Structural Traffic Analysis for
Network Security Monitoring

Christian Peter Kreibich

Hughes Hall

A dissertation submitted to the University of Cambridge
for the degree of Doctor of Philosophy

University of Cambridge
Computer Laboratory
William Gates Building
15 J] Thomson Avenue
Cambridge CB3 0FD
UK

Email: christian.kreibich@cl.cam.ac.uk

January 9, 2007

To my family, for the love and support.

Declaration

This dissertation is the result of my own work and includes nothing which
is the outcome of work done in collaboration except where specifically
indicated in the text.

This dissertation is not substantially the same as any I have submitted for
a degree or diploma or any other qualification at any other university.

No part of this dissertation has already been, or is currently being submit-
ted for any such degree, diploma or other qualification.

This dissertation does not exceed sixty thousand words.

This dissertation is copyright (©2007 Christian Kreibich.

All trademarks used in this dissertation are hereby acknowledged.

ii

Abstract

Traffic on the Internet is constantly growing more complex and multi-
faceted. This natural evolution is mirrored by novel kinds of malicious
traffic: automated attacks subvert thousands of machines at a time, en-
abling a wide range of subsequent attacks and nuisances such as distribu-
ted denial-of-service attacks and generation of vast amounts of unsolicited
electronic mail. Consequently, there is a strong need to be able to tell ma-
licious traffic from the benign. In this dissertation, I take several steps to-
ward this goal. By leveraging structural aspects of network traffic, typical
as well as malicious activity on computer networks can be fingerprinted
and contrasted.

A first avenue is the analysis of application-level flow content. I investi-
gate the suitability of biological sequence alignment algorithms in the ad-
versarial environment of the networking domain, and introduce a novel
algorithm that is well over an order of magnitude faster than the com-
monly used Smith-Waterman algorithm while maintaining much of its
flexibility. I introduce a novel and highly flexible model of traffic content
based on sequence alignment, Common Substring Graphs, and demon-
strate its versatility in a study of application-level protocol classification.

Switching focus to the malicious, I pioneer the use of honeypots and se-
quence analysis algorithms for automated fingerprinting of malware and
thus demonstrate the feasibility of fully automated network-based mal-
ware signature generation. I propose a second approach to fingerprint-
ing the malicious: Packet Symmetry focuses on network-level structure
and leverages the intuition that well-behaved applications do not trans-
mit vastly more packets than they receive. Traffic analysis confirms the
feasibility of employing packet symmetry for edge-based, ingress-focused
prevention strategies for volume-based attacks.

1ii

Acknowledgements

First of all, I cannot thank Mark Handley enough for using two widescreen
flatpanels while at ICSI in 2000, because without them my jaw very likely
would not have dropped in front of his office. The conversation that fol-
lowed started it all. I am deeply indebted to both him and Vern Paxson
for giving me the chance to do all the exciting work during that summer
which eventually convinced me to undertake a Ph.D., and for recommend-
ing Jon Crowcroft as my future supervisor. The fact that I am now writing
these lines of course means that this has proved to be an excellent rec-
ommendation, and I am immensely grateful to Jon for the amazingly fun
time it has been, both inside and outside of the lab. Without all the sup-
port and freedom he gave me it never would have been the same. Thanks
Jon! Similarly, my gratitude goes to Derek MacAuley and Intel Research
Cambridge for funding my time in Cambridge. Thank you for making it
all possible. Steven Hand has given helpful advice many a time and has
always been encouraging and up for a laugh. Thanks Steve, “wir machen
durch...”

I was lucky enough to end up in the best office of at least all of Cam-
bridge, in terms of the view as well as the company—Alex, Anil, Eva, and
of course esteemed Volta himself. Thank you so much and evyapioTd
moA0 for the amazing time it has been. Thanks to you I now know that
marathons are run by real people, might try to learn a sentence in every
language I can think of, got to taste amazing food too many times to count,
and have experienced the very large weight of marble busts. To our regu-
lar office visitors, particularly Andy and Euan, thanks for taking the time
to stop by, discuss and provide feedback, and for all the lounging on the
couch!

iv

Contents

1 Introduction

1.1 Motivation
12 Outline
1.3 Contributions
1.4 PublishedWork

2 Background

2.1 Network Security,
2.2 Evolution of Network Security in the Internet . . .

221 1960s oo
222 1970so oo
223 1980s
224 1990s oo

225 2000-Present
2.3 Arms Races in Network Security
2.4 Detecting Malicious Behaviour

241 Purpose, Mode, and Consequence of Detection

2.4.2 Binary Classification
2.5 Legal Implications of Network Monitoring
251 CorporateLaw
252 CivilLaw
2.5.3 Implications for this Dissertation
26 Summary

3 Structural Traffic Analysis

3.1 Introduction
3.2 Abstraction Levels for Network Monitoring

3.3 Flow Reassembly & Heuristic Message Extraction

20
20
21
23

3.4 Sequence Alignment Algorithms
3.4.1 Inspiration from Bioinformatics.
3.4.2 Similaritiesto Biology
3.4.3 Differences from Biology
3.5 String Alignment Models for Network Traffic
3.5.1 Longest Common Substrings
3.5.2 Longest Common Subsequences
3.5.3 Smith-Waterman: Dynamic Programming
3.5.4 Jacobson-Vo: Combinatorial Reduction
3.5.5 Improving Jacobson-Vo: Targeted LCS Selection . . .
3.6 AttacksandCaveats
3.6.1 Algorithmic Complexity
362 Evasion
37 RelatedWork
3.7.1 Other Forms of Traffic Analysis
3.7.2 Detection of Commonality
38 Summary

4 Fingerprinting the Normal

41 Introduction
4.2 Characteristics of Application-Layer Traffic
4.3 Protocol Modelling with Common Substring Graphs
431 Construction
432 Comparison oo
433 Merging oo
434 Scoring
44 Evaluation
441 Terminology
442 InputTraffic
443 GraphStructure. L.
444 Protocol Classification
445 Runtime Behaviour
45 Discussion e e e e
46 RelatedWork
47 Summary

5 Fingerprinting the Malicious

58
58
59
60
63
65
66
66
67
67
67
68
73
79
80
81
84

85

Vi

51 Introduction 85
52 DefiningMalice 85
52.1 Content-based Attacks 86

52.2 Volume-based Attacks 88

5.3 Automated Signature Generation using Honeypots 88
531 Architecture oo L 90

532 Evaluation, 98

533 Discussion oL 100

5.4 Curtailing Malicious Traffic with Packet Symmetry 104
5.4.1 Packet Asymmetry as a Badness Oracle 104

542 TrafficAnalysis 106

543 Discussion 110

55 Related Work 111
5.5.1 Honeypot Architectures 112

5.5.2 Automated Signature Generation. 113

5.5.3 Detection and Mitigation of Volume-based Attacks . 115

56 Summary o 116

6 Conclusion 118
6.1 FutureWork 119
6.2 End-to-End Considerations 121

A Code 123
A.1 Bro Policy for Message Extraction 123
A.2 Improved Jacobson-Vo Algorithm 127
Bibliography 137

vii

Introduction

“Mmm. This is good. This is
really good. What is this?”

— Princess Fiona in Shrek.

In this dissertation I introduce novel ways to distinguish malicious traf-
fic from the benign. By taking advantage of structural aspects of network
traffic exposed by suitable filtering of input traffic, typical as well as mali-
cious activity on computer networks can be fingerprinted and contrasted.
I will show how application-level content and network-level flow compo-
sition can be used to extract the structure of application-layer protocols, to
identify malicious flow content, and to prevent certain classes of denial-
of-service attacks.

I motivate the topic of this dissertation and state my thesis in Section 1.1.
Next, I briefly outline the structure of the dissertation in Section 1.2 and
state its contributions explicitly in Section 1.3. Large parts of this disserta-
tion have been previously published; I enumerate those publications Sec-
tion 1.4 and also mention some which address related topics that I have
worked on besides the dissertation.

Finally, it may help the reader to know that several elements of the elec-
tronic version of the dissertation are clickable to ease navigation. URLs are
generally linked. Entries in the table of contents take you to the respective
chapters and sections. Chapter titles and headers link back to the table of
contents, while section numbers link to the beginning of the current chap-
ter. Citations lead to the corresponding entry in the bibliography, where
each entry lists the numbers of all pages on which the entry is cited. Those
numbers link back to to the respective citations throughout the document.

1.1

1.1. MOTIVATION

Motivation

Traffic on the Internet is not only constantly growing in volume, it is also
growing increasingly more complex and multi-faceted. New applications
are introduced constantly, often without clear network-level specifications
or even openly trying to obscure their presence, creating new usage pat-
terns and traffic content. At the same time, older applications decline.
This healthy evolution is challenged by an onslaught of equally inventive
abusive traffic: a poorly secured network edge allows large-scale automa-
tion of system break-ins through the injection of malicious content into
the communication, enabling a wide range of subsequent attacks and nui-
sances such as distributed denial-of-service attacks and generation of vast
amounts of unsolicited electronic mail.

As a consequence, the importance of network traffic monitoring has in-
creased in tandem, for two reasons. First, monitoring is necessary to im-
prove one’s understanding of the typical activity on a network, for example
in order to keep track of current application usage, be able to provision
a network economically, forecast application growth, or validate service
differentiation. Second, traffic is monitored to detect and, ideally, filter out
abusive activity, where abuse is typically defined by site-local administra-
tive policy, and may include the use of undesirable applications, creation
of malicious content, abusive volumes of traffic, aggressive scanning be-
haviour, etc.

Novel approaches to network monitoring are required to help operators
maintain a clear picture of the normal and malicious activity on their net-
works. An essential requirement here is automation: on the one hand, an-
alyst time generally is a scarce resource; on the other, malware has been
shown to propagate at time scales that essentially exclude the possibility
of human analysis.

This dissertation touches on all of these aspects. I argue the following
thesis:

Network traffic exhibits structural properties which, given suitable fil-
tering and vantage points, permit fully automated derivation of finger-
prints of previously unknown network applications and attacks. The
generated fingerprints enable accurate detection as well as filtering of
such network activity.

1.2

1.3

1.2. OUTLINE

Outline

This dissertation is structured as follows. I begin by surveying the de-
velopment of network security over the last decades in Chapter 2, to put
my work in general context. Much of the dissertation dedicates itself to
content-based traffic analysis, for which I lay the foundation in Chapter 3:
I introduce techniques for tracking the message exchange between com-
munication endpoints and use them for the study of sequence analysis
models adapted from the bioinformatics domain. I present variants of se-
quence alignment algorithms suitable for network traffic and outline their
trade-offs, and introduce the consideration of such algorithms from an ad-
versarial perspective. I present a first use of these techniques in Chapter 4
in the form of a content-based model of application-layer protocol activity
found on a network. In Chapter 5 I focus on malicious traffic. I present
techniques for automatically detecting and fingerprinting the characteris-
tics of attacks as they occur, as well as a proactive monitoring and enforce-
ment technique for the prevention of denial-of-service attacks. Finally, I
conclude the dissertation with Chapter 6.

