to the asymmetry ex-
hibited by the traffic they generate. A high degree of packet symmetry em-
beds the notion of mutual consent within a protocol, allowing the receiver
to implicitly throttle a sender simply by not replying. The next step is to implicit receiver

signallingenforce symmetry on network transmissions at the edge: a simple enforce-
ment mechanism may be placed in NICs or access providers’ line cards, to
delay or drop packets that result in strongly asymmetric communications.
This edge-near placement makes implementation easy, ensures a clear no-
tion of packet provenance, and cannot be compromised by application or
OS exploits on the end-host.

More formally, I define an asymmetry metric S based on the number of
transmitted packets tx and received ones rx as follows:

S = loge

(
tx + 1
rx + 1

)
This metric produces negative values when rx outweighs tx, positive val-
ues when tx outweighs rx, and zero in the case of perfectly balanced traf-
fic. The absolute value of S measures the magnitude of the asymmetry.
This metric has been carefully chosen for analysis: it allows an unbiased
means of evaluating traffic, centred around zero, and compresses wildly
asymmetric traffic ratios into a tractable range. An initial concern was the
question whether this metric would be sufficiently sensitive. Both mea-
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surement and initial implementation have confirmed that it is indeed very
useful to work with.

Given a network vantage point, the value of S may be calculated over
traffic at some granularity (e.g. per-host, per-host-pair, per-flow) and over
a window of time. One may then take action against traffic that exceeds
some threshold value of S. There are a number of design decisions in this
approach that should be mentioned explicitly:

• Measure packets, not bytes. Rather than comparing bytes transmit-
ted in each direction, we simply count packets. With no knowledge
of the internals of the data being sent, packets are much more likely
to indicate the message structure that exists within a given protocol.
Moreover, the implicit signalling to receive more data may be as sim-
ple as a TCP ACK, for which byte counts are considerably less useful
than packets.

• Measure and limit close to the transmitter. The outcome of the ap-
proach we advocate is that the policy of implicit signalling is en-
forced end-to-end: Receivers are responsible for generating suffi-
cient backpressure on a channel to allow the transmitter to continue
sending. Monitoring and enforcement, however, are performed with-
in the network just outside the reach of the transmitting software
(e.g. on a smart NIC). There are many reasons for this placement:
First, we may clearly establish packet provenance, eliminating the
need for traceback [142, 143, 168] or pushback [77, 120]. Second, we
eliminate all potential damage done to interior links as well as the
target endpoint. Third, we minimise the aggregate amount of state
that must be tracked, allowing a simpler implementation. And fi-
nally, by mandating that placement be near, but not within the trans-
mitter’s software stack, we are robust against exploits which circum-
vent the OS.

• Delay, then drop. Unlike traditional IP congestion control, we opt to
delay, rather than to drop packets. As asymmetry increases beyond a
selected threshold, we introduce an increasing delay to the transmis-
sion of a queued packet. The intention is to be friendly to protocol
congestion control approaches by more gently throttling transmitted
packets. Where our approach is implemented in a smart NIC, queue-
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ing may be completely deferred to the OS. In a non-local device, for
instance in an ISP, we anticipate queueing some number of packets
for delayed transmission, and then beginning to drop.

In the remainder of this section I analyse a large trace of Internet traffic
to establish how the packet symmetry assumption applies in general. The
Hotnets paper [86] presents a prototypical system showing how asymme-
try restrictions can be enforced to curtail malicious senders.

Traffic Analysis5.4.2

In order to determine what sorts of traffic might be considered ‘well-be-
haved’, I performed a traffic analysis on a 24 hour packet trace collected
at a non-university research institution. The trace captured every packet
on the full-duplex Gigabit Ethernet link which connected the institution
to the Internet. The trace contains over 573 million packets to/from over
170,000 IP addresses and totalling over 250 gigabytes of data — see Moore
and Papagiannaki [104] and our 2003 PAM paper [105] for more details on
the trace characteristics and the monitoring infrastructure used.

I have examined the degree of symmetry present in the trace data at sev-
eral granularities: all traffic from each source host; traffic between host
pairs; and finally per-flow traffic. The aim of this analysis has been to de-
termine to what degree our symmetry metric can be used to distinguish
well-behaved traffic, and how much state it might be useful to maintain in
order to achieve this.

Host Packet Symmetry5.4.2.1

I first examined symmetry from the point of view of each of the 170,000
individual hosts in the trace. I calculated S for all packets relating to that
host at a variety of time scales, from one second up to one day. The inten-
tion of this measurement was (i) to characterise the ranges of symmetries
that are exhibited within the trace, and (ii) to determine the timescales at
which it is appropriate to consider symmetry. The results are shown in
Figure 5.10.

Regardless of the time-scale over which S is measured, the vast majority
of hosts exhibit strongly symmetric traffic (|S| ≤ 2.0). The left-hand tails
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depict hosts where a considerably larger number of packets were received
than transmitted, while the right-hand tails show the opposite. The small-
est time-scale (one second) most clearly separates symmetric and asym-
metric hosts. Note that the plots for one hour and 24 hour windows com-
pletely overlap.

Host-Pair Packet Symmetry5.4.2.2

Next I investigated the level of symmetry observed between the unique
pairs of hosts in the trace. I carried this out for the approximately 320,000
pairs in which both source and destination send packets and use a time-
scale of 1 minute to calculate S. Figure 5.11 shows the cumulative dis-
tribution of S for all host pairs that exchanged packets in both directions
during our observation period. Almost all host pairs maintain extremely
strong symmetry in their communications (|S| ≤ 1.0), while very few are
significantly skewed towards the receiving side (bottom 1%) or the trans-
mitting side (top 3%). I also measured S for a further 6.8 million host pairs
in which only the source sends any packets. This clearly undesired traf-
fic demonstrated symmetry values ranging from 0.69–10.5, although with
99.9% less than 2.0, as is shown in Figure 5.12.

Flow Symmetry5.4.2.3

To investigate the symmetry of traffic within individual flows, I chose to
examine separately the sets of TCP and UDP flows within the trace. For in-
creased precision, I calculated symmetry values every second. Figure 5.13
shows the cumulative distribution of the maximum value of S for the TCP
flows in the trace. The use of acknowledgement packets in TCP imposes
a degree of symmetry on all flows in the trace; virtually all TCP flows ex-
hibit asymmetry ≤ 1.5 — a ratio of about 4.5 packets to one. Examining
the outlying TCP flows reveals a small number of misbehaving (or at least
irregularly behaving) flows. Considering UDP flows, Figure 5.14 shows
a much broader range of symmetry values. Further examination of the
outlying UDP flows reveals a great deal of misconfigured DNS traffic and
a considerable number of malicious flows; all of these packets are clearly
supposed to be subjected to throttling.

In both sets of flow measurements I examined the effect of ignoring pack-
ets at the beginning of the flow to reduce any transient asymmetry present
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Figure 5.10. Host Symmetry
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Figure 5.11. Host-Pair Symmetry (rx > 0)
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Figure 5.12. Host-Pair Symmetry (rx = 0)
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Figure 5.13. Maximum per-flow asymmetry (TCP flows of length > 100)
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Figure 5.14. Maximum per-flow asymmetry (UDP flows of length > 100)

with low packet counts. Both of the flow-granularity CDFs use only flows
from the trace with an excess of 100 packets, and demonstrate that a smooth-
ing effect may be obtained in this manner.

In summary, the analysis shows that packet-level symmetry shows good
promise as a classifier between well-behaved and malicious traffic. Fur-
thermore, monitoring per-flow symmetry did not indicate fundamentally

109



5.4. CURTAILING MALICIOUS TRAFFIC WITH PACKET SYMMETRY

different properties than did host-pair granularity, leading to the belief
that the latter is a good starting point for future investigations.

Discussion5.4.3

Incentives for deployment5.4.3.1

In general, deployment of symmetry enforcement faces an asymmetric in-
centive problem somewhat reminiscent of the deployment of ingress filter-
ing [62] or the extinction of open SMTP servers or recursive DNS servers.
Note however that in many cases there is immediate benefit to sites em-
ploying a symmetry shaper. As one example, consider today’s server
farms, providing enormous CPU and bandwidth resources to essentially
anyone, often leaving the site operators in the first line of responsibility in
case of abuse. Here, deployment of symmetry enforcement is of immedi-
ate value.

Evasion5.4.3.2

There is some potential for attackers to evade the mechanism by tricking
it into incorrectly allowing sources to keep sending substantial amounts
of undesired traffic. The degree to which this can be avoided depends
on the amount of state being used and whether or not source addresses
are assumed to be spoofable. In the following, assume host-pair symme-
try tracking. The required amount of state should be manageable com-
paratively easily, particularly given deployment close to the edge, while
allowing symmetry enforcement to be protocol-agnostic.