Contributions

In this dissertation I make the following contributions:

e I investigate the suitability of a number of biological sequence align-
ment algorithms in the adversarial network environment, and find
that such algorithms have to be employed with great care in order to
yield the desired results. I introduce a novel variant of the Jacobson-
Vo algorithm that is able to accommodate flexible alignment models
akin to dynamic programming as used by the popular Smith-Water-
man algorithm, while outperforming the latter by a factor of 33 on
average and up to 58.5 times in the best case. (Chapter 3.)

e | introduce Common Substring Graphs (CSGs), a structural model
of flow content taking into account the frequency, length, and loca-
tion of strings common to a set of flows. The model retains informa-
tion about the input flows with high fidelity, making it useful for a

3

1.4. PUBLISHED WORK

number of applications. Using thorough evaluation, I demonstrate
very good suitability of the model for one such application, namely
application-layer protocol classification. (Chapter 4.)

e I pioneer the use of honeypots and sequence analysis algorithms for
automated fingerprinting of malware and demonstrate the feasibil-
ity of fully automated and fast malware signature generation. (Sec-
tion 5.3.)

e I present the notion of Packet Symmetry, a network-level preven-
tion strategy for volume-based attacks, leveraging the insight that
well-behaved applications should not transmit vastly more packets
than they receive. Through traffic analysis I confirm the feasibility
of highly universal packet-level differentiation between benign and
malicious traffic. (Section 5.4.)

14 Published Work

Individual parts of the work presented in this dissertation have appeared
in the following publications:

e J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. Voelker: Unex-
pected Means of Protocol Inference. Internet Measurement Confer-
ence (IMC), 2006, Rio de Janeiro, Brazil.

e C. Kreibich and]. Crowcroft: Efficient Sequence Alignment of Net-
work Traffic. Internet Measurement Conference (IMC), 2006, Rio de
Janeiro, Brazil.

e C. Kreibich, A. Warfield, J. Crowcroft, S. Hand, and I. Pratt: Us-
ing Packet Symmetry to Curtail Malicious Traffic. Fourth Workshop
on Hot Topics in Networks (HotNets-IV), 2005, College Park/Mary-
land, USA.

e C. Kreibich and J. Crowcroft: Honeycomb — Creating Intrusion De-
tection Signatures Using Honeypots. 2nd Workshop on Hot Topics
in Networks (HotNets-II), 2003, Boston, USA.

1.4. PUBLISHED WORK

The following article presents a central component of my toolchain for
offline network traffic manipulation and has been used in almost all of the
work listed above.

e C. Kreibich: Design and Implementation of Netdude, a Framework
for Packet Trace Manipulation. Usenix Technical Conference, Freenix
Track, 2004, Boston, USA. Awarded Best Student Paper.

During my work on this dissertation I have contributed to other published
work that is closely related to structural traffic analysis but slightly outside
scope for inclusion:

e H. Dreger, C. Kreibich, R. Sommer, and V. Paxson: Enhancing the Ac-
curacy of Network-based Intrusion Detection with Host-based Con-
text. Conference on Detection of Intrusions and Malware & Vulner-
ability Assessment (DIMVA 2005), Vienna, Austria.

e C. Kreibich and R. Sommer: Policy-controlled Event Management
for Distributed Intrusion Detection. 4th International Workshop on
Distributed Event-Based Systems (DEBS’05), 2005, Columbus/Ohio,
USA.

e A.Moore, J. Hall, C. Kreibich, E. Harris, and 1. Pratt: Architecture of
a Network Monitor. Passive and Active Measurements Workshop,
La Jolla, California, 2003.

Much of the work listed above originated from internships with Vern Pax-
son at ICSI in 2004 and 2005.

2.1

Background

“And leaving the door open is the worst mistake.”
— Scare instructor in Monsters, Inc.

In this chapter I give an overview of the evolution of network security in
the Internet from its conception to the present day, illustrating the growing
application of content-based traffic analysis techniques for understand-
ing and enforcing site-local traffic management policies on computer net-
works. Since network surveillance gives operators access to potentially
highly sensitive information about the users, it is of great importance to
be aware of the legal implications of such monitoring. Using Germany,
the United Kingdom, and the Unites States as examples, I briefly survey
the relevant legislation. The goal of this chapter is to put into perspective
the techniques I introduce in the remaining chapters of this dissertation.

Network Security

Information has become one of the (if not the) most important asset in our
society. Many pieces of information are public and meant to be accessible
by anyone, while others need to be guarded carefully. In this context, net-
work security is mentioned frequently enough in the media that it is worth
clarifying what exactly I mean by it. When speaking of network security
in this thesis, I adopt the description by Shaffer and Simon [138]:

Network security refers to all hardware and software functions, char-
acteristics, features, operational procedures, accountability measures,
access controls, and administrative and management policy required
to provide an acceptable level of protection for hardware, software,
and information in a network.

2.2

221

2.2. EVOLUTION OF NETWORK SECURITY IN THE INTERNET

The goals of network security are no different from those of any effort to
protect information: availability guarantees that requested information can
be provided when needed, confidentiality restricts access to information to
authorised individuals, while integrity ensures that information remains
unmodified and complete. Attacks on networked systems attempt to ex-
ploit one or more vulnerabilities in those systems that allow the mech-
anisms that enforce these goals to be bypassed. A successful attack can
be composed of many steps; Schneier’s attack trees structure these steps
[133]. Malicious activity generally means any activity that aims to find or
exploit vulnerabilities.

It is important to note that security is always a trade-off. Network security,
as any security investment, is an additional expenditure and thus subject
to calculations of return on investment (ROI). If an organisation believes
the financial cost imposed by a security breach s smaller than that of the
investment necessary to protect the network, it is unlikely to make that
investment. Methods of risk estimation for ROI calculations are contro-
versial, see the book by Alberts and Dorofee [1] for an example.

Evolution of Network Security in the Internet

In the following I present an overview of the evolution of network security
over the decades, focusing on the awareness, understanding of the prob-
lem, and measures taken, rather than trying to give a complete account
of the history of the Internet. Any historical facts that are not referenced
explicitly are taken from the general literature [111, 121, 64].

1960s

The 1960s were dedicated to the exploration of the very fundamentals
of computer networking: cross-platform communication, and the use of
packet switching as opposed to circuit switching, for increased robustness
against structural failures. Baran’s seminal paper [11] addresses security
in the sense of preserving connectivity in the presence of node and link
failures. In contrast to popular opinion, this damage resilience was only

7

availability,
confidentiality,
integrity

attack trees

222

223

2.2. EVOLUTION OF NETWORK SECURITY IN THE INTERNET

one of the motivators besides others, such as J.C.R Licklider’s vision of a
global network infrastructure [96].

1970s

By the early 1970s, the Arpanet had become an important platform for col-
laborative research. Email, TCP/IP and Ethernet are developed. Cerf and
Kahn’s TCP/IP paper [25] thoroughly treats addressing, routers, reliable
transfer, and flow control, but has no notion of a threat model or simi-
lar security-focused analysis. In 1979, John Shoch and Jon Hupp of Xerox
PARC develop a small, self-replicating program that finds groups of idle
local machines that the authors want to use instead of the mainframe, for
parallel computations. The program is flawed and causes a large frac-
tion of the local host population to hang. Shoch and Hupp implemented
a worm: a self-contained program that can replicate itself across multiple
machines autonomously. Network connectivity is a basic requirement for
computer worms, thus increased connectivity also implies a larger poten-
tial attack surface for worms. However, security flaws in the Arpanet are
not a major concern at this point. At this point, attackers are much more
interested in exploring the various ways in which the in-band signalling
channels of the telephony systems can be tricked into permitting cheap
long-distance calls [148].

1980s

This decade marks the shift from time-sharing few machines to large de-
ployments of interconnected end-user PCs with a common LAN technol-
ogy, typically Ethernet, and the network officially becomes the Internet.
Access is opened up to basically anyone with the right equipment, and
thus laid the basis for the first well-known security violations on the Inter-
net. Security-related terminology starts to consolidate. James Anderson
lays one of the cornerstones of what is to become the field of intrusion
detection when he establishes the idea of using audit data for detecting
misuse in a 1980 paper [3]. In 1983, Ph.D. student Fred Cohen and his ad-
viser Len Adleman are the first to academically term code that can prop-
agate “in the wild” a computer virus [38]. Cohen’s now commonly used

8

computer worm

computer virus

224

2.2. EVOLUTION OF NETWORK SECURITY IN THE INTERNET

non-mathematical definition of a virus is as follows:

A virus is a program that can ‘infect” other programs by modifying
them to include a [...] version of itself.

Prior to Cohen and Adleman, the term had been used in science fiction [66,
21] and code was released that falls in the same category (such as Elk
Cloner [152]). In contrast to worms, viruses require external activity to
propagate. Cohen’s work marks the beginning of the development of a
myriad of different kinds of computer viruses. Szor [152] enumerates the
many digital niches in which viruses appear in great detail.

In 1986, Cliff Stoll accidentally discovers a large-scale international oper-
ation to break into computers in the United States [150]. On 2 Novem-
ber 1988, Robert Morris releases the Morris Worm (also referred to as the
Internet Worm), the first Internet-wide uncontrolled self-replicating code
targeting a set of specifically preselected weaknesses in widely deployed
software [145]. It leads to the development of the first Computer Emer-
gency Response Team (CERT) [155]. In 1987, Dorothy Denning publishes
“An Intrusion-Detection Model,” describing a model for profiling normal
behaviour and using deviations from the norm as the signal of misuse [50].
The work establishes the term “intrusion detection” and her model re-
mains the basis of most anomaly-based intrusion detection systems (IDSs)
today. The concept of a firewall as a filtering mechanism for unwanted
traffic appears in the literature in 1988 [103] and leads to a wide array of
implementations across a large design space spanning protocol layers, fil-
tering dynamics, and physical deployment scenarios such as demilitarised
zones.

1990s

At the beginning of the decade, vulnerabilities in server software, then
exclusively a UNIX domain, are published regularly. Heber et al. estab-
lish the notion of a specifically network-based intrusion detection sys-
tem (NIDS) in a paper appearing in 1990 [72]. Their system is anomaly-
based, following Denning’s model. Large-scale break-ins, often facilitated
through unsafe configuration of the rlogin tools, appear in isolation [27,
28]. Social engineering, essentially non-technical means to trick people

Morris worm

intrusion
detection

NIDS

2.2.5

2.2. EVOLUTION OF NETWORK SECURITY IN THE INTERNET

into handing out sensitive information, finds a new market through email
scams [26]. Attackers attempt to monitor network traffic in strategic loca-
tion in order to extract user account details from the then entirely unen-
crypted traffic [29]. In 1995, the SSH protocol suite appears and with its
ability to encrypt connections ends the era of large-scale password sniffing
from interactive user sessions.

1996 is the year of the first denial-of-service (DoS) attacks, in which attack-
ers flood victim servers with large amounts of request traffic [30] or with
maliciously crafted packets [31, 32, 33], thus crashing or slowing down the
machine or its access links, and preventing it from servicing legitimate re-
quests. Denial-of-service attacks remain one of the largest security threats
on the Internet to the present day. On March 26 1999, the first email-borne
worm and macro virus, Melissa, appears and clogs mail servers around
the planet [34], causing massive financial damage. Estimates vary widely
but are generally placed in the order of hundreds of millions of US dol-
lars. That year also sees the advent of distributed denial-of-service attacks
(DDoS attacks), in which attackers use a large number of subverted ma-
chines to flood a victim with traffic.

At the end of the decade, two major open-source NIDS implementations
appear: Bro [119] and Snort [128]. Bro becomes the predominant system
for research endeavours, and is the platform for much of the work pre-
sented in this dissertation.

The 1990s are the decade in which the Internet is opening up to commer-
cial use. With it comes the entry into the network, or more precisely, into
the edge, of large numbers of hosts running Microsoft operating systems.
This much younger codebase, combined with a typically weak sense of
security on part of the “operators” of these machines, offers a ripe ground
for exploitation and leads to a shift in attacker focus toward the Windows
operating systems.

2000-Present
The boundaries between worms, viruses, and the activities they perform

become increasingly blurred. “Malware” becomes an umbrella term re-
ferring to any kind of malicious software. Widespread broadband access

10

DoS

DDoS

malware

2.2. EVOLUTION OF NETWORK SECURITY IN THE INTERNET

leads to around-the-clock connectivity of large numbers of poorly guarded
end-user PCs.