Without help from the outside, individual hosts can only dilute their asym-
metric traffic by ensuring a large fraction of symmetric traffic. This is
clearly a minor concern. A first distributed strategy is to “fly under the
radar” individually, that is, to keep the abusive traffic to a small amount
per node, but use substantial amounts of nodes for the attack, i.e., to lever-
age a botnet. Attackers could, for instance, use a pulsing attack where all
nodes attempt to blast away as much traffic as possible, then fall quiet and
just as the throttling mechanism permits new transmissions, blast away
again. A suitably sensitive delay mechanism would only permit such
blasts for a very brief period, as shown by the short time to disruption
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of UDP floods in the paper [86].

Another strategy is collusion: during a DDoS attack, the attacker uses the
nodes of a botnet to send spoofed cross-traffic amongst its members in
order to fool the members’ symmetry monitors into thinking that the vic-
tim is returning substantial amounts of packets. The feasibility of this ap-
proach depends on the following:

• Source address spoofing. As network ingress filtering becomes more
pervasive, this will become increasingly hard. Note that the symme-
try enforcement mechanism, if widely deployed, would be an ideal
opportunity to enforce widespread deployment of ingress filtering.

• Randomisation of IP ID values by the victim. Without this feature,
a significant number of colluding nodes have to be informed about
the ID value, estimate the IP IDs of the forged packets, and do this
quickly enough so forged packets are labelled accurately and arrive
in a reasonable sequence.

• TTL estimation. Every bot needs to discover by itself the correct TTL
value that matches the TTL of the actual victim’s reply packets as
they arrive at the attacking bot that is colluded with.

While better defence against spoofing-based collusion is conceivable, the
IP ID and TTL combination should be difficult enough to overcome for
the period until symmetry enforcement is deployed widely. Once that is
the case, pervasive enforcement and ingress filtering allow the attacker at
best fragile layered asymmetry exploitation to achieve limited amounts
of gain in abusive traffic. Furthermore, the approach to reducing botnet
effectiveness is aided by an increasing array of other mechanisms highly
compatible with symmetry enforcement, such as rigorous checking of re-
verse path forwarding at the ingress point [10].

Related Work5.5

The search for a reliable way to identify malicious packets on the Internet
is almost as old as the Internet itself and has been iconified humorously by
the suggestion of an Evil Bit that would, for some definition of evilness,
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unambiguously flag individual packets as either benign or evil [14]. Much
work has been done over the years to work towards an Evil Bit equiva-
lent, and I now survey the subset relevant for the structural and statistical
approaches presented in this chapter.

Honeypot Architectures5.5.1

The idea of using honeypots for luring attackers into systems under close
surveillance is rather old and predates the invention of the term “honey-
pot” to express this purpose by decades. Stoll’s book [150], dating from
1986, reports on an elaborate hunt for attackers that involved honeypot
equivalents. Cheswick’s report on his evening with Berferd is another
classic tale of honeypot use [36]. Provos introduced honeyd [124], the ba-
sis for Honeycomb and an excellent tool for experimenting with attacker
interaction at medium levels of abstraction. Spitzner’s book [146] surveys
the honeypot landscape as of 2003. The Honeynet Project [90] aims to de-
velop easily deployable honeypot infrastructures and increasingly focuses
on distributed data management and analysis. The project also establishes
much dominant terminology. Currently, honeypots serve as a primary tool
in the investigation of botnet command and control channels [74, 42]. In
the context of this line of work, one of Honeycomb’s novelties was the
automation of deriving conclusions from observations in honeypot envi-
ronments.

A central component of honeypots is the monitoring of IP address space
that is not in production use. Much work dedicates itself to the analysis of
just the traffic found on such “dark” address ranges. The primary variable dark address

spacein the literature is the degree to which monitoring systems respond to traf-
fic hitting dark address ranges. The most basic approach is to not respond
at all and satisfy oneself with measuring characteristics of the traffic ob-
served. Moore introduced the term “network telescope” for this class of network

telescopemonitors [106, 107], and Pang et al. [116] borrowed from physics the term
“background radiation” for the traffic observed on such telescopes. Moore background

radiation,
backscatteret al. [108] analyse part of the background radiation, namely the backscat-

ter caused by victimised hosts as they respond to spoofed source pack-
ets, to infer denial-of-service activity. Only slightly more responsive, the
Internet Motion Sensor [9] provides the minimum response traffic neces-
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sary to enable bidirectional communication while focusing on distributed
monitoring, while iSink [169] could be termed a misnomer since it does
not just absorb traffic but instead provides more targeted yet canned re-
sponses for a selection of relevant protocols. Higher still on the interac-
tivity meter rank large-scale honeyfarms, server farms consisting entirely honeyfarm

of high-interaction honeypots, which focus on the data management of
deeply virtualised environments monitoring IP address ranges of several
hundreds of thousands of addresses [159].

Automated Signature Generation5.5.2

Since Honeycomb, much work on signature generators for malicious traf-
fic has been done. None of these systems are operating publically or pro-
viding source code. It is worth noting that Honeycomb was not the first
system proposed in the literature to attempt automated malware signature
creation. To the best of my knowledge, Kephart and Arnold [82] created
the first such system by exposing “goat files” — the file system equivalent goat files

of a honeypot — to viruses to study patterns emerging after repeated in-
fections. However, to the best of my knowledge, Honeycomb was the first
system to suggest the use of honeypots as a malice oracle for this purpose.
Another early piece of work is SigSniffer [70], whose authors suggested
the use of Bayesian inference to recommend probable signatures to an an-
alyst, comparing traffic generated by known attack tools to normal one.

Singh et al. [140] proposed a system called EarlyBird for automated worm
fingerprinting. The system uses Rabin fingerprints and manual whitelist-
ing to identify frequent individual common strings without positional ac- content sifting

curacy, focusing on the challenges of on-line operation of a single monitor.
Simultaneously to EarlyBird, Kim and Karp [83] introduced Autograph.
Both systems have a number of parallels. Like EarlyBird, Autograph uses
Rabin fingerprints to identify prevalent content. Unlike EarlyBird, Auto-
graph uses benign and malicious flow pools and scanning activity as a
badness oracle. Similarly to Honeycomb, signature generation is initiated
explicitly every n minutes. The authors also discuss a distributed compo-
nent for sharing monitoring information. Interestingly, it communicates
only badness oracle information and not generated signature components.

With Polygraph [114], Kim and Karp improved the quality of generated
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signatures. Instead of individual frequent substrings, LCSs are computed
using Smith-Waterman. While the generated signatures make no use of
positional information of the common substrings, the goal of the system
is to produce signatures that can fingerprint the invariant bits of polymor-
phic exploits. Beyond subsequence-based signatures they also introduce
Bayes signatures, which probabilistically classify flows according to their
likelihood of being malicious given the token set they exhibit. The sam-
ple signatures the authors give illustrate the problem of Smith-Waterman
identifying protocol-intrinsic signatures alongside exploit-specific ones.
The authors propose manual whitelisting to overcome this hurdle.

Instead of trying to stay protocol-agnostic to enable uniform treatment of
a wide range of traffic, Nemean [170] embraces the opposite and favours
semantic awareness of the protocols it analyses. While this permits the
attribution of different value to commonalities at different points in the
flows, the obvious disadvantage of this approach is the fact that only sup-
ported protocols can be processed. The system is comparatively complex
to the point of using machine learning techniques and heuristic search al-
gorithms, partially due to the fact that it attempts to produce signatures
at the session level as well. The Hamsa system by Li et al. [94] focuses
on guaranteeing bounds on the numbers of false positives produced by
generated signatures. The proposed system is otherwise highly similar to
Polygraph. Hamsa assumes the existence of classifiers separating flows
into benign and malicious flow pools, and bases its evaluation on a single
set of flow pools with static content.

Tang and Chen [153] use byte product distributions similar to the ones de-
scribed in Section 4.4.4 used for protocol classification. They let product
distributions take the role of common substrings, arguing that the prod-
uct distributions will better capture changes in polymorphic exploits. The
method grows complex, employing both simulated annealing and an EM
algorithm to compute the signature. Furthermore, since there is little rea-
son why a polymorphic engine is restricted to mutations of similar byte
distribution, it remains to be seen whether this approach is actually supe-
rior to common subsequences.

Some effort has been made to formalise the treatment of the roles played
by different parts of network flows carrying exploits. Crandall et al. [44]
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distinguish between the exploit vector itself, irrelevant control data, and
the remaining payload. Beyond making the distinction between these
parts explicit, there seems to be little added value in formalisation at this
level, though it could help to establish common nomenclature.

Another line of work attempts host-based signature creation instead of
the network-based approaches cited above. An immediate benefit of this
approach is the irrelevance of the network-based presentation of an ex-
ploit. On the other hand, the signatures are less generally deployable and
require equally host-based enforcement. The underlying idea of these ap-
proaches is taint tracking, i.e., the tracking of data read from the network taint tracking

through the execution of the monitored application [43, 113]. Liang and
Sekar [95] attempt to generate vulnerability-specific signatures by analysing
the memory images of corrupted C/C++ programs. Brumley et al. [20]
generalise the approach and investigate the properties required of signa-
tures to be vulnerability-specific more methodically.

Detection and Mitigation of Volume-based Attacks5.5.3

A problem related to detection of volume-based attacks is the detection
of ongoing changes in traffic volume caused not necessarily by denial-of-
service attacks but possibly also other heavy hitters such as flash crowds, heavy hitters

utilisation surges due to hardware failures, etc. A number of methods
have been suggested for detecting such phenomena. One avenue inspired
by work in the database community uses streaming algorithms, in which a streaming

algorithmsdata model is continuously updated incrementally by each new datapoint
observed. [87] adapt a probabilistic summary and forecasting technique
known as sketches [35] for this purpose. Schweller et al. [136] extend the sketches

approach to be reversible and allow the lookup of individual key values to
identify culprits. Another approach is again the use of Bloom filters [89].
I previously mentioned them in context of detecting common content in
4. The benefit of these approaches is their suitability for non-edge de-
ployments, however in contrast to packet symmetry they are not imme-
diately useful for intervention. Section 5.5.1 already mentioned another
strategy for detection, namely the detection of backscatter in network tele-
scopes [108]. Gil and Poleto [67] described MULTOPS, a router design that
used an approach similar to packet symmetry; their work is focused more
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on practical router data structures than on traffic analysis.

Volume-based attack mitigation and prevention has also undergone a con-
siderable amount of research. Mitigation strategies revolve around iden-
tifying attack signatures, generally at the network level, and pushing fil-
tering/tracing information back into the core, closer to the many attack

traceback,pushbacksources [77, 120, 131, 144, 142, 143, 168]. These approaches are generally
reactive and quite complex, and require updates to the Internet core. Pre-
ventive measures have focused on enabling the destination to control the
sources’ capability to communicate with the destination at all [5]. Packet capabilities

symmetry is again a vastly simpler approach, though capabilities have the
potential to address a wide range of attacks depending on the capability
hand-out policies implemented. However, capabilities have been shown
to be very hard to implement without rendering the capability-issuing
channel susceptible to denial of service itself [7]. A radical idea posing
many questions is the idea of asking legitimate clients to “compete” with
the attackers [160].

The work perhaps most closely related to packet-level symmetry is the
D-WARD proposal [102] and the MANAnet Reverse Firewall [46]. Both
propose throttling attack traffic close to the source, although they focus on
byte- rather than packet-level metrics, and use more involved algorithms
requiring additional state and computation. Moreover, the packet symme-
try approach does not require access to payload content.

Summary5.6

This chapter has introduced novel approaches for fingerprinting the two
dominant kinds of malicious activity present on the Internet to date: ma-
licious content of individual network flows on the one side, and abusive
volumes of traffic as used in denial-of-service attacks on the other. I intro-
duced the idea of using honeypots not just for satisfying the observer’s
curiosity but for automated analysis of attacks as they occur, and pre-
sented automated content-based signature generation as an example of
such an application. The prototype I have developed operates at both the
protocol header and payload content levels and generates such signatures
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by applying sequence alignment algorithms as presented in Chapter 3 to
pairs of network flows. My experiments show that the system can gen-
erate highly accurate fingerprints of previously unknown types of attacks
in a fully automated fashion. I then changed the focus to packet-level
analysis and volume-based attacks, and introduced the notion of packet
symmetry as a way to fingerprint and enforce benign behaviour at the
network edge. By preventing end systems from transmitting drastically
more packets than they receive, a wide range of denial-of-service attacks
can be prevented. I have introduced a simple metric to measure this sym-
metry and have demonstrated through trace-based analysis of real-world
network traffic that such enforcement is highly unlikely to affect legitimate
applications.
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6
Conclusion

“That was not flying, that was falling in style.”
— Woody in Toy Story II.

Nearing the end of the dissertation, I can now confirm the thesis stated in
the Introduction:

Network traffic exhibits structural properties which, given suitable fil-
tering and vantage points, permit fully automated derivation of finger-
prints of previously unknown network applications and attacks. The
generated fingerprints enable accurate detection as well as filtering of
such network activity.

In this dissertation I have examined structural properties of network traffic
at two levels of abstraction: application-layer flow content, and packet-
level transmission statistics. I discuss them in turn.

In Chapter 3 I discussed sequence alignment algorithms and their appli-
cability to network traffic, including the consequences of the adversarial
network security environment. The algorithms I presented extract com-
monalities among sets of network flows in a number of ways with differ-
ent degrees of flexibility and performance. I introduced a novel variant
of the Jacobson-Vo algorithm that allows flexible selection of LCSs, bor-
rowing dynamic programming concepts from Smith-Waterman. In my
experiments it outperformed Smith-Waterman by a factor of 33 on aver-
age and 58.5 in the best case. I then demonstrated the suitability of se-
quence alignment algorithms for fingerprinting the application-layer pro-
tocols in Chapter 4: I introduced Common Substring Graphs (CSGs) as
a means of fingerprinting application-layer protocols and demonstrated
their flexibility through the use in a fully unsupervised framework for
application-layer protocol classification, where they provided the best bal-
ance between flexibility and accuracy when compared to two other proto-
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col models. In Section 5.3 I leveraged an observation about traffic intent:
by focusing the monitoring on machines attached to unused IP address
space, so-called honeypots, the likelihood of observing malicious traffic is
increased dramatically, and I have demonstrated in an experimental pro-
totype the feasibility of extracting content-based malware signatures from
such traffic without the need for human intervention.

In Section 5.4 I investigated a second structural property: the ratio of trans-
mitted to received packets, packet symmetry, measured at the network
edge. The underlying observation is that well-behaved applications do
not send large amounts of packets without receiving any, turning packet
asymmetry highly skewed toward to transmitting side into a fingerprint
of malicious activity. Indeed, a large class of denial-of-service attacks, one
of the greatest threats on the Internet today, operate by blasting traffic at
a single destination from as many hosts as possible. By throttling such
traffic proportionally to its packet-level asymmetry, such attacks are pre-
ventable. I proposed a symmetry metric to measure symmetry compliance
of end systems and presented a measurement study confirming that well-
behaved traffic is indeed highly symmetric at the packet level. In contrast
to the content-based approaches presented earlier, the focus here is not on
automated generation of such a fingerprint but on the feasibility of finding
universal badness fingerprints.

I now conclude the dissertation by summarising potential avenues for fu-
ture work and by discussing my work in the more general context of a
classic design philosophy of the Internet, the end-to-end principle.

Future Work6.1

Sequence analysis of network traffic in general and the investigation in
an adversarial setting in particular is a young field. A number of heuris-
tic alignment algorithms exist which favour speed over accuracy (such as
BLAST [2] and FASTA [97]) whose usefulness in the network traffic con-
text has not yet been investigated. On a more elementary level, substitu-
tion/alignment scoring schemes are highly flexible and their use in dif-
ferent application settings has not yet been investigated. For example, a
scoring scheme that is aware of the keyboard layout could highlight ty-
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pographical errors in domain names more generally than the more fixed
approaches that have been used to date [162]. I briefly mentioned sec-
ondary applications of sequence alignment, such as phylogenetic trees, in phylogenetic

treesSection 3.7.2 in the context of highlighting the relationships between dif-
ferent yet related implementations of the IRC protocol as command and
control channels for botnets.

Fingerprinting of both the normal as well as the malicious as presented in
Chapters 4 and 5 uses flow pools. The dynamic properties of flows stored
in such pools, such as variability of frequent content over time has not
yet been investigated but could significantly affect the design of related
systems such as selective sampling methods of live traffic. On a toolchain
level, there exist no tools at present that use any of the suggested smart
traffic classification schemes routinely, though work on this is underway
in the IDS domain in Bro [57].