The beginning of the new millennium is an era of severe worm outbreaks.
Sadmind, CodeRed, CodeRed II, Nimda, Slammer, Blaster, and Sober re-
peatedly cause significant financial damage, denials of service on affected
systems, and hindered general network operations world-wide [147, 165].
Weaver et al. [164] present a taxonomy of different kinds of computer
worms. Among other things, worms highlight the deficiencies of thinking
of network defense as a perimeter problem: once malware is active inside
the network, defenses against the outside are useless. The widespread use
of wireless networking and laptops exacerbates this problem.

They idea of mining regular networks with traps for the attackers to step
into, termed honeypots, becomes mainstream. Such systems are specifically
set up for thorough analysis of attacker activity, and little else [146]. Hon-
eypots are a central component of the work I present in Chapter 5.

A major shift in attacks in recent years is commercial motivation for ex-
ploitation of vulnerabilities. Instead of only bragging about the latest
break-ins, the control of large numbers of machines becomes automated
to the degree that allows attackers to control such botnets for extorting
money: only after payment is the victim relieved of DDoS attacks, or re-
turned encrypted files. Delivery of unsolicited email, often happening
through the infected machine’s legitimate SMTP server, is another com-
mon application. Current botnets have a large command set suitable for
automated updates of the malware, sniffing user input, scanning for vul-
nerabilities, etc. At present, they often use IRC and IRC-like systems as
the communications layer since IRC lends itself well to commanding large
numbers of clients [42, 65]. Economic incentives have also started to be
employed by security vendors: vulnerability markets [132] promise to pay
money to discoverers of new vulnerabilities for the vendor’s privilege of
learning of — and potentially disarming — the vulnerabilities before the
competition.!

1See for example http://labs.idefense.com/vcp. php.

11

honeypots

economic
motives

botnets

http://labs.idefense.com/vcp.php

2.3

2.3. ARMS RACES IN NETWORK SECURITY

Arms Races in Network Security

The constant theme in the evolution of network security over the decades
is one of measures and countermeasures, that is, an arms race. When at-
tackers adopted a new strategy, site administrators developed counter-
measures, and vice versa. This phenomenon is in no way unique to the
network security domain but can be observed in any attack/defense sce-
nario. In the field of network security, the anti-virus industry is an embodi-
ment of such a race. Another good example is the introduction of network
intrusion detection systems. After the first systems saw widespread de-
ployment, it quickly became clear that extracting flow content unambigu-
ously is hard, and that there is potential for evading the monitor [125].
IDSs improved their algorithms and additional anti-evasion techniques
were proposed [71, 139], but the arms race has never been clearly decided
in favour of the attackers or the defenders. I discuss this further in Sec-
tion 5.2.1, in the context of finding ways to fingerprint the malicious.

Several aspects of the network security arms race are worth noting. First
of all, it is of limited predictability: external influences can shift motiva-
tions of the involved parties in unforeseeable ways. Second, not taking a
step that makes life harder for the other side is a chance missed, unless
taking that step brings with it negative side effects that are bigger than the
improvement itself. Third, it is also a race in a more literal sense: the in-
volved timescales are constantly decreasing. This holds for both the time
from discovery of a vulnerability to attempted exploitation as well as to
the development of a fix for the vulnerability and of signatures identify-
ing exploitation attempts [6]. The development of a technique to derive
such signatures without human intervention is the main contribution of
Chapter 5 of this dissertation. Fourth, the race is here to stay. While there
can be no doubt that present-day software engineering produces subop-
timal products due to economic disincentives and lacking expertise, no
matter how well the architecture of the future Internet will work, people
will always attempt to attack it. The question is only how easy it will be
for them to succeed. From a technical point of view, the arms race is a
constantly driving factor behind the development of more sophisticated
attack and defence techniques.

12

24

241

2411

2.4. DETECTING MALICIOUS BEHAVIOUR
Detecting Malicious Behaviour

Purpose, Mode, and Consequence of Detection

There are many reasons why a site might operate an infrastructure for de-
tecting malicious activity. They are closely related to the security policy a
site operates under, that is, detection will be a building block for enforcing
the policy. Typically the goal will be better understanding of activity on
the network and to prevent abuses of system resources. Detection mecha-
nisms can be classified along multiple dimensions.

Strategy and Policy

There are two major approaches to detecting malice [8]. First, we can de-
fine what behaviour we see as normal, and report deviation from such
a profile. This is known as anomaly detection and has seen a consider-
able amount of research over the years. At the network level, the focus is
often on modelling statistical traffic parameters such as connection rates,
transfer volumes, contact habits, etc, frequently with probabilistic classi-
fiers. Alternatively, we can formulate precise signatures of malicious be-
haviour, and detect their occurrence in the network. Such misuse detection
has been embraced by industrial vendors early on and mostly consists of
content-based signature detection for binary classification. A major bene-
fit of binary classification, assuming it is correct in its judgement of input
traffic, is that it makes a clear statement that eases processing of the classi-
tied event. I discuss binary classification further in Section 2.4.2.

Anomaly and misuse detection can be combined in whichever way best
serves a site’s security policy. The effect of a detection is similarly up to
policy and could range from warnings issued to the administrator to im-
mediate termination of a machine’s network connectivity. Policy is so im-
portant because there cannot be a single standard for what is worth alert-
ing to. For example, one can ask whether the occurrence of an attempted
Microsoft IIS exploit in a UNIX-only LAN is worth an alarm, or at which
point a scanning source is deemed aggressive enough to ban it from fur-
ther communication. It will depend entirely on the preferences of the local
site.

13

anomaly
detection

misuse detection

24.1.2

2.4. DETECTING MALICIOUS BEHAVIOUR

Location, Distribution, and Focus

The field of vision that a detection system has on a network depends
on where it is deployed and strongly affects potential results and perfor-
mance. The more input the system has, the more it can potentially alert to,
but the higher will be the computational requirements. Many deployment

scenarios are feasible; all of them have different advantages and draw-
backs.

Host-based systems can monitor in detail all activity on a host, but are
restricted to just that host. Network-based systems, on the other hand, see
a wide range of activity, but must infer from the network the activity on
the end hosts, which is nontrivial [125]. OS virtualisation in combination
with servicing a large IP address range from a small set of physical hosts
is an interesting way to widen a host-based system’s focus. A key aspect
in network-based monitoring is the depth to which the traffic is analysed.
I will discuss this separately below in Section 3.2. This thesis presents a
variety of techniques ranging from shallow packet counts to deep content
analysis of reassembled traffic flows, combining several of the approaches
outlined above.

Even network-based detectors can only monitor what they observe, and
they too remain blind to highly distributed activity unless the observa-
tions of multiple systems are combined into a larger, distributed detector.
Timely distributed detection is an absolute requirement for stopping fast-
spreading malware, since the chances of stopping such phenomena be-
come extremely small once the infection has crossed its epidemic thresh-
old [109, 166].

Unfortunately, the current sophistication level of distributed monitoring
is rather primitive: I know of no set of sites sharing descriptions of at-
tacker activity in even semi-automated fashion besides elementary shared
blacklists of IP addresses, for example to filter out known originators of
unsolicited electronic mail [123, 17]. This is very far from the sophisti-
cated, fully automated propagation and filtering architectures required to
make real-time containment of Internet-scale epidemics a reality. As an
inital step in that direction, I have contributed to the extension of the Bro
IDS to a fully distributed, event-based system [85], providing a testbed
for experimenting with such infrastructures. The system is fully imple-

14

242

2.4. DETECTING MALICIOUS BEHAVIOUR

mented, publically available,? and actively used in test environments at
institutions such as ICIR, Lawrence Berkeley National Laboratory, and
Technische Universitdat Miinchen.

Binary Classification

Many kinds of network security systems attempt to detect malicious be-
haviour, for example virus scanners or intrusion detection systems. Like
any detection system, such devices can err in two ways: they can report
a detection when none exists (a false positive), or they can remain silent
even though there is malicious activity in progress (a false negative). The
goal is to minimise both kinds of errors while at the same time maximising
detection.

D

Figure 2.1. Outcome possibilities in binary classification.

Two measures for the degree to which this succeeds are precision Pr and
recall Re, as illustrated in Figure 2.1. Let the circle to the left be the actual
set we want to detect, and the one on the right the one we do detect. Thus,
A represents the false negatives, B and C constitute the true and false pos-
itives, respectively, and D comprises the remaining true negatives. Preci-
sion and recall are then defined as follows:

B B

Pr=g-5 Re=="%

In binary classification, sensitivity Se and specificity Sp measure similar no-
tions. Sensitivity is the same as recall. Specificity is closely related to pre-

2See http://www.bro-ids.org

15

false positive &
negative

precision, recall

http://www.bro-ids.org

2.5

2.5. LEGAL IMPLICATIONS OF NETWORK MONITORING

cision, but focuses on the entire test set:

B D

=2¥8 PTcrp

The false positive ratio FP is the ratio of false positives to all negatives and
can be expressed through Sp:

C
FP=_— —1-5
C+D P

The above measures point out two things.

e Firstly, true positives alone do not make a good detector if false pos-
itives are substantial, and vice versa. That is, precision/specificity
and recall need to be evaluated in combination.

e Secondly, and more generally, there exists a duality between know-
ing the benign and detecting the malicious. If we know exactly what
is benign, then anything that falls outside of that definition has to
be malicious, and vice versa. This duality is an underlying theme of
this thesis and will be referred to repeatedly.

In the network security context, false positives can lead to denial of ser-
vice by preventing users from accessing legitimate files, or because legit-
imate network connections are incorrectly terminated [24, 151]. Much of
the security arms race comes down to attackers trying to making it harder
to identify the malicious while the defenders improve their classification
techniques. Chapter 4 of this dissertation is dedicated to the identifica-
tion of the benign, while Chapter 5 discusses approaches that automate
the identification of the malicious.

Legal Implications of Network Monitoring

Monitoring network traffic can easily provide site operators access to po-
tentially sensitive information about their users. Just as is the case with
wiretapping, network monitoring does not exist in a legal vacuum: site op-
erators are typically limited in the way the obtained data may be processed

16

251

252

2.5. LEGAL IMPLICATIONS OF NETWORK MONITORING

and stored. Generally, one has to differentiate between the legal environ-
ment governing the procedures inside corporate networks (affecting the
relationship between employer and employee), and those in place to pro-
tect the privacy of citizens (in their role of customers of service providers).

Corporate Law

While details vary strongly from country to country (and possibly from
state to state), corporate law generally provides employers with the possi-
bility to establish acceptable use policies that the employees have to com-
ply with, and allow monitoring and filtering tools to enforce this compli-
ance.

In Germany, employers may monitor employee communication only after
explicit notification, or in case of substantial evidence of resource abuse.
Private use of the employer-provided Internet connection is not sufficient
reason for terminating the work contract without prior warning, or if com-
prising less than 100 hours per year (§626 BGB).

In the United Kingdom, the situation is essentially similar. The Regulation
of Investigatory Powers Act (RIPA) of 2000 [117] states that employers may
only conduct monitoring if both parties have consented, or if the monitor-
ing is required to conduct the employer’s business. Beyond that, the Data
Protection Act (DPA) [118], most recently revised in 1998, strengthens the
employee’s position by requiring the employer to assess the impact of the
monitoring activity on the user’s privacy, and renders monitoring poten-
tially illegal under certain circumstance even after employee consent.

In the United States, the employee’s position is considerably weaker, as
monitoring can be perfomed even without explicit consent by the em-
ployee. As of 2005, approximately 75% of employers monitor employee
web surfing, 65% block accesses to certain URLs, and around 50% moni-
tor electronic mail [127].

Civil Law

Germany introduced data protection laws as early as 1969, making it the
first country in Europe to offer such protection. Today, the Teleservices

17

RIPA

DPA

253

2.5. LEGAL IMPLICATIONS OF NETWORK MONITORING

Data Protection Act (TDDSG) [22], introduced 1997, enforces protection
of private user data in telecommunication networks that offer communi-
cation as a service. It does not cover policies inside corporate networks.
Users have to be informed about the extent to which personal data are
collected, processed, and used. The service provider may only collect per-
sonal information without explicit consent by the user as far as required
for providing the service, to bill for it, or to enforce legal recourse in case
of abuse. Detailed log files may not be kept for more than six months.

In the United Kingdom, data protection was initially enforced more reluc-
tantly than in Germany. As with corporate law, today’s user rights and
operator responsibilities are addressed by the Regulation of Investigatory
Powers Act Data Protection Act, much resembling the situation in Ger-
many.

In the United States, citizen’s rights to protection of private data are gen-
erally weaker than in Europe. Individuals usually have to take action to
protect their data, for example to prevent credit bureaus from passing on
personal information.> The Freedom of Information Act (FOIA) [39], most
recently amended in 2002, ensures the public the right to access to records
held by the U.S. government. Beyond that, there exists no comprehensive
law regulating the treatment of private data; however, there is a wealth
of acts* governing individual protection aspects, such as the Health In-
surance Portability and Accountability Act (HIPAA) [40], enacted 1996, or
the Children’s Online Privacy Protection Act (COPPA) [41], effective as of
2000. Anderson’s book [4] provides further detail in particular about the
legal differences between Europe and the United States.

Implications for this Dissertation

There are certainly far more legal regulations in place at the many sites on
the Internet that I am able to consider in this dissertation. However, given
the examples I have investigated, I believe that the techniques I introduce
in this dissertation do not necessarily require additional legal clearances
beyond those required to do other, similar kinds of monitoring. In partic-
ular, the fully content-based techniques of Chapter 4 help administrators

3See https://www.optoutprescreen.com/opt_form.cgi.
“See http://www.informationshield.com/usprivacylaws.html.

18

TDDSG

FOIA

HIPAA
COPPA

https://www.optoutprescreen.com/opt_form.cgi
http://www.informationshield.com/usprivacylaws.html

2.6

2.6. SUMMARY

understand the range of known and unknown applications in use on their
networks, which certainly seems an acceptable monitoring target for cor-
porate networks at the very least. The malware fingerprinting techniques
I introduce in Section 5.3 likewise should not pose fundamental problems,
due to the use of honeypots as a traffic source [146]. Finally, the volume-
based filtering technique I introduce in Section 5.4 only requires access to
at most the transport layer, rendering the legal aspects less complicated
than in the previous cases, since access to flow content is not required.

Summary

Detecting malicious activity on today’s networks is a challenge that comes
down to how well one can contrast the benign against the malicious. Lack
of understanding of either side will invariably lead to poor detection per-
formance. Detection mechanisms operate from different vantage points
and at different levels of accuracy. Improvements to any detection strat-
egy do not occur in a vacuum; rather, they are driven by a constant arms
race: while the defenders improve their monitoring infrastructure, the at-
tackers try to conceal and evade. This battle is here to stay, regardless of
what technological improvements the future holds. This evolution is not
exclusively governed by technology: legal requirements try to protect the
users’ rights to data privacy, with details varying strongly from country to
country.

In the following chapters I present ways to enhance the contrast between
the benign and the malicious. The essential tools for doing so are tech-
niques to perform structural traffic analysis, which I introduce next.

19

3.1

Structural Traffic Analysis

“Uh, ‘P’. Okay, ‘P’. 'Shh-eer...Sher—P. Sher—P.
Shirley? P—". Oh! The first line’s ‘P. Sherman’!”
— Dory, in Finding Nemo.

Introduction

In this chapter I present techniques for structural analysis of network traf-
fic. I use the term “structural” to refer explicitly to types of analysis that
extract or leverage characteristic properties of traffic flows at the abstrac-
tion levels suitable for the analysis. Examples of such properties might be
patterns in flow content, counts of transmitted packets, etc. I do not mean
traffic analysis for purposes such as detecting steganography, defeating
anonymity, and generally methods that are strongly statistical in nature
(see Section 3.7 for an overview).

I begin by describing the various types of analysis possible by monitoring
network traffic at various abstraction levels, in Section 3.2. Much of the
work I present in the rest of the dissertation uses flow content extracted
at the application layer. Once operating at this abstraction level, it often is
desirable to extract the message dialog of the communicating endpoints.
In Section 3.3, I introduce a technique that achieves this. It serves as the
basis for a number of sequence alignment algorithms that I introduce in
the remainder of this chapter and that will be used in Chapters 4 and 5.
Some of the algorithms are directly inspired by applications in bioinfor-
matics, and it is worth investigating similarities and differences encoun-
tered when moving these algorithms into the networking domain. This
is the topic of Section 3.4. In Section 3.5 I present a number of sequence
alignment strategies and discuss their suitability for network traffic. This

20

“Structure”

3.2

3.2. ABSTRACTION LEVELS FOR NETWORK MONITORING

includes the design, complexity analysis, and performance evaluation of a
novel extension to Jacobson-Vo, an algorithm not previously applied in the
networking domain and able to outperform established algorithms dras-
tically. As I have shown in the previous chapter, attack resilience has to be
a central concern in the design of network applications. Structural traffic
analysis is no exception, therefore I discuss this aspect, and particularly the
implications for the algorithms of Section 3.5, in more detail in Section 3.6.
I conclude the chapter with a survey of related work in Section 3.7.

Abstraction Levels for Network Monitoring

Any kind of network-based traffic analysis necessarily involves inspection
of the packets observed on the wire. Starting from the raw packets, the
analysis can be performed up to varying levels of depth. This depth cor-
responds roughly to the layer in the network layering model at which the
analysis is performed; the higher up, the deeper is the analysis, the more
costly in terms of CPU cycles, and the more invasive to the actual content
transferred in the flows. The following list proceeds upward through the
layers of the OSI network model [173], describing each layer’s relevance
to network monitoring.

e Physical Layer: the physical layer defines how a monitoring station
can tap into the traffic. For shared media this is typically easy since
the standard access method is sufficient to observe all traffic. For op-
tical networks the task is complicated by having to split off a fraction
of the optical input signal to be fed into the monitoring engine.

e Data Link Layer: here one can perform statistical analysis of elemen-
tary attributes of frames passing the location of the monitor, such as
the frame frequency, byte size, and particularly inter-arrival times.
Flow granularity is typically irrelevant at this level, though MAC
addresses can be used to identify LAN-wide endpoints if necessary.

e Network Layer: at this level, analysis leverages per-packet protocol
header information, typically to extract IP addresses and focus flow
granularity to the host-pair level. Technologies such as network ad-
dress translation and proxying weaken the value of IP addresses as

21

3.2. ABSTRACTION LEVELS FOR NETWORK MONITORING

a unique host identifiers, an issue I will be discussing further in Sec-
tion 5.4.

e Transport Layer: this is the lowest layer carrying end-to-end flow
information. TCP and UDP port numbers allow further narrowing of
flow granularity to individual sessions via its five-tuple of originator five-tuple flow
and recipient IP addresses, port numbers, and IP protocol type. speciieation

e Session, Presentation, and Application Layers: these levels of anal-
ysis understand flow content as perceived by the endpoint applica-
tions. They require normalisation of the payload depending on the
transport-layer protocol used: for TCP flows, this requires flow re-
assembly to recombine the individual TCP segments of a connection flow reassembly
into the data streams transmitted by the source host. For connec-
tionless protocols such as UDDP, the application-layer flow semantics
depend on the application-layer protocol. Frequently, all packets car-
rying the same IP address/UDP port quadruple are considered as
a single flow, or alternatively, pairs of datagrams are considered a
self-contained request-response dialog (as is the case with DNS, for
example). Some degree of transformation of the application-layer
content may be necessary in order to render the content accessible
as individual data flows. For example, SCTP [149] processing would
require the extraction of individual flows from the multiplexed chan-
nels carried over a single connection. Furthermore, application-level
analysis cannot penetrate encryption without external provision of
keying material or termination of the encrypted channel at the mon-
itoring station.

The trade-off between the different depths is one between the level of in-
formation provided on the one hand, and computational overhead and
state-keeping requirements on the other. The higher the traffic volume
on the observed network, the more stringent are the processing require-
ments [58]. In this dissertation I use analysis techniques at multiple levels:
the content analyses performed in Chapters 4 and 5 operate at the applica-
tion layer, while the one presented later in Section 5.4 can operate at both
the link- and network layers.

22

3.3. FLOW REASSEMBLY & HEURISTIC MESSAGE EXTRACTION

2L A J12[B |2 ¢ JEDJZD]JE E]

A C B D E

Figure 3.1. Flow reassembly: TCP packets A to E, shown on top, are observed
sequentially on the wire, all belonging to the same connection and going the
same direction. B and C arrive out of order; D is duplicated. The packet
contents are reassembled into the byte stream shown below, using sequence
numbers.

O A @B JEECCc JEDIEEE]JE_F]
A B C]

Figure 3.2. Message extraction: payload-carrying TCP packets are reassem-
bled as in flow reassembly, but changes in the direction of payload (packets
D and F) trigger the beginning of new messages. Packets not carrying pay-
load (such as pure ACKSs, here shown after packets B and D) have no effect
on message composition.

3.3 Flow Reassembly & Heuristic Message Extraction

Analysis of traffic at the application layer requires recombination of the
content of TCP segments (for TCP connections) and UDP datagrams (for
UDP flows), as observed at the monitoring location, into the byte sequences
that the peering applications are exchanging. This byte sequence becomes
the input for flow content analysis algorithms. The recombination process
is challenging for various reasons. TCP implements a clear notion of a
bidirectional byte stream between endpoints, making flow reassembly fea- fiow reassembly
sible in principle: TCP sequence numbers, taken from the packet header,
are used for pasting together the streams of bytes as transmitted by the
originating end host as well as possible. This is illustrated in Figure 3.1.
The process is complicated by attackers trying to sneak content past the
reassembler or to attack its state management, both of which will be dis-
cussed further in Section 3.6.2. UDP, on the other hand, provides no con-
text beyond individual datagrams, thus the only faithful content analysis
of UDP flows without knowledge of the application layer protocol can be
done at the packet level, treating every datagram as a separate message.

23

3.3. FLOW REASSEMBLY & HEURISTIC MESSAGE EXTRACTION

Based on flow reassembly, application-layer message extraction takes an-
other step toward recovering the application-layer activity of the end-host
processes by attempting to split reassembled flows into semantically con-
sistent messages. As an example, in this model a web browser’s HTTP
request (possibly consisting of multiple packets) forms a message going
from the client to the web server, whose response back to the browser is
the second message in the flow. Since TCP provides no hints as to where
in the flow message boundaries are to be found, flow splitting has to be
done heuristically. The strategy I am using is to split unidirectional flows
into messages whenever the monitoring point observes a switch in the
direction of transfer of new application-layer content. This bidirectional
approach is suggested by the causality commonly present between corre-
sponding messages: a server cannot send a reply before the request has
been received.! In order for this to work, the monitoring point must be
able to observe both directions of the communication, which is compli-
cated in principle by the possibility of asymmetric routing but usually
doable in practise by careful placement of the monitor. Just as is in flow
reassembly, message extraction has to be aware of duplicate transmissions
in order to remain synchronised with the endpoints. The process is illus-
trated in Figure 3.2, and Appendix A.1 shows a Bro policy implementa-
tion of message extraction. I will discuss potential shortcomings of the
approach in Section 3.6.