Automated signature generators still offer many avenues for future work.
They have yet to prove their value in day-to-day operations. The domi-
nant technical issues concern scalable signature lifecycle management, for
example the robust handling of highly related signatures, or capturing the
evolving quality of the generated signatures over time. Operational expe-
rience to date is lacking, and it is unclear whether all kinds of applications
are equally suitable for signature generation. It remains an open question
just how close one can get to the goal of large-scale automated enforcement
of generated signatures.

Given the many ways in which one can express a traffic signature, dis-
tributing traffic fingerprinting information still poses many questions. In
particular, work needs to be done to determine in what format, at what
granularity, and what frequency fingerprinting information does need to
be communicated to be generally usable. Incorporating different sites’
policies regarding the use of received information and what information
one is willing to share poses further challenges. Finally, it remains to be
seen whether such a system can operate in an open, federated fashion or
whether trust issues and information leakage [15] are issues too funda-
mental to permit this.
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End-to-End Considerations6.2

Historically, one of the most vigorously defended principles of the Inter-
net architecture is the end-to-end principle [129]. This principle argues for
a “dumb” network in which the lower protocol layers handle only the ab-
solutely necessary tasks for enabling end-to-end communication, leaving
complexity to a “smart” network edge whenever possible. It has been ar-
gued that this principle is essential to unhampered growth and innovation
of the Internet [19].

Several elements of this dissertation undermine the end-to-end principle.
Therefore, it behoves me to include a discussion of my work from that per-
spective. Reactive, autonomous filtering components such as automated
signature and packet symmetry enforcement as presented in Chapter 5 can
principally affect a wide range of network traffic, and the further they are
deployed from the edge, the more they collide with the idea of a simple,
transparent bit delivery service.

The concern is less of an issue for packet symmetry enforcement, since a
central part of this idea is deployment at the very edge and we have yet
to witness any application that truly has to use highly asymmetric traffic.
Automated signature enforcement, however, could potentially occur any-
where in the network. Several arguments relativise the concerns. First, in-
core signature enforcement should not be considered an always-on mech-
anism but rather an emergency response to a critical situation, much in
the way Wang et al. [161] proposed Shield not as a solution to the inse-
cure software problem but an interim responsive means to prevent dam-
age until the proper fix has been applied. Second, signature enforcement
is not fundamentally different from previously proposed in-core filtering
techniques such as pushback [77, 120] (albeit occurring at a semantically
higher level), or ISP-based filtering of unsolicited email. Moreover, and
most fundamentally, widespread deployment of technology addressing
present-day needs already constitutes a substantial de-facto erosion of the
principle. Examples of this erosion have frequently grown out of consid-
erations of network security, since relying on end hosts for security-critical
functionality implies capable, benign cooperation that is no longer a given.
Examples of such end-to-end violations include:
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• NATs: network address translation has become pervasive in the IPv4
world, addressing two problems: firstly, mapping a local host pop-
ulation to a typically smaller set of externally visible IP addresses,
and secondly, host protection from unsolicited external access, since
a NAT cannot be traversed from the outside without third-party ne-
gotiation or prior establishment of state in the NAT. NATs break the
end-to-end principle since they break unique global addressing and
reachability from within the network.

• Firewalls: typically configured statically, firewalls break the end-to-
end principle because end hosts have no unambiguous way of learn-
ing of the firewall configuration. Some firewalls might return an
ICMP port unreachable message, while others might silently drop
connection attempts. Nevertheless, today firewalls are deployed per-
vasively because they serve a clear network security purpose: they
prevent undesired traffic from entering a network.

• Content filtering: at the application layer, content filtering is per-
vasive. Even novice users typically know they need to install mal-
ware scanners on their machines for better protection from malicious
agents on the network. Proxy servers can suppress content while
leaving the network flows otherwise unaffected. Reactive IDSs, typ-
ically termed intrusion prevention systems (IPSs), may similarly fil-
ter network activity. Often the user remains uninformed about such
filtering activity.

I do not mean to justify the erosion of the end-to-end principle by the fact
that it has happened as a consequence of addressing the more immedi-
ate problems the Internet is facing. While openness, global connectivity,
and a generally “well-lit” Internet are preferable to an Internet of walls
and minefields, I do believe that in cases such as the ones listed above, we
have to make a decision: we can either leave all non-elementary function
out of the core and suffer from the malicious reality on today’s Internet,
or we can violate the end-to-end principle in certain aspects as long as the
overall well-being of the Internet is enhanced. The challenge is to find
a precise enough yet general and enforceable definition of malicious be-
haviour. The techniques presented in this dissertation are one step toward
a better classifiability of end-host behaviour along this dimension.
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Bro Policy for Message ExtractionA.1

The policy given in this section implementes message extraction as de-
scribed in Section 3.3. It is included in Bro version 1.1.51 and newer.

adu.bro

1 @load conn−id
2

3 module adu ;
4

5 # Generated events :
6 #
7 # − adu tx ( c : connection , a : a d u s t a t e ) r e p o r t s an ADU seen from
8 # c ’ s o r i g i n a t o r to i t s responder .
9 #

10 # − adu rx ( c : connection , a : a d u s t a t e ) r e p o r t s an ADU seen from
11 # c ’ s responder to the o r i g i n a t o r .
12 #
13 # − adu done ( c : connect ion ) i n d i c a t e s t h a t no more ADUs w i l l be seen
14 # on connect ion c . This i s use fu l to know in case your s ta tekeeping
15 # r e l i e s on event connect ion sta te remove ( ) , which i s a l s o used by
16 # adu . bro .
17

18 # −−− Input c o n f i g u r a t i o n −− which ports to look at −−−−−−−−−−−−−−−−−−−−
19

20 redef t c p c o n t e n t d e l i v e r a l l o r i g = T ;
21 redef t c p c o n t e n t d e l i v e r a l l r e s p = T ;
22 redef u d p c o n t e n t d e l i v e r a l l o r i g = T ;
23 redef u d p c o n t e n t d e l i v e r a l l r e s p = T ;
24

25 export {
26

27 # −−− Constants −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28

29 # The maximum depth in bytes up to which we fol low a flow .
30 # This i s counting bytes seen in both d i r e c t i o n s .
31 const adu conn max depth = 100000 &redef ;
32

33 # The maximum message depth t h a t we repor t .
34 const adu max depth = 3 &redef ;
35
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36 # The maximum message s i z e in bytes t h a t we repor t .
37 const adu max size = 1000 &redef ;
38

39 # Whether ADUs are reported beyond content gaps .
40 const adu gaps ok = F &redef ;
41

42 # −−− Types −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43

44 # a d u s t a t e records conta in the l a t e s t ADU and a d d i t i o n a l f l a g s
45 # showing message d i r e c t i o n , depth in the flow , e t c .
46 type a d u s t a t e : record {
47 adu : s t r i n g &default = ”” ; # The current ADU.
48 depth tx : count &default = 1 ; # Msg count (>= 1 ) , orig−>resp .
49 depth rx : count &default = 1 ; # Msg count (>= 1 ) , resp−>or ig .
50 s e e n t x : count &default = 0 ; # TCP : seqno t r a c k i n g .
51 seen rx : count &default = 0 ; # TCP : seqno t r a c k i n g .
52 s i z e : count &default = 0 ; # S ize of connection , in bytes .
53 i s o r i g : bool &default = F ; # Whether ADU i s orig−>resp .
54 ignore : bool &default = F ; # Ignore future a c t i v i t y .
55 } ;
56

57 # T e l l the ADU pol i cy t h a t you do not wish to r e c e i v e f u r t h e r
58 # adu tx/adu rx events f o r a given connect ion . Other p o l i c i e s
59 # may continue to process the connect ion .
60 #
61 global a d u s k i p f u r t h e r p r o c e s s i n g : function ( c id : conn id ) ;
62 }
63

64

65 # −−− Globals −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66

67 # A globa l t a b l e t h a t t r a c k s each flow ’ s messages .
68 global adu conns : table [ conn id ] of a d u s t a t e ;
69

70 # −−− Functions −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71

72 function a d u s k i p f u r t h e r p r o c e s s i n g ( c id : conn id )
73 {
74 i f ( c id ! in adu conns )
75 return ;
76

77 adu conns [ c id ] $ignore = T ;
78 }
79

80 function f low contents ( c : connection , i s o r i g : bool ,
81 seq : count , contents : s t r i n g )
82 {
83 l o c a l a s t a t e : a d u s t a t e ;
84

85 # Ensure we t r a c k the given connect ion .
86 i f ( c$ id ! in adu conns )
87 adu conns [ c$id ] = a s t a t e ;
88 e lse
89 a s t a t e = adu conns [ c$id ] ;
90