Assuming one is not only interested in the first few dozen bytes of a flow,
message extraction has two major advantages. First, when comparing cor-
responding message pairs, it provides a means to detect the beginning of
such messages. This would be significantly harder if only operating at
flow granularity. Second, it helps to reduce runtime overhead: For any
string operation with super-linear runtime in size of its input strings, the
cost of repeated computation on individual messages will be smaller than
that on the entire flow. Assume a string comparison operation of strings
S1 and S, of lengths s; and s,, respectively, requires O(s;s;) runtime. As I
will show in the next section, this is frequently the case. If flows consist of
m messages, each of length 7, then the total cost for message-pair compar-

'The degree to which a balance ensues between the volumes of data sent and received
by the communication endpoints is itself a useful structural property and will be the topic
of Section 5.4.

24

message
extraction

3.4

3.4. SEQUENCE ALIGNMENT ALGORITHMS

Flow 1

Msg 1 Msg 2 Msg 3 Msg 4 Msg 5

Msg 2 Msg 1

Flow 2

Msg 3

Msg 5 Msg 4

\

Figure 3.3. Comparison of entire flows vs. corresponding messages. Focus-
ing on corresponding message pairs, shown as shaded areas, yields substan-
tial computational savings.

ison using this algorithm will be O(m 1n?) as opposed to O(m?*n?)—keeping
runtime linear in the number of messages as opposed to quadratic. Fig-
ure 3.3 illustrates this.

At present, flow reassembly is considered reliable at line speeds of several
gigabits per second when realised in hardware [135], and several hundred
megabits per second in software [58]. Message extraction only slightly
complicates the reassembly process by tracking the directionality of con-
secutive novel payload and can thus be expected to achieve comparable
throughput rates.

Sequence Alignment Algorithms

Once operating at the application level, byte sequences (or byte strings) are a
natural abstraction of flow content. Many algorithms are available to op-
erate on structural patterns in such strings. For example, regular expres-
sions encode a known content pattern and permit detection of that pattern
in flows. They are a cornerstone of misuse detection in network monitor-
ing. Another goal is to identify content common to a set of flows. In this
dissertation, I use several such sequence analysis techniques; more specifi-

25

34.1

34.2

3.4. SEQUENCE ALIGNMENT ALGORITHMS

cally, I will employ and adapt several sequence alignment algorithms. Very
generally, these algorithms try to find and align similar regions in the in-
put strings, and are frequently used in the bioinformatics domain.

Inspiration from Bioinformatics

The field of bioinformatics aims to develop techniques which enable the
analysis of DNA sequences. These sequences make up the genome of liv-
ing organisms and are massively long strings of four different nucleotides:
adenine, cytosine, guanine, and thymine. A frequent challenge given DNA
sequences is motif detection, i.e., the detection of patterns of nucleotides that
are of some biological significance. Research on motif detection has bene-
tited the development of many exact as well as approximate string search
algorithms as well as more elaborate techniques for inferring second-level
properties, for example using Hidden Markov Models [60]. The paral-
lels to network traffic analysis are straightforward: 256 single-byte values
replace the four nucleotides, network flows are the equivalent of DNA se-
quences, and motifs are patterns relevant to the purpose of the traffic anal-
ysis. Computation of common substrings is a frequent theme in sequence
analysis. Chapters 4 and 5 will both be making use of these techniques.

Similarities to Biology

Gusfield [68] justifies the importance of sequence analysis techniques in
biology stating that

In biomolecular sequences [...], high sequence similarity usually im-
plies significant functional or structural similarity.

This observation holds true when substituting biomolecular sequences
with byte sequences in computer networks. In biology, the sequence al-
phabet consists of the four nucleotides adenine, cytosine, guanine, and
thymine, comprising a life form’s DNA.? In network flows, the obvious
equivalent to nucleotides is the byte, yielding an alphabet of 256 possi-

ZMore precisely, the genetic code for creating proteins based on the DNA sequence
operates at the granularity of codons, consisting of sequences of three nucleotides at a
time, yielding 43 = 64 different codons. Since the algorithms operating on DNS sequences
however typically operate at the nucleotide level, I focus on the lower level of abstraction.

26

sequence
alignment

motif detection

343

3.4. SEQUENCE ALIGNMENT ALGORITHMS

ble characters. The parts of the DNA sequence affecting an organism’s
functions are the ones carrying genes, while the rest is commonly referred
to as “junk DNA”. In network flows, arguably all parts of the network
flow serve some purpose, though the functioning of the application-layer
protocols involved critically depends on certain regions of the flow carry-
ing the correct “genes”, protocol-intrinsic strings such as GET and POST for
HTTP, USER and PASS for FTP, etc. If one wanted to stretch the analogy fur-
ther, one could call the payload carried by an application-layer protocol
the junk DNA of the flow, as it serves no active function in the protocol
state machine.

As I will show in Chapter 4, high sequence similarity among key regions
in multiple flows strongly indicates the presence of the same application-
layer protocols. Gusfield goes on to point out that the reverse implication,
inferring sequence from function, is not necessarily true in bioinformat-
ics. This certainly is a similarly valid statement for network flows: similar
protocol functionality does not necessarily imply similar sequences. For
example, file transfers clearly are implemented in many different ways,
and both FTP and HTTP, among many others, can serve this purpose.

Differences from Biology

The similarity to the DNA setting is striking, but has its limits. Three
differences are of immediate practical significance. First, the desirable
timescales for operating on the sequences are different. While off-line pro-
cessing of network traces clearly has its uses, applications such as the ones
relating to containment of Internet epidemics, will require very fast on-
line processing of input sequences. Such a requirement does not exist in
bioinformatics, where the need for fast algorithms is mostly motivated by
processing very large sequences. Note however that while sequences anal-
ysed in bioinformatics can get large, that is ot necessarily the case: the av-
erage length of sequences stored in the GenBank database has remained
close to 1,000 nucleotide pairs [23, 63], a length realistic for sequence anal-
ysis problem settings when operating on network flows as well [172, 84].
Second, there is a strong need for fully automated and precise operation in
the networking domain, whereas in bioinformatics heuristic approaches
are often used to get an initial approximation of an alignment that may

27

3.5

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

then be optimised manually [73, 59]. Third, he difference in input alpha-
bet sizes means that sequence alignment algorithms can operate on more
fine-grained input and more flexible alignment scoring schemes are con-
ceivable. At the same time, however, per-possible-character statistics will
require more state, and the overall complexity of the alignment models
may increase as well depending on their sophistication.

Other differences are more abstract, but nevertheless affect the effective-
ness of the algorithms when applied to network flows. The most signifi-
cant is the observation that nature at most introduces limited random mu-
tation, while the network security domain has to deal with a potentially
malicious modification and obfuscation by a conscious adversary. There-
fore, the algorithms have to be designed with the forethought of being
actively attacked and evaded. Furthermore, the notion of random muta-
tion and its modelling in approximate sequence alignment algorithms is
only of limited applicability in network traffic: flow content does not gen-
erally undergo random mutation, rather, the protocols evolve using more
or less well-specified implementations and payloads are highly variable
by definition. See Section 3.7 for work that explicitly models protocol and
content evolution.

String Alignment Models for Network Traffic

Flow reassembly and message extraction provide byte strings suitable as
input for alignment algorithms. As I will show in the remainder of the
dissertation, extracting alignments from network flows enables a number
of applications relevant to network security monitoring.

An alignment generally describes which parts of a set of input strings are
found in all of the input strings, and which parts vary. In textual proto-
cols, these might be common keywords (such as ‘HTTP” or ‘PASS’); in bi-
nary protocols commonalities exist when fields in different flows have the
same values. Precise alignments find exact commonalities among the com-
pared strings, while approximate alignments allow for limited deviation be-
tween alignments of sequences. These deviations are expressed through
the notion of edit operations required to transform one input string into the

28

precise vs.
approximate
alignment

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

other. The editing operations for non-matching string elements are inser-
tions, deletions, and substitutions. To compute a distance metric between
sets of edits, a penalty function assigns each editing operation a particular
score. An alignment then is the resulting pairing of individual elements
of a string given a set of edit operations, and the lower the accumula-
tive penalty for transforming one input string into the other, the better the
alignment found.

Two strings can be aligned globally or locally. Global alignment implies
the underlying assumption that two strings essentially line up well and
that only minor misalignments have to be figured out. In contrast, local
alignment assumes no inherent similarity between strings in general and
focuses on finding islands of similarity. As an example, the following is a
global alignment of the two strings ‘SECURITY” and ‘SURE THING' (‘v is a
match, “x” a mismatch, ‘4+”" an insertion, and ‘—" a deletion):

SECUR____ITY

S__URE THING

V==V V++++xx

Below is a local alignment of ‘A REASSURING FACT’ to ‘NO SURE THING'.
Since the precise nature of the gaps between similar substrings is less im-
portant now, I only highlight the matches, though often edit operations
might still be important within the aligned substrings:*

A REASSUR ING FACT

NO SURE THING

224 'L

The classical approach to computing alignments is the algorithm proposed
by Smith and Waterman [141]. Different variants can compute local or
global alignments; when the latter is done, the algorithm is commonly
referred to as Needleman-Wunsch [112].* The difference lies mainly in
the scoring: local alignment maximises an alignment score, while global
alignment minimises the edit distance.

*Note that whitespace is included in the alignment. Where the existence of whitespace
is important and not typographically obvious, I indicate it with ‘" symbols.

*Gusfield [68] points out that Needleman and Wunsch only discussed the global align-
ment problem, but proposed a different (and slower) algorithm.

29

global vs. local
alignment

3.5.1

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

Longest Common Substrings

A simple alignment procedure is to find a string common to both input
strings and to maximise the length of that substring. This is referred to
as the longest common substring problem in the literature, however I will
refer to it as the longest common region (LCR), to differentiate the abbrevi-
ation from longest common subsequences, which I introduce in the next
section.

Given strings S; and S, of lengths s, and s,, respectively, the LCR problem
can be solved in O(s; + sy) using suffix trees. Gusfield defines suffix trees
as follows [68]:

A suffix tree T for an m-character string S is a rooted directed tree
with exactly m leaves numbered 1 to m. Each internal node, other
than the root, has at least two children and each edge is labelled with
a nonempty substring of S. No two edges out of a node can have
edge-labels beginning with the same character. The key feature of
the suffix tree is that for any leaf i, the concatenation of the edge-
labels on the path from the root to leaf i exactly spells out the suffix
of S that starts at position i. That is, it spells out S[i..m].

Furthermore, to ensure that each suffix is unique and thus cannot coin-
cide with any prefix of another suffix, a non-alphabet stop character is
appended to the input strings prior to suffix tree construction. Several al-
gorithms exist for building a suffix tree in time linear to the input string
size [167, 101]. I have chosen Ukkonen’s algorithm [154] for my experi-
ments, which achieves the linear time bound by building the suffix tree
incrementally, carefully leveraging existing structure, and avoiding per-
character scanning operations whenever possible. My implementation
comprises roughly 1200 lines of C and is publically available as a stand-
alone library, 1ibstree.” The fact that it generalises the notion of a string
has made it popular and lead to its use in other work [94].

Once a single-string suffix tree can be built in linear time, the extension to
multiple strings is straightforward: each edge in the tree is labelled with
the numbers of the strings that contribute this edge. At this point, the
LCR problem is equivalent to finding the longest path from the root of the
suffix tree that has been contributed by all input strings. The algorithm

5See http://www.cl.cam.ac.uk/~cpk25/1libstree for details.

30

longest common
region (LCR)

suffix trees

http://www.cl.cam.ac.uk/~cpk25/libstree

3.5.2

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

GET_
10.$P T /E—HTTP$ o1
90" T -\l T_/_H
1.7 fHM [~ —~ITpg
s/ L fT L W= % {rp °
o /1 s H s 2
8 ® S \ENT
i o2/ Me T \T ®5
T Tl 3 T g
T P
£p JS .$ p 04
3® 7 1 .$
6

Figure 3.4. The suffix tree for strings ‘GET / HTTP’ and ‘HTML’. End-of-string
markers are shown as $ symbols. The blue leafs and leaf labels correspond
to the first input string, the red ones to the second. The prefixes of suffixes
common to both strings are in bold. The LCR is ‘HT’, since it is the longest
accumulative path label common to both strings.

effectively finds the longest common prefix of a set of suffixes comprising
all input strings. Figure 3.4 illustrates the suffix tree structure in the LCR
computation on two input strings.

The advantage of this LCR algorithm is that it is fast and can easily be
extended to multiple input strings; its disadvantage is that it returns only a
single common substring. I will present an LCR application in Section 5.3.

Longest Common Subsequences

The natural extension of LCRs is the computation of alignments consist-
ing of multiple common substrings. Such an alignment is called the longest
common subsequence (LCS) of the input sequences. A common subsequence
is a sequence of common substrings of two strings, possibly together with
the offsets into the two strings at which the commonalities occur; a longest
common subsequence is the common subsequence of maximum cumula-
tive length. Consider the following HTTP URL request strings:

‘GET / HTTP/1.1’
‘GET /cgi/HT/TP/cvs?ver=1.1 HTTP/1.0’

Their LCSs have length 13, but note the plural. There are a number of LCSs
with that maximum length, such as the following;:

31

longest commion
subsequence
(LCS)

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

‘GET /' -‘_HTTP/1.’

‘GET /' -‘HT'-'TP/’-"1.1’
‘GET.” - “/HT' - ‘TP/’ -"1.1’
‘GET." -/’ -'_HTTP/1.’

‘GET.’ -/’ -'HT' -'TP/’ -“1.1’

The key difference is that the LCSs vary in the number of gaps: the first one
has just one gap while the last one contains 4. Depending on the goals
of the LCS computation we could leave it up to the dynamics of the algo-
rithm which version we obtain, or ensure the computation of a particular
variant. My point here is thus not to show a simplistic example of the
iconic HTTP ‘GET’ string working flawlessly, but rather the opposite: even
for such a classic example, the algorithm can be mislead easily without
attention to the details.

The algorithms I present in the next sections compute an LCS with the
minimum number of gaps and longest possible substrings. I argue that in the
networking context, this yields the most meaningful results. In context
of the HTTP protocol, for example, the LCS ‘GET /’ - “_HTTP/1.” is more
meaningful than ‘GET " - /" - ‘HT" - TP/’ - “1.1’, since the former captures
the semantic meaning of the alignment (the HTTP request method and
the protocol version), while the latter contains disjointed substrings with
potentially higher probability of individual occurrence, such as “/”). Fur-
thermore, short common substrings can lead to incorrect results if, when
given an LCS, we ask for substrings of at least a minimum number of char-
acters. In the above example, if the algorithm produces LCS ‘GET - */" -
‘HT" - “TP/’ - “1.1" and the minimum string length requirement is five char-
acters, no result would be found even though an LCS fulfilling that length
restriction does in fact exist, namely the one minimising the number of

gaps.

I next present two LCS-computing algorithms that minimise gaps while
maximising common substring length, and compare their relative perfor-
mances on a wide range of network traffic.

32

8ap
minimisation

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

R E A S S U R I N G
N «—0 N0 N0 N0 N0 N0 .0 N0 N1 —1
O 10 10 10 10 10 10 10 10 11 It

10 10 10 10 10 10 10 10 11 11
S 10 10 10 N1 N1 1 1 «—1 11 11
U 10 10 10 11 11 \101 101 <101 101 +«101
R —1 —1 —1 11 11 1101 N201 <201 <201 <201
E 11 N\101 101 <101 «101 1101 1201 1201 1201 1201

11 1101 1101 1101 1101 1101 1201 1201 1201 1201
T 11 1101 1101 1101 1101 1101 1201 1201 1201 1201
H 11 17101 1101 1101 1101 1101 1201 1201 1201 1201
I 11 1101 1101 1101 1101 1101 1201 N202 <202 <202
N 11 1101 1101 1101 1101 1101 1201 1202 N\302 302
G 11 1101 1101 1101 1101 1101 1201 1202 1302 = \402

Figure 3.5. A Smith-Waterman matrix, computing the longest-common sub-
sequence of strings ‘REASSURING” and ‘NO SURE THING'. The best LCS is ‘SUR’
- 'ING’, indicated by cells shaded in dark grey. Common substrings can be
found along diagonals; trace-back paths not following a diagonal indicate
gaps between the common substrings. Notice how suboptimal possible align-
ments such as ‘RE’ are not included since the back-pointer path from the last
cell walks past them.

3.5.3 Smith-Waterman: Dynamic Programming

Given a pair of input strings S; and S, of lengths s; and s,, respectively,
Smith-Waterman uses dynamic programming to compute the LCS incre-
mentally, requiring O(s15,) space and time.® The algorithm operates by
filling a matrix row-by-row, recording in each cell the best alignment of
the prefixes of S; and S up to the cell’s row/column indices by picking an
edit operation on the pair of characters at the current row/column. These
operations can (i) skip characters of either string, (i7) align the characters
directly, or (iii) accept mismatching characters via substitution. Each oper-
ation is assigned a cost/score, and the best resulting alignment is the one
with the highest score (for local alignment) or lowest cost (for global align-
ment). The alignment can be extracted by walking backward through the
matrix, starting in the bottom-right corner, following the decision taken at
each cell.

In my implementation I use a scoring function for computing alignments;
my affine alignment scoring uses an alignment start score of 1 for every

®Fast implementations are feasible by leveraging FPGAs or GPUs [115, 158]. The space
requirement can be pushed down to O(s) with s = min(s;,s;) while at most doubling
worst case time [68].

33

edit operation

affine alignment
scoring

354

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

first matching character after a gap and strongly enforces continued align-
ments using an alignment growth score of 100 for further matching char-
acters. Gaps are penalised relatively by leaving the sequence score unaf-
fected. Similar results could be obtained by penalising gaps more strongly,
relative to a more modest encouragement of aligned regions. As men-
tioned earlier, this model ignores the possibility of per-character-pair byte
substitution scores by computing exact common subsequences interleaved
with gap regions. Not only does this simplify the approach, it also avoids
the need to develop a robust scoring scheme for character distributions.
The derivation of general yet robust substitution scores is highly problem-
specific and generally non-trivial [60, 68]. It is a topic for future research
how to apply the concept to sequence alignments of network flows. Fig-
ure 3.5 shows an example of Smith-Waterman with the scoring scheme just
described.

Smith-Waterman'’s strength lies in its flexibility: given the completeness
of information about S; and S, stored in the completed matrix, variations
are readily implemented. For example, it is easy to adapt the implemen-
tation to return all common substrings (ACS) of at least a given minimum
length still within O(s;s,), since we can register separately all common
substrings as they exceed the minimum length, and continuously check
whether growing common substrings have already been registered. I will
show the importance of this particular variant in Section 3.6 and use it
later on in Section 4.3.

Jacobson-Vo: Combinatorial Reduction

Jacobson and Vo [78] and Pevzner and Waterman [122] independently pre-
sented a method for computing LCSs that works fundamentally differ-
ently from Smith-Waterman, and potentially faster. I summarise its oper-
ation in this section and show that unfortunately Jacobson-Vo has a short-
coming: the LCSs it produces neither necessarily minimise the number
of gaps, nor maximise common substrings. As outlined in Section 3.5.2,
these goals are highly desirable, and Section 3.5.5 will discuss a way to
overcome this limitation and analyse its effect on performance.

Jacobson-Vo reduces a related combinatorial problem for which there is a
potentially faster solution than O(s;s,) to the LCS problem. This combi-

34

all common
substrings
(ACS)

longest
increasing
subsequence
(LIS)

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

natorial problem is the identification of a longest increasing subsequence
(LIS) in a sequence of numbers. I will first present the workings of the
algorithm pragmatically and later summarise the reasoning behind each
step. Consider the following input strings S; and S, of lengths s; = 10 and
s, = 17, respectively:

‘GET / HTTP’

‘GET /a/a.HTM HTTP’
The algorithm is based on the observation that an LIS has a one-to-one
correspondence with an LCS if the sequence of numbers is produced from
the input strings in the following fashion: iterating over the characters in
S1, one lists once per occurring character all indices in S, at which that
character occurs, in descending order. This yields:

G — 0 / — 64
E — 1 H — 13 9
T — 15 14 10 2 P — 16
_ — 123

These character occurrence lists are then concatenated into a numerical
sequence IT of length 7. For §; and S, the beginning of IT looks as follows
(dots indicate occurrence list merge points):

0-1-1514102-123-64 - 123 -139 - ...

Given I, the next step is greedy extraction of a cover of I1. A cover is a set
of subsequences with non-increasing indices that in combination comprise
all numbers in II. One can perform this extraction in a tabular fashion
by building up each subsequence in one column into a subsequence table.
Let S, be the nth non-increasing subsequence. An arbitrary element in ;
is denoted ¢;, and I fil and 1 ff are ¢;’s indices in S; and S,, respectively.
Context will make it clear which table is being referred to.

Iterating over the elements of I, one selects for each element the leftmost
subsequence (i.e., column in the table) that the element can extend. Ex-
tension is possible whenever the last number in a sequence is larger than
or equal to the new element. If no subsequence fulfils this requirement, a
new one is added to the table. For the example above, the resulting subse-
quence table is as follows:

To extract an LCS, first an arbitrary element in the last subsequence is se-

35

subsequence
table

3.5.

STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

0 1 15 12 6 12 13 15 15 16
14 3 4 9 10 14
10 3 10 14

lected. Afterward, the remaining subsequences are scanned downward
in right-to-left order, selecting the first element e; in each S; for which
I 2_2 <1 f'i » where ¢; 1 is the element chosen in ;. The resulting sequence
of S, indices is an LCS of S; and S,:

0<<1 15 12 [6=<12<13 15 15«16
‘\14 3474 9 10N14%
10 /3 10 14

2/

2

2

Using this procedure, the resulting LCS is ‘GET." - */” - *_HTTP’. It requires
some thought to see how this construction computes LCSs. The original
papers and Gusfield present the required lemmata in detail, so I settle for

summarising them here as follows:

1. The existence of a cover C of II consisting of ¢ non-increasing sub-

sequences and of an increasing subsequence I, also of length ¢, that
selects exactly one element from each of the non-increasing subse-
quences mean that C is a smallest cover and I is a longest increasing
subsequence. This follows from the fact that the indices of each sub-
sequence are non-increasing and an increasing subsequence can thus
contain at most one element from each non-increasing subsequence.”

. The nature of the cover construction guarantees that for every ele-

ment ¢; in S;, there is an element ¢;,_; in S;_; such that I fil <1 ESI?,
forms a two-element increasing subsequence. Since an increasing
subsequence of length c can thus be constructed by selecting exactly
one element from each resulting subsequence, the number of sub-

7For all practical purposes the role of the increasing subsequence is that of the LCS,
so in order to avoid confusion with the non-increasing subsequences that make up the
subsequence table, I will refer to the increasing subsequence as LCS whenever possible,
and mean non-increasing subsequences whenever I just speak of a subsequence.