91 # Forget i t i f we’ ve been asked to ignore .
92 #
93 i f ( a s t a t e $ i g n o r e == T )
94 return ;
95

96 # Don’ t repor t i f flow i s too big .
97 #
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98 i f ( a s t a t e $ s i z e >= adu conn max depth )
99 return ;

100

101 # I f we have an assembled message , we may now have something
102 # to repor t .
103 i f ( | astate$adu | > 0 )
104 {
105 # I f appl i ca t io n−l a y e r data flow i s switching
106 # from resp−>or ig to orig−>resp , repor t the assembled
107 # message as a rece ived ADU.
108 i f ( i s o r i g && ! a s t a t e $ i s o r i g )
109 {
110 event adu rx ( c , copy ( a s t a t e ) ) ;
111 astate$adu = ”” ;
112

113 i f ( ++a s t a t e $ d e p t h r x > adu max depth )
114 s k i p f u r t h e r p r o c e s s i n g ( c$id ) ;
115 }
116

117 # I f appl i ca t io n−l a y e r data flow i s switching
118 # from orig−>resp to resp−>orig , repor t the assembled
119 # message as a t ransmit ted ADU.
120 #
121 i f ( ! i s o r i g && a s t a t e $ i s o r i g )
122 {
123 event adu tx ( c , copy ( a s t a t e ) ) ;
124 astate$adu = ”” ;
125

126 i f ( ++ a s t a t e $ d e p t h t x > adu max depth )
127 s k i p f u r t h e r p r o c e s s i n g ( c$id ) ;
128 }
129 }
130

131 # Check f o r content gaps . I f we i d e n t i f y one , only continue
132 # i f user allowed i t .
133 #
134 i f ( ! adu gaps ok && seq > 0 )
135 {
136 i f ( i s o r i g )
137 {
138 i f ( seq > a s t a t e $ s e e n t x + 1 )
139 return ;
140 e lse
141 a s t a t e $ s e e n t x += | contents | ;
142 }
143 e lse
144 {
145 i f ( seq > a s t a t e $ s e e n r x + 1 )
146 return ;
147 e lse
148 a s t a t e $ s e e n r x += | contents | ;
149 }
150 }
151

152 # Append the contents to the end of the c u r r e n t l y
153 # assembled message , i f the message hasn ’ t a lready
154 # reached the maximum s i z e .
155 #
156 i f ( | astate$adu | < adu max size )
157 {
158 astate$adu += contents ;
159
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160 # As a precaution , c l i p the s t r i n g to the maximum
161 # s i z e . A loong content s t r i n g with astate$adu j u s t
162 # below i t s maximum allowed s i z e could exceed t h a t
163 # l i m i t by a l o t .
164 s t r c l i p ( astate$adu , adu max size ) ;
165 }
166

167

168 # Note t h a t t h i s counter i s bumped up even i f we have
169 # exceeded the maximum s i z e of an indiv idua l message .
170 #
171 a s t a t e $ s i z e += | contents | ;
172

173 a s t a t e $ i s o r i g = i s o r i g ;
174 }
175

176 # −−− Event Handlers −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
177

178 event t c p c o n t e n t s ( c : connection , i s o r i g : bool ,
179 seq : count , contents : s t r i n g )
180 {
181 f low contents ( c , i s o r i g , seq , contents ) ;
182 }
183

184 event udp contents ( u : connection , i s o r i g : bool , contents : s t r i n g )
185 {
186 f low contents ( u , i s o r i g , 0 , contents ) ;
187 }
188

189 event connect ion sta te remove ( c : connect ion )
190 {
191 i f ( c$ id ! in adu conns )
192 return ;
193

194 l o c a l a s t a t e = adu conns [ c$id ] ;
195

196 # Forget i t i f we’ ve been asked to ignore .
197 #
198 i f ( a s t a t e $ i g n o r e == T )
199 return ;
200

201 # Report the remaining data now, i f any .
202 #
203 i f ( | astate$adu | > 0 ) {
204 i f ( a s t a t e $ i s o r i g )
205 {
206 i f ( a s t a t e $ d e p t h t x <= adu max depth )
207 event adu tx ( c , copy ( a s t a t e ) ) ;
208 }
209 e lse
210 {
211 i f ( a s t a t e $ d e p t h r x <= adu max depth )
212 event adu rx ( c , copy ( a s t a t e ) ) ;
213 }
214 }
215

216 delete adu conns [ c$id ] ;
217 event adu done ( c ) ;
218 }
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Improved Jacobson-Vo AlgorithmA.2

The following is my implementation of the improved Jacobson-Vo algo-
rithm presented in Section 3.5.5. It will be included in Bro 1.2. Inclusion of
standard headers and declarations of the relevant Bro data types are not
shown; likewise, straightforward parts of the code are omitted for brevity.

jacobson-vo.h

1 # define JV ALPHABET SIZE 256
2

3 c l a s s J V I n d i c e s {
4 public :
5 typedef l i s t <short> Ind ;
6 typedef Ind : : i t e r a t o r I n d I t ;
7 typedef Ind : : c o n s t i t e r a t o r IndCIt ;
8

9 J V I n d i c e s ( )
10 {
11 for ( i n t i = 0 ; i < JV ALPHABET SIZE ; i ++)
12 i n d i c e s [ i ] . ind = new Ind ( ) ;
13

14 f i r s t = 0 ;
15 memset ( i t e r a t i o n s , 0 , s i ze of ( i n t ) ∗ JV ALPHABET SIZE ) ;
16 }
17

18 ˜ J V I n d i c e s ( )
19 {
20 for ( i n t i = 0 ; i < JV ALPHABET SIZE ; i ++)
21 delete i n d i c e s [ i ] . ind ;
22 }
23

24 void AddUsage ( u char c , i n t i t e r a t i o n )
25 {
26 IndLink∗ ind = & i n d i c e s [ c ] ;
27

28 i f ( i t e r a t i o n s [ c ] != i t e r a t i o n )
29 {
30 i t e r a t i o n s [ c ] = i t e r a t i o n ;
31 ind−> usage = 0 ;
32 ind−> ind−>c l e a r ( ) ;
33 }
34

35 i f ( ind−> usage == 0)
36 {
37 ind−> next = f i r s t ;
38 f i r s t = ind ;
39 }
40

41 ind−> usage ++;
42 }
43

44 void AddIndex ( u char c , short index , i n t i t e r a t i o n )
45 {
46 i f ( i t e r a t i o n s [ c ] == i t e r a t i o n )
47 i n d i c e s [ c ] . ind−>push front ( index ) ;
48 }
49
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50 i n t GetPiLength ( )
51 {
52 i n t len = 0 ;
53

54 for ( IndLink∗ ind = f i r s t ; ind ; ind = ind−> next )
55 len += ind−> usage ∗ ind−> ind−>s i z e ( ) ;
56

57 f i r s t = 0 ;
58 return len ;
59 }
60

61 const Ind∗ GetIndices ( u char c ) { return i n d i c e s [ c ] . ind ; }
62

63 private :
64

65 s t r u c t IndLink {
66 Ind∗ ind ;
67 i n t usage ;
68 IndLink∗ next ;
69 } ;
70

71 IndLink∗ f i r s t ;
72 IndLink i n d i c e s [ JV ALPHABET SIZE ] ;
73 i n t i t e r a t i o n s [ JV ALPHABET SIZE ] ;
74 } ;
75

76 s t a t i c J V I n d i c e s j v i n d i c e s ;
77

78 s t r u c t Node {
79 short s 1 i d x ; // s1 index of t h i s node
80 short s 2 i d x ; // s2 index of t h i s node
81

82 short l e n ; // the node ’ s running subs t r ing length
83 short s t r l e n ; // length of f u l l subs t r ing t h i s node extends
84 i n t s c o r e ; // the node ’ s running score .
85 i n t s t r s c o r e ; // the node ’ s score i f fo l lowing from s t a r t of s t r i n g
86

87 Node∗ down ; // next node f u r t h e r down in column
88 Node∗ s k i p ; // next node with smal ler s2 index down in column
89 Node∗ prev ; // previous node in bes t alignment
90 Node∗ s o s t r ; // s t a r t of s t r i n g : the l o c a t i o n a t which we might
91 // have to a d j u s t the prev pointer .
92 } ;
93

94 # define NODE PQ HEAP SIZE 2000000
95

96 // A p r i o r i t y implementing a binary max−heap f o r the
97 // score of a node . Node p o i n t e r s can be updated anywhere
98 // in the heap in O( 1 ) .
99 //