36

3.5.5

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

sequences equals the length of the increasing subsequence, and the
greedily constructed cover is thus a smallest cover.

3. Note that each element in IT not only specifies an index in S,, but
also one in S, if we keep track of the S; index that contributed an
occurrence list to I1. Consider the beginning of IT shown above for
S1 and S, this time also tracking the corresponding S; indices in the
lower numbers:

0 1 1514102 123 64 123 139

0 1 2 3 4 5 6
Thus every increasing subsequence of length [in IT specifies exactly
one common subsequence among S; and S, of length /, and each LIS
of IT corresponds to an LCS of S; and S».

To estimate the runtime complexity of this procedure, observe that the last
numbers of the subsequences are sorted in increasing order at all times
when scanning the table left-to-right. We can thus find the correct col-
umn for insertion via binary search. Let S; be the shorter of the two
strings, without loss of generality. Since there can never be more than
s1 sequences in the table and we insert 7 elements in total, this algorithm
runs in O(7logsy).

Improving Jacobson-Vo: Targeted LCS Selection

Note that for S; and S,, standard Jacobson-Vo yields ‘GET." - */” - ‘_HTTP’,
an LCS that violates the goals of gap minimisation and substring max-
imisation. I will now extend the algorithm in a number steps to over-
come this limitation, borrowing several concepts from Smith-Waterman:
I introduce dynamic programming to Jacobson-Vo to track incrementally
the LCS that yields the smallest number of gaps and longest-possible sub-
strings throughout the computation, and collect the optimal LCS via back-
pointer traversal. As I will show, these extensions render Jacobson-Vo
gap-minimising and substring-maximising, while retaining the same al-
gorithmic complexity as the original algorithm. Finally, I compare the per-
formance of Smith-Waterman to that of unmodified Jacobson-Vo as well
as the extended version when applied to a representative spectrum of net-
work traffic, and show that that the extended Jacobson-Vo algorithm in-

37

3.55.1

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

volves negligible runtime overhead compared to the original algorithm
while running up to almost 60 times faster than Smith-Waterman.

Path Selection through Dynamic Programming

The unmodified Jacobson-Vo algorithm does not consider possible alter-
natives in the selection of each subsequence’s LCS member. The first step
therefore is to consider the choices we have whenever an LCS member in
Si_1 is selected after having selected one in §;. Adding the S; indices of
each element in IT to the subsequence table (in small type), we obtain the
following:

0, 1, 15, 12, 6, 12. 13, 15, 15, 16,
14, 35 4, 9. 10, 14,
10, 3. 104 144

Observe that while the S, indices are non-increasing in each subsequence
when reading top-down, the S; indices are non-decreasing. This follows
from the mechanics of the algorithm—Ilater insertions into the table appear
further down in the subsequences and are made using elements further to
the right in I1, and those elements have equal or larger S; indices. Assume
now that we have just chosen an element e;,; in §;;1. Since every element
in §; has least one element in §;_; that can be chosen as its predecessor,
we can pick any element ¢; in §; as LCS member subject to the condition
that I fil <1 fllﬂ and [esf <1 f,i _ since only then does ¢; appear before e; 4
in both S; and S,. Given the opposite growth directions of the indices in
each subsequence in the table, this means that for each e;;; there exists a
window of possible predecessors in subsequence i, and, by symmetry, for
each ¢; there exists a window of possible successors in subsequence i + 1.
More formally, the sets of elements W, (e;) in the predecessor window of e;
and W;(e;) in its successor window are defined as

WP(ei) = {61;1 < 5"*1 : Ifil—l < [21 A 1651‘271 < Iesfz}

Ws(ei) = {6{4.1 € Sii: Iesilﬂ > [21 VAN Iiil > Igz}

38

predecessor/
successor
window

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

Returning to our running example, we see that W,(125) = {64,445}, i€,
when choosing the predecessor of element 125 (up to which there are no
alternatives since window size is always 1) we can choose between 6,
and 4,. If we choose the latter, we end up with the desired LCS ‘GET /’
-‘_HTTP/1.”:

Og— 1, 15, 12, (6, 12=13, 15, 15516,

;
i 14, (35 9, 10-~14%"
10,/ 3 104 14,
22
27
2

Thus the goal is to use the limited freedom in selecting LCS members to
minimise gap counts and maximise substring lengths in the resulting LCS.
By tracking those properties incrementally on all possible paths through
the table and identifying the path with least gaps and longest substrings,
the algorithm will compute the desired LCS. This LCS is collected by tra-
versing the table left-to-right from the element in the last subsequence
with the highest score, using back-pointers. Note that the search still starts
in the last subsequence, since scanning right-to-left has the benefit of elim-
inating more elements from consideration. As in the original approach,
all elements of the last subsequence are potential starting points. The core
strategy is to perform a parallel downward scan of pairs of subsequences ad-
jacent in the table. If the table contains n subsequences, the first scan uses
Su—1 and S, the second S, _, and ,_;, etc., until eventually $; and §, are
reached.’

Assume the scan currently examines S; and S;;1. The scan considers all
elements in §; in top-down order that have a non-empty window in S;y4,
ignoring the ones at the beginning of §; with too high an S, index as well
as those at the end of the subsequence with too high an S; index. The
elements linked by back-pointers thus form a corridor through the subse-
quence table, and the upper boundary of the corridor is the LCS selected
by the original Jacobson-Vo algorithm. This is illustrated in Figure 3.6.

As the scan proceeds from one S; element to the next, the successor win-

8Single-column tables don’t permit this approach, however their occurrence means
that the LCSs consist only of a single character and any member of the sole column will
do.

39

parallel
scanning

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

Figure 3.6. Corridor of linked LCS elements (shaded in grey background)
through an idealised subsequence table. The elements along the upper
boundary of the corridor (in white) form the LCS selected by the original
Jacobson-Vo algorithm.

dow W;(e;) moves down S;;1. Let the currently considered element in sub-
sequence i be ¢;. The idea is to compute alignment scores, akin to Smith-
Waterman, incrementally for all LCSs as they are considered, tracking the
best-scoring one. As with Smith-Waterman, it depends on the alignment
model whether “best” means maximisation (of alignment similarity) or
minimisation (of edit distances). Alignment scores can penalise gaps and
encourage long common substrings, but also realise other alignment poli-
cies. By prefixing e; to the partial LCSs starting with the elements in W;(e;)
and ending in $,, e;’s score can be computed for each LCS depending on
whether ¢; introduces a gap, starts a common substring, or extends one.
The best-scoring element e}, ; € W;(e;) is remembered by setting ¢;’s back-
pointer to ¢}, ;, and storing the corresponding best score in e;.

In order to be able to score common substrings differently from gaps,
the algorithm must be able to track common substrings as they occur.
Common substrings consisting of at least two characters exist whenever
two LCS elements ¢; and e;;; have the property that I fl_l +1=1 6511“ and
I fl? +1=1 ;c:il To notice when this is the case, the algorithm tracks the the
element inside W;(e;) whose S; and S, indices are as close as possible to,
but strictly larger than, e;’s. Let this element be called e;’s neighbour, de-

noted e/'. A direct neighbour is a neighbour e/’ for which I7' +1 = I3} and

I ff +1=1 es,_?, i.e., one that ¢; can extend as a common substring. To for-
malise the neighbour definition, let the distance D of subsequence mem-
bers ¢; and e;,1 be defined as D(e;,eiy1) = (I3 — IGS,?) + (IffH — I‘:f). Then

Cit1

40

(direct) LCS
neighbour

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

12: 15, 125 12: 15,
12, /14, 12 | 12, A4,
10, 11, 10,/ 10, 115
9, % | [9 9, 11
8g 10 8g ¢ 8g 10
79 910 79 79 %10
69 81y 69 69 812

Figure 3.7. Parallel subsequence scanning with sliding windows. As the iter-
ation proceeds over the left sequence’s elements 107, 97, and 8g, the window
of possible successor elements in the right subsequence slides downward, up-
dating the top and bottom boundaries of the window accordingly. The dotted
border indicates the previous window. Along with the window boundaries,
the current element’s neighbour (shown with lighter background) moves
down as well: while 107 can extend the substring ending at 11g, for 97 and
8g the introduction of a gap is unavoidable. (The string indices shown are
hypothetical and not related to the running example.)

el is defined as follows:

ef =ecWye): I >1I A I2>17 N Diege) = e/g}\}r(;) [De;,)]

The neighbour always resides within W;, since it is a legitimate successor
of e;, all of which are by definition contained in W;. As the elements in-
side ¢;'s window are considered, a direct neighbour can be scored in a way
that ensures extension of an existing common substring as opposed to in-
troducing a gap. Figure 3.7 illustrates sliding windows with neighbour
tracking.

The introduction of alignment scoring to the algorithm adds significant
flexibility to the algorithm, since many different scoring models are con-
ceivable. Below I show the subsequence table for the running example,
with each visited element’s alignment score in the top right corner, show-
ing previous pointers where set, and using a scoring scheme that quadrati-
cally favours longer common substrings (by adding the length of the com-
mon substring to the score, for each substring character) while linearly
increasing the score for gaps:

The subsequence elements in grey are outside of the corridor and not con-
sidered for back-pointer linking.

41

3.5.5.2

3.5.53

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

02%»125 15, 12, 61612831310 15 153760
0 1 2 3 4/ 5 6\ / 8 9

14, (33847% o, 10, (148
0, /3¢ 105 14
23
27
2g

Overcoming Greedy Substring Extension

The modified Jacobson-Vo algorithm is now gap-minimising if a scoring
scheme favouring common substrings over gaps is used, because such
a scoring scheme will never introduce a gap if it can extend a common
substring. Whichever path has the least amount of gaps globally will be
the one with the largest overall score. One problem remains, however:
the greediness of common substring extension means that a common se-
quence will always be extended when possible due to its locally higher
score, even when it would be beneficial to stop a substring and begin a
new one. This situation occurs when one common substring’s suffix is a
later common substring’s prefix and is illustrated in Figure 3.8.

Thankfully the problem is easy to fix: in addition to tracking with every
element e; the globally best score it obtains by linking with the best element
in S;i11, we now also track the local score the element has when following
the common substring it is part of through to the end. If this common sub-
string turns out to be longer than the one it overlaps with, the local score
will eventually exceed the global one and take its stead. What's left to do
is to adjust the back-pointer that cuts off the tail of the longer substring
back into the substring.

Complexity Analysis

The extended Jacobson-Vo is identical to the original one as far as con-
struction of the subsequence table is concerned. After that, it differs in the
following ways:

e The parallel scanning phase for setting back-pointers does not exist
in the original version.

e In the original version, the LCS is collected by potentially scanning

42

global & local
score tracking

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

Figure 3.8. Overlap of an longer, earlier common substring (in white, top)
with a shorter, later one (bottom). For maximising common substrings, the
algorithm must not select link (b), as it would cut off the tail of the longer
common substring. Instead, it should follow the longer common substring to
its end by using link (a).

all members of the table at most once, while in the extended version
LCS collection is a matter of iterating over just the optimal LCS’s
members exactly once.

It is clear that the extended variant’s runtime complexity cannot beat the
original algorithm’s O(7 log s;), since the extended variant does additional
work. The question is how costly the extension of the algorithm is. The
parallel scanning phase considers every element in the left subsequence
at most once, implying O(r) additional cost. Naively, for each element
e; in §;, every element in W;(e;) must be considered. This implies a non-
constant amount of additional work per IT element which would certainly
affect the overall runtime complexity negatively.