100 c l a s s JV NodePQ {
101 public :
102 JV NodePQ ( ) : nex t ( 1 ) , min (INT MAX) , max ( 0 ) , s h i f t ( 0 )
103 { memset ( map , 0 , s i ze of ( i n t ) ∗ NODE PQ HEAP SIZE ) ; }
104

105 void Push (Node∗ node )
106 {
107 i n t mapping = map [ node−> s c o r e − s h i f t ] ;
108

109 // I f we have an entry f o r t h a t score , we j u s t a d j u s t
110 // the pointer to the new node and are done .
111 //
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112 i f ( mapping )
113 {
114 heap [ mapping ] = node ;
115 return ;
116 }
117

118 // Otherwise , we have to add the node to the heap ,
119 // and ensure the heap property .
120 //
121 heap [ next ] = node ;
122 map [ node−> s c o r e − s h i f t ] = next ;
123 BubbleUp ( next ) ;
124

125 next ++;
126

127 i f ( node−> s c o r e < min )
128 min = node−> s c o r e ;
129 i f ( node−> s c o r e > max )
130 max = node−> s c o r e ;
131 }
132

133 Node∗ Top ( ) { return next > 1 ? heap [ 1 ] : 0 ; }
134

135 void Delete (Node ∗node )
136 {
137 i n t s l o t = map [ node−> s c o r e − s h i f t ] ;
138

139 i f ( heap [ s l o t ] != node )
140 return ;
141

142 Swap( s l o t , nex t − 1 ) ;
143 next−−;
144 BubbleDown ( s l o t ) ;
145 map [ node−> s c o r e − s h i f t ] = 0 ;
146 }
147

148 i n t Size ( ) { return next − 1 ; }
149

150 void Reset ( )
151 {
152 Node∗∗ ptr = heap + 1 ;
153

154 for ( i n t i = 1 ; i < next ; i ++ , ptr ++)
155 map [ (∗ ptr)−> s c o r e − s h i f t ] = 0 ;
156

157 s h i f t = ( min != INT MAX ? min : 0 ) ;
158 max = 0 ; min = INT MAX ; next = 1 ;
159 }
160

161 void F u l l R e s e t ( ) { s h i f t = 0 ; max = next = 0 ; min = INT MAX ; next = 1 ; }
162

163 private :
164

165 i n l in e i n t Parent ( i n t s l o t ) const { return s l o t >> 1 ; }
166 i n l in e i n t Lef tChi ld ( i n t s l o t ) const { return s l o t << 1 ; }
167 i n l in e i n t RightChild ( i n t s l o t ) const { return ( s l o t << 1) + 1 ; }
168

169 void Swap( i n t s l o t 1 , i n t s l o t 2 ) ; // Omitted f o r b r e v i t y .
170 void BubbleUp ( i n t s l o t ) ; // Omitted f o r b r e v i t y .
171 void BubbleDown ( i n t s l o t ) ; // Omitted f o r b r e v i t y .
172

173 i n t next ; // next s l o t c u r r e n t l y a v a i l a b l e in heap array :
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174 i n t min ; // s m a l l e s t s l o t entered s i n c e l a s t r e s e t .
175 i n t max ; // l a r g e s t s l o t entered s i n c e l a s t r e s e t .
176 i n t s h i f t ; // how f a r to s h i f t new e n t r i e s , given minimum
177

178 s t a t i c Node∗ heap [ ] ;
179 s t a t i c i n t map [ ] ;
180 } ;
181

182 Node∗ JV NodePQ : : heap [NODE PQ HEAP SIZE ] ;
183 i n t JV NodePQ : : map [NODE PQ HEAP SIZE ] ;
184

185 JV NodePQ pq ;
186

187 c l a s s JV CoverMatrix {
188 public :
189

190 s t r u c t NSet {
191 Node∗ bottom ; // bottom node in column
192 Node∗ top ; // top node in column
193 Node∗ c l a s s ; // f i r s t node in column with current s2 index .
194 } ;
195

196 s t r u c t NWin {
197 Node∗ l o ;
198 Node∗ h i ;
199 Node∗ e x t ;
200 Node∗ max ;
201 } ;
202

203 JV CoverMatrix ( const BroStr ing ∗s1 , const BroStr ing ∗s2 , i n t p i l e n g t h )
204 : s 1 ( s1 ) , s 2 ( s2 ) , l a s t c o l ( 0 ) , b e s t s c o r e ( 0 ) , bes t node ( 0 )
205 {
206 i n t max cols = min ( s1−>Len ( ) , s2−>Len ( ) ) ;
207

208 // We need one node per Pi element .
209 nodes = new Node[ p i l e n g t h ] ;
210

211 // We have at most as many columns as the s h o r t e r s t r i n g i s long ,
212 // s i n c e the LCS can ’ t exceed t h a t length .
213 n s e t = new NSet [ max cols ] ;
214

215 memset ( nodes , 0 , s i ze of (Node) ∗ p i l e n g t h ) ;
216 memset ( nset , 0 , s i ze of ( NSet ) ∗ max cols ) ;
217

218 node = nodes ;
219 }
220

221 ˜ JV CoverMatrix ( )
222 {
223 delete [ ] nodes ;
224 delete [ ] n s e t ;
225 }
226

227 void SetNode ( NSet∗ set , short s2 idx , short s 1 i d x )
228 {
229 node−> s 1 i d x = s 1 i d x ;
230 node−> s 2 i d x = s 2 i d x ;
231

232 i f ( ! se t−> bottom )
233 {
234 set−> c l a s s = node ;
235 set−> top = node ;
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236 }
237 e lse
238 {
239 i f ( node−> s 2 i d x < set−> c l a s s−> s 2 i d x )
240 {
241 set−> c l a s s−> s k i p = node ;
242 set−> c l a s s = node ;
243 }
244

245 set−> bottom−> down = node ;
246 }
247

248 set−> bottom = node ;
249

250 // Adjust the o b j e c t ’ s node pointer so we use next one next time .
251 node ++;
252 }
253

254 void SetBackpointers ( )
255 {
256 NSet ∗ s e t p = n s e t + l a s t c o l ;
257 NSet ∗ s e t = s e t p − 1 ;
258

259 pq . F u l l R e s e t ( ) ;
260

261 // In case of an LCS of only a s i n g l e charac ter , the two−column
262 // p a r a l l e l scan s t r a t e g y below won ’ t work and w i l l be skipped .
263 // To get a bes t node regardless , we j u s t pick the f i r s t one in
264 // the l a s t column ( which w i l l a l s o be the only column ) .
265 //
266 best node = set p−> top ;
267 b e s t s c o r e = 0 ;
268

269 for ( i n t i = l a s t c o l − 1 ; i >= 0 ; i−−, se t−−, se t p−−)
270 {
271 Node∗ node ;
272 NWin win ;
273

274 win . l o = win . h i = win . max = win . e x t = set p−> top ;
275 pq . Push ( win . l o ) ;
276

277 node = set−> top ;
278

279 // Skip down from the s t a r t of the column as f a r
280 // as p o s s i b l e .
281 //
282 while ( node−> s 2 i d x >= win . hi−> s 2 i d x )
283 node = node−> s k i p ;
284

285 for ( se t−> top = node ; node ; node = node−> down )
286 {
287 // Adjust the window , obta in ing current maximum .
288 //
289 i f ( ! AdjustWin ( node , &win , ( i == l a s t c o l − 1 ) ) )
290 break ;
291

292 // Now see how t h i s a f f e c t s our previous−pointer .
293 //
294 node−> prev = win . max ;
295 node−> s c o r e = node−> s t r s c o r e = win . max−> s c o r e + 1 ;
296 node−> s o s t r = node ;
297
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298 i f ( win . ex t−> s 1 i d x − 1 == node−> s 1 i d x &&
299 win . ext−> s 2 i d x − 1 == node−> s 2 i d x )
300 {
301 i n t score = win . ext−> s c o r e + win . ext−> l e n + 1 ;
302 node−> s t r l e n = win . ext−> s t r l e n + 1 ;
303 node−> s t r s c o r e = win . ext−> s t r s c o r e + node−> s t r l e n ;
304

305 // We abuse the skip pointer to point to the previous
306 // node of the s t r i n g t h i s node i s extending . Skip i s only
307 // needed to f ind the beginning of the region in t h i s column
308 // t h a t r e q u i r e s a n a l y s i s and i s no longer needed at t h i s point .
309 //
310 node−> s k i p = win . e x t ;
311

312 // Check i f the running score improves on the current
313 // maximum via extending a subs t r ing .
314 //
315 // Equal here i s very important f o r minimising gaps ,
316 // s i n c e we want to p r e f e r extens ion of an e x i s t i n g
317 // subs t r ing over i n s e r t i n g a gap , even though those
318 // might have i d e n t i c a l score .
319 //
320 i f ( score >= node−> s c o r e )
321 {
322 node−> l e n = win . ext−> l e n + 1 ;
323 node−> prev = win . e x t ;
324 node−> s c o r e = score ;
325 node−> s o s t r = win . ext−> s o s t r ;
326 }
327

328 // I f the previous s t r i n g has chopped o f f a b i t of the
329 // end of the current s t r i n g , the f u l l subs t r ing ’ s score
330 // might have surpassed the running one . Compare , and i f
331 // i t ’ s b e t t e r , a d j u s t accordingly .
332 //
333 i f ( node−> s t r s c o r e > node−> s c o r e )
334 {
335 node−> prev = win . e x t ;
336 node−> s o s t r−> prev = node−> s o s t r−> s k i p ;
337 node−> s c o r e = node−> s t r s c o r e ;
338 }
339 }
340

341 i f ( node−> s c o r e > b e s t s c o r e )
342 {
343 b e s t s c o r e = node−> s c o r e ;
344 best node = node ;
345 }
346 }
347

348 pq . Reset ( ) ;
349 }
350 }
351

352 // Finds a sequence ( i . e . , row in the matrix ) to add p i i d x
353 // ( a value in the Pi sequence ) to , using binary search to
354 // maintain O( r log n ) . We can add an index as long as i t ’ s
355 // no l a r g e r than the l a s t element in a row .
356 //
357 NSet∗ FindSequence ( i n t pi idx , i n t& upper )
358 {
359 i n t lower = 0 ;
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360 i n t middle ;
361 NSet∗ s e t = & n s e t [ upper ] ;
362

363 i f ( upper != 0 &&
364 set−> bottom−> s 2 i d x >= p i i d x &&
365 ( se t−1)−> bottom−> s 2 i d x < p i i d x )
366 return s e t ;
367

368 while ( upper != lower )
369 {
370 middle = ( lower + upper ) >> 1 ;
371 s e t = & n s e t [ middle ] ;
372

373 i f ( se t−> bottom−> s 2 i d x < p i i d x )
374 {
375 lower = middle + 1 ;
376 s e t ++;
377 continue ;
378 }
379

380 upper = middle ;
381 }
382

383 // I f we found the l a s t row and we cannot add p i i d x
384 // to the sequence because p i i d x i s too big , we need
385 // to s t a r t a new row .
386 //
387 i f ( upper == l a s t c o l && set−> bottom && set−> bottom−> s 2 i d x < p i i d x )
388 {
389 s e t ++; upper ++; l a s t c o l ++;
390 }
391

392 return s e t ;
393 }
394

395 void CollectLCS ( SWParams& params , SW LCS& l c s )
396 {
397 Node ∗node = best node ;
398

399 l c s . c l e a r ( ) ;
400

401 i f ( ! node )
402 return ;
403

404 short s t a r t s 1 = node−> s 1 i d x ;
405 short s t a r t s 2 = node−> s 2 i d x ;
406 short end s1 = node−> s 1 i d x ;
407 short end s2 = node−> s 2 i d x ;
408 unsigned short len ;
409

410 while ( node )
411 {
412 short s1 = node−> s 1 i d x ;
413 short s2 = node−> s 2 i d x ;
414

415 i f ( s1 > end s1 + 1 | | s2 > end s2 + 1)
416 {
417 // Check whether we have a gap and i f so whether
418 // i t ’ s of a t l e a s t the required minimum s t r i n g length .
419 // I f so , add an alignment to r e s u l t .
420 //
421 len = end s1 − s t a r t s 1 + 1 ;
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422

423 i f ( len >= params . m i n s t r l e n )
424 {
425 BroSubstr ing ∗ s t r = s1−>GetSubstr ing ( s t a r t s 1 , len ) ;
426 s t r−>AddAlignment ( s1 , s t a r t s 1 ) ;
427 s t r−>AddAlignment ( s2 , s t a r t s 2 ) ;
428 l c s . push back ( s t r ) ;
429 }
430

431 s t a r t s 1 = s1 ;
432 s t a r t s 2 = s2 ;
433 }
434

435 end s1 = s1 ;
436 end s2 = s2 ;
437 node = node−> prev ;
438 }
439

440 // Fin i sh the l a s t subs t r ing :
441 //
442 len = end s1 − s t a r t s 1 + 1 ;
443

444 i f ( len >= params . m i n s t r l e n )
445 {
446 BroSubstr ing ∗ s t r = s1−>GetSubstr ing ( s t a r t s 1 , len ) ;
447 s t r−>AddAlignment ( s1 , s t a r t s 1 ) ;
448 s t r−>AddAlignment ( s2 , s t a r t s 2 ) ;
449 l c s . push back ( s t r ) ;
450 }
451 }
452

453 i n t NumCols ( ) { return l a s t c o l ; }
454

455 private :
456

457 bool AdjustWin (Node∗ guide , NWin∗ win , bool l a s t c o l )
458 {
459 Node∗ n ;
460

461 // Adjust high boundary , p o t e n t i a l l y moving a l l p o i n t e r s downward .
462 //
463 n = win−> hi−> down ;
464

465 while ( win−> hi−> s 1 i d x <= guide−> s 1 i d x )
466 {
467 i f ( win−> l o == win−> h i )
468 win−> l o = 0 ;
469 i f ( win−> e x t == win−> h i )
470 win−> e x t = n ;
471

472 pq . Delete ( win−> h i ) ;
473 win−> h i = n ;
474

475 i f ( ! n | | ( ! l a s t c o l && n && ! n−> prev ) )
476 return f a l s e ;
477

478 n = n−> down ;
479 }
480

481 i f ( ! win−> l o )
482 {
483 win−> l o = win−> h i ;
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484 pq . Push ( win−> h i ) ;
485 }
486

487 // Adjust low boundary , p o t e n t i a l l y updating the maximum .
488 //
489 n = win−> lo−> down ;
490

491 while ( n && n−> s 2 i d x > guide−> s 2 i d x )
492 {
493 i f ( ! l a s t c o l && ! n−> prev )
494 break ;
495

496 pq . Push ( n ) ;
497 win−> l o = n ;
498 n = n−> down ;
499 }
500

501 win−> max = pq . Top ( ) ;
502

503 // Adjust extens ion boundary , i f f e a s i b l e .
504 //
505 // After pushing down the top end of the window , the extens ion ’ s
506 // s1 index already i s s m a l l e s t p o s s i b l e b i t l a r g e r than guide ’ s .
507 // Now keep scanning while the s2 index i s too big .
508 //
509 n = win−> ext−> down ;
510

511 while ( n && n−> s 2 i d x > guide−> s 2 i d x && n−> s 1 i d x == win−> ext−> s 1 i d x )
512 {
513 i f ( ! l a s t c o l && ! n−> prev )
514 break ;
515

516 win−> e x t = n ;
517 n = n−> down ;
518 }
519

520 return true ;
521 }
522

523 // Input s t r i n g s −− s1 i s al igned along rows , s2 along columns .
524 //
525 const BroStr ing∗ s 1 ;
526 const BroStr ing∗ s 2 ;
527

528 Node ∗ nodes ;
529 Node ∗ node ; // current node among nodes
530 NSet ∗ n s e t ;
531 i n t l a s t c o l ; // current l a s t column
532

533 i n t b e s t s c o r e ;
534 Node ∗ best node ; // Overal l bes t node
535 } ;
536

537 void jacobson vo ( const BroStr ing∗ s1 , const BroStr ing∗ s2 ,
538 SWParams& params , SW LCS& r e s u l t )
539 {
540 byte vec s 1 b y t e s = s1−>Bytes ( ) ;
541 byte vec s1 bytes end = s 1 b y t e s + s1−>Len ( ) ;
542 byte vec s 2 b y t e s = s2−>Bytes ( ) ;
543 byte vec s2 bytes end = s 2 b y t e s + s2−>Len ( ) ;
544 i n t i , num rows = 0 , p i l e n g t h = 0 ;
545 byte vec bv ;
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546 s t a t i c i n t i t e r a t i o n = 0 ;
547

548 i t e r a t i o n ++;
549

550 // Pi build−up .
551 //
552 for ( bv = s 1 b y t e s ; bv < s1 bytes end ; bv++ )
553 j v i n d i c e s . AddUsage(∗bv , i t e r a t i o n ) ;
554 for ( i = 0 , bv = s 2 b y t e s ; bv < s2 bytes end ; i ++ , bv++ )
555 j v i n d i c e s . AddIndex (∗bv , i , i t e r a t i o n ) ;
556

557 p i l e n g t h = j v i n d i c e s . GetPiLength ( ) ;
558 JV CoverMatrix cover ( s1 , s2 , p i l e n g t h ) ;
559

560 for ( i = 0 , bv = s 1 b y t e s ; bv < s1 bytes end ; i ++ , bv++ )
561 {
562 const J V I n d i c e s : : Ind∗ ind = j v i n d i c e s . Get Indices (∗bv ) ;
563 i n t l a s t c o l = cover . NumCols ( ) ;
564

565 // Greedy cover generat ion over Pi .
566 for ( J V I n d i c e s : : IndCIt i t = ind−>begin ( ) ; i t != ind−>end ( ) ; ++ i t )
567 {
568 i n t s 1 i d x = i ;
569 i n t s 2 i d x = ∗ i t ;
570 JV CoverMatrix : : NSet∗ s e t = cover . FindSequence ( s2 idx , l a s t c o l ) ;
571 cover . SetNode ( set , s2 idx , s 1 i d x ) ;
572 }
573 }
574

575 cover . Se tBackpointers ( ) ;
576 cover . CollectLCS ( params , r e s u l t ) ;
577 }
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[158] G. Voss, A. Schröder, W. Müller-Wittig, and B. Schmidt. Using
graphics hardware to accelerate biological sequence analysis. In
Proc. of IEEE Tencon, Melbourne, Australia, 2005. (Page 33.)

[159] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A.C. Snoeren,
G.M. Voelker, and S. Savage. Scalability, fidelity, and containment
in the Potemkin virtual honeyfarm. Operating Systems Review, 39:
148–162, 2005. (Page 113.)

[160] M. Walfish, H. Balakrishnan, D. Karger, and S. Shenker. DoS: Fight-
ing fire with fire. Proc of 4th ACM Workshop on Hot Topics in Networks,
2005. (Page 116.)

150

http://stuff.mit.edu/hacker/hacker.html
http://stuff.mit.edu/hacker/hacker.html
http://www.cert.org/about/1988press-rel.html
http://www.cert.org/about/1988press-rel.html


[161] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugen-
maier. Shield: vulnerability-driven network filters for preventing
known vulnerability exploits. In Proceedings of the 2004 ACM SIG-
COMM Conference, volume 34, pages 193–204. ACM Press, October
2004. (Pages 102, 121.)

[162] Y.M. Wang, D. Beck, J. Wang, C. Verbowski, and B. Daniels. Strider
Typo-Patrol: Discovery and analysis of systematic typo-squatting.
In Proceedings of the 2nd Workshop on Steps to Reducing Unwanted Traf-
fic on the Internet (SRUTI), July 2006. (Page 120.)

[163] David Watson, Matthew Smart, G. Robert Malan, and Farnam Ja-
hanian. Protocol scrubbing: Network security through transparent
flow modification. IEEE/ACM Transactions on Networking, 12(2):261–
73, April 2004. (Pages 51, 83.)

[164] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxon-
omy of computer worms. Proceedings of the 2003 ACM workshop on
Rapid Malcode, pages 11–18, 2003. (Page 11.)

[165] Nicholas Weaver and Vern Paxson. A worst-case worm. In Proceed-
ings of the third Annual Workshop on Economics and Information Security
(WEIS04), May 2004. (Pages 11, 102.)

[166] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very fast con-
tainment of scanning worms. In Proceedings of the 13th Usenix Secu-
rity Symposium, San Diego, CA, pages 29–44, 2004. (Page 14.)

[167] P. Weiner. Linear pattern matching algorithms. In Proceedings of the
14th IEEE Symposium on Switching and Automata Theory, pages 1–11,
1973. (Pages 30, 90.)

[168] A. Yaar, A. Perrig, and D. Song. Pi: A path identification mecha-
nism to defend against ddos attacks. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, pages 1–15, 2003. (Pages 105,
116.)

[169] V. Yegneswaran, P. Barford, and D. Plonka. On the design and use
of Internet sinks for network abuse monitoring. Proceedings of Sym-
posium on Recent Advances in Intrusion Detection (RAID), Sept, 2004.
(Page 113.)

[170] V. Yegneswaran, J.T. Giffin, P. Barford, and S. Jha. An architecture
for generating semantics-aware signatures. In Proceedings of the 14th
Usenix Security Symposium, 2005. (Page 114.)

[171] Sebastian Zander, Thuy Nguyen, and Grenville Armitage. Self-
learning IP traffic classification based on statistical flow characteris-

151



tics. In Proc. of the 6th Passive and Active Network Measurement Work-
shop, March 2005. (Page 83.)

[172] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the
characteristics and origins of Internet flow rates. In Proceedings of
the 2002 ACM SIGCOMM Conference, pages 309–322, New York, NY,
USA, 2002. ACM Press. ISBN 1-58113-570-X. (Page 27.)

[173] Hubert Zimmermann. OSI reference model: The ISO model of ar-
chitecture for open systems interconnection. IEEE Transactions on
Communications, 28(4):425–432, April 1980. (Page 21.)

[174] Denis Zuev and Andrew Moore. Traffic classification using a statisti-
cal approach. In Proc. of the Passive and Active Measurement Workshop,
March 2005. (Page 82.)

152


	1  Introduction
	1.1 Motivation
	1.2 Outline
	1.3 Contributions
	1.4 Published Work

	2  Background
	2.1 Network Security
	2.2 Evolution of Network Security in the Internet
	2.2.1 1960s
	2.2.2 1970s
	2.2.3 1980s
	2.2.4 1990s
	2.2.5 2000-Present

	2.3 Arms Races in Network Security
	2.4 Detecting Malicious Behaviour
	2.4.1 Purpose, Mode, and Consequence of Detection
	2.4.2 Binary Classification

	2.5 Legal Implications of Network Monitoring
	2.5.1 Corporate Law
	2.5.2 Civil Law
	2.5.3 Implications for this Dissertation

	2.6 Summary

	3  Structural Traffic Analysis
	3.1 Introduction
	3.2 Abstraction Levels for Network Monitoring
	3.3 Flow Reassembly & Heuristic Message Extraction
	3.4 Sequence Alignment Algorithms
	3.4.1 Inspiration from Bioinformatics
	3.4.2 Similarities to Biology
	3.4.3 Differences from Biology

	3.5 String Alignment Models for Network Traffic
	3.5.1 Longest Common Substrings
	3.5.2 Longest Common Subsequences
	3.5.3 Smith-Waterman: Dynamic Programming
	3.5.4 Jacobson-Vo: Combinatorial Reduction
	3.5.5 Improving Jacobson-Vo: Targeted LCS Selection

	3.6 Attacks and Caveats
	3.6.1 Algorithmic Complexity
	3.6.2 Evasion

	3.7 Related Work
	3.7.1 Other Forms of Traffic Analysis
	3.7.2 Detection of Commonality

	3.8 Summary

	4  Fingerprinting the Normal
	4.1 Introduction
	4.2 Characteristics of Application-Layer Traffic
	4.3 Protocol Modelling with Common Substring Graphs
	4.3.1 Construction
	4.3.2 Comparison
	4.3.3 Merging
	4.3.4 Scoring

	4.4 Evaluation
	4.4.1 Terminology
	4.4.2 Input Traffic
	4.4.3 Graph Structure
	4.4.4 Protocol Classification
	4.4.5 Runtime Behaviour

	4.5 Discussion
	4.6 Related Work
	4.7 Summary

	5  Fingerprinting the Malicious
	5.1 Introduction
	5.2 Defining Malice
	5.2.1 Content-based Attacks
	5.2.2 Volume-based Attacks

	5.3 Automated Signature Generation using Honeypots
	5.3.1 Architecture
	5.3.2 Evaluation
	5.3.3 Discussion

	5.4 Curtailing Malicious Traffic with Packet Symmetry
	5.4.1 Packet Asymmetry as a Badness Oracle
	5.4.2 Traffic Analysis
	5.4.3 Discussion

	5.5 Related Work
	5.5.1 Honeypot Architectures
	5.5.2 Automated Signature Generation
	5.5.3 Detection and Mitigation of Volume-based Attacks

	5.6 Summary

	6  Conclusion
	6.1 Future Work
	6.2 End-to-End Considerations

	A  Code
	A.1 Bro Policy for Message Extraction
	A.2 Improved Jacobson-Vo Algorithm

	Bibliography