The following observation comes to the rescue: unless e;'s neighbour in
W(e;) is direct, all elements in the window are going to introduce gaps.
In this case, and unless our alignment model scores different gaps differ-
ently, there is no reason to consider each window member. We only need
to know which window member’s score is best, and update that score ac-
cording to our scoring schema. This trick reduces the amount of work
needed per ¢; element to a constant, since we only need to track the best-
scoring node in the window and e;’s neighbour. Three pointers suffice,
and since the parallel scanning phase only slides the window over each
subsequence once, each of those pointers will similarly visit each member
of IT at most once.

43

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

At this point, the runtime complexity depends on the effort required to
track the best-scoring node in the window. By storing the window ele-
ments in a priority queue, we can access the best-scoring element in con-
stant time. More precisely, it is not necessary to store all window members,
but only one representative of each different score present in the window.
Assume the window members have n different scores in total, and the pri-
ority queue thus contains 7 elements. As the window moves downward
over a subsequence, new elements are inserted into the priority queue as
the low window boundary advances. Using a heap, this can be done in
O(logn). At the same time, existing elements need to be removed from
the priority queue whenever a member falls out of the window as the top
boundary advances. Removal can likewise be done in O(logn). Access
to the element that is to be removed can be gained in constant time if we
maintain an array that maps the scores present in the priority queue to its
members.

To estimate the maximum size n of the priority queue, we need to bound
the maximum size that a subsequence of I can obtain. Note that a single
occurrence list can exist in a subsequence at most once in its entirety, and
an occurrence list can be at most of size s,. Beyond that, a subsequence
can only grow by repeating the bottom-most index repeatedly, which can
occur at most s; times. Therefore size of a subsequence is bounded from
above by s; + s5.

We can now summarise the runtime complexity of the extended Jacobson-
Vo algorithm. As in the original approach, we insert each member of I1
into the subsequence table using binary search, requiring O(wlogs;). The
parallel scanning phase visits each element in IT at most once in the left
subsequence, while each element in the right subsequence is at most once
inserted into the priority queue and removed from it, which takes at most
O (log(s1 + 52)). Combining subsequence table construction and parallel
scanning phase, we obtain O (7 (logs; + log(s1 +s2))). Since normally
we can assume s; =~ s, and thus O(s; + s;) = O(s1), thus O(2mlogs;) =
O(mlogs).

Remarkably, extending Jacobson-Vo to target gap-minimising and sub-
string-maximising LCSs does not hurt the runtime complexity bound, mak-
ing only modest assumptions about the scoring schema, namely uniform

44

3554

3.5.5.5

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

gap penalties.
Practical Speed-ups

Two more observations help improve performance in practise. They are
applicable to both the original and extended algorithm, and are both re-
lated to finding the subsequence to which to append elements of IT when
constructing the subsequence table.

First, note that subsequent insertions into IT of members of an occurrence
list never occur further to the right than earlier insertions, i.e., the column
indices of the subsequences elements are appended to are monotonically
(but not necessarily strictly monotonically) decreasing. This follows from
the fact that remaining elements in the occurrence list will be at most equal
in size, or smaller. Hence, subsequent binary searches do not need to con-
sider the full width of the subsequence table, but can instead place the
right boundary at the column of last insertion. For example, the insertion
of sequence 15 14 10 2 corresponding to the second ‘T” in ‘GET / HTTP’
occurs in columns 9, 8, 7, and 2, so the actual number of columns to be
considered before each of those insertions is 8 (leading to the creation of
the 9th column), 9, 8, and 7, instead of 8 for the first and 9 for all remaining
ones.

Second, it is worth considering whether binary search is actually neces-
sary. I have found that when considering network traffic, subsequence lo-
cality, that is, repeated insertions of consecutive IT members into the same
subsequence, is high. I present an evaluation of this claim in the next sec-
tion. Let the subsequence the previous IT member was inserted into be
Si. Then, prefix the binary search with a constant-time check determin-
ing whether the next IT member is too large for subsequence §;_; while
admissible by §;, and if so, insert the element into .§; and skip the binary
search.

Evaluation

I have implemented Smith-Waterman and the original as well as extended
Jacobson-Vo variants in roughly 500 and 600 lines of C++, respectively.
The implementation was done using the framework of the Bro IDS [119].
My implementation of Jacobson-Vo is shown in Appendix A.2. To evaluate
the implementations’ performance, I selected a number of popular servers

45

minimal binary
search
boundaries

subsequence
locality

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

Prefix Length
Protocol 50 100 250 500 1000 2000
FTP | 9,870 9,730 5460 X X X
HTTP | 10,000 10,000 8,778 561 X X
HTTPS | 10,000 10,000 9,870 9,316 2,346 630
SSH | 10,000 10,000 10,000 9,730 8,385 5,253
SMTP | 10,000 7,381 1,431 1,271 703 136
DNS | 496 X X X X X
DHCP | 10,000 10,000 10,000 X X X
NetBios NS | 10,000 X X X X X
SNMP | 5,778 3,828 1,59 X X X
Syslog | 3,655 435 X X X X

Table 3.1. Number of LCS computations per service and prefix length, TCP
protocols on top, UDP ones below.

Prefix Length | 50 100 250 500 1000 2000
Avg. Speed-up ‘ 1.8 5.0 10.7 20.1 28.7 33.0

Table 3.2. Average speed-up of extended Jacobson-Vo compared to Smith-
Waterman, for various flow prefix lengths.

from a one-day full-content trace of the Computer Laboratory’s uplink. I
selected TCP services running FTP, HTTP, HTTPS, SSH, and SMTP as well
as UDP services for DNS, DHCP, NetBios NS, SNMP, and Syslog, picking
n = 142 flows each so that I could perform (}) > 10,000 LCS computations
among flows pairs of the same service, an operation more meaningful than
cross-service alignments. I reassembled the originator — responder flows
using Bro and stored them in reassembled form for further analysis. Next I
measured the runtime for pairwise LCS computations with minimum sub-
string length 1 of the flows belonging to the same service, averaged over
the accumulative runtime of 100 iterations, and varied the string length in
separate runs among 50, 100, 250, 500, 1000, and 2000 bytes. Since the run-
times of all algorithms are deterministic, I observed very little variation in
runtimes and 100 iterations seems a reasonable number of data points for
obtaining an good average.

The experiments were conducted on an otherwise idle Pentium 4 running
at 2.53GHz and with 512MB of memory. Since flows of at least 2000 bytes
are less frequent in the dataset than those of at least 50 bytes, the actual
number of string pairs varied per protocol. I chose 100 comparisons as

46

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

FTP DNS
x10° 20 57 10.1 x107* 16
4 1
sw
3 Y
sm
W
2 05 % vn
] b3
s X
0 0
50 100 250 50
HTTP DHCP
2.0 55 1.0 1.9 10 07 05
0.02 0.01
0.015
0.01 0.005
0.005
0 — 0 -
50 100 250 500 50 100 250
HTTPS NetBios NS
24 51 187 396 532 585 x107 0.9
02 1
0.15
)
P :
2 o 05
=
0.05
0 0
50 100 250 500 1000 2000 50
SSH SNMP
22 76 174 181 229 317 x10° 18 42 59
0.2 4
0.15 3
0.1 . 2
0.05 1
0 3 0 4\/*
50 100 250 500 1000 2000 50 100 250
SMTP Syslog
21 55 116 117 101 88 x107* 22 55

0.2

0.15

0.1

0.05

-

0
50 100 250 500 1000 2000 50 100

Prefix length (bottom), vam speedup (top)

Figure 3.9. Performance comparison of Smith-Waterman, extended Jacobson-
Vo, and unmodified Jacobson-Vo applied to intra-protocol alignments of var-
ious TCP and UDP protocol flows at different flow prefix lengths. Error bars
(often barely noticeable) indicate the minimum and maximum runtime for
each experiment.

47

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

FTP DNS
100 100
= ——— Locality
75 K 75 L| —=—1Lcs
—x—1I
50 50 Coverage
e X
25 - 25 :
X
0 0
50 100 250 50
HTTP DHCP
100 100
75 75
50 M 50
X
25 25
0 > 0 .
50 100 250 500 50 100 250
HTTPS NetBios NS
100 100 ™
75 75
c
S s0 50
o o
o
25 25
0 0
50 100 250 500 1000 2000 50
SSH SNMP
100 100
75 75 Ky
50 X 50
25 25 .
%
0 0
50 100 250
Syslog
100 100
75 75
50 X H('""""'—x——w,,,,,x 50 X
I VA
w | —
25 o N N - 25 . -
0 e o 3 s 0 ~ x
50 100 250 500 1000 2000 50 100

Prefix length

Figure 3.10. Behaviour of various Jacobson-Vo aspects with TCP and UDP
protocol flows: subsequence locality during IT element insertions (green),
length of LCS relative to min(sy, s») (blue), length of ITrelative to s; X s; (red),
and coverage of corridors relative to entire subsequence table (turquoise).

48

3.5. STRING ALIGNMENT MODELS FOR NETWORK TRAFFIC

the lower bound to investigate, to ensure that idiosyncrasies in individ-
ual string pairs do not strongly affect the results. The results shown to
not diverge noticeably from those obtained when using 150 comparisons
as the minimum. The actual number of comparisons made per service
and prefix length are shown in Table 3.1. Figure 3.9 shows the perfor-
mance comparison for all protocols at various prefix length, including the
speedup factors of Jacobson-Vo over Smith-Waterman. While the differ-
ence in runtime between the Jacobson-Vo variants and Smith-Waterman is
initially tiny, Smith-Waterman quickly requires substantially more time to
complete than the Jacobson-Vo variants as the prefix length increases. The
extended Jacobson-Vo algorithm is up to 33 times faster on average (see Ta-
ble 3.2) with the best speed-up factor being 58.5 for HTTPS flows of 2000
bytes, and the extended algorithm’s additional workload is so marginal
that the difference to the original algorithm is barely noticeable.

There are two cases where extended Jacobson-Vo is not the clear win-
ner: NetBios NS and, more strongly, DHCP. To understand the reason, I
repeated the alignment experiment just described, now measuring four
different properties of extended Jacobson-Vo that may affect the runtime
during the experiment. These properties are as follows. First, the local-
ity of insertions into the subsequence table, i.e., the fraction of insertions
that happen in the same column as the previous one, indicates how much
time the algorithm saves by avoiding binary searches for the right column
for insertion. Second, the length of the resulting LCS relative to the in-
put string length indicates how much time is spent trying to find the right
column for insertion during binary search, and for traversing the table to
identify the right LCS. Third, the length of IT relative to s; - 5, gives an
indication of the overall amount of work Jacobson-Vo has to do relative
to Smith-Waterman (recall that the runtime performance of Jacobson-Vo is
largely determined by the length of IT). Fourth, and finally, the coverage
captures the fraction of elements in the subsequence table that are visited
during the traversal phase at the end of the algorithm, selecting the opti-
mal LCS. The higher the coverage, the more time is spent in that phase of
the algorithm. Consider Figure 3.10. With NetBios NS and DHCP in par-
ticular, ITis substantially larger than s; - s, indicating a likely cause for the
worse performance. At the same time, relative LCS length is not substan-
tially higher than with other protocols and thus can not explain the slower

49

3.6

3.6.1

3.6. ATTACKS AND CAVEATS

runtime. Likewise, DHCP exhibits worse performance even though its
subsequence locality is among the highest in the dataset. Finally, sub-
sequence table coverage also does not explain DHCP’s behaviour, since
DHCP’s coverage is among the lowest of the dataset.

In summary, these observations confirm that the length of IT is the defin-
ing factor when comparing Jacobson-Vo to Smith-Waterman. Another ob-
servvation confirms the results: Jacobson-Vo tends to perform better on
content with a high number of characters in random distribution [68]. In-
deed, both DHCP and NetBios NS contain a large number of zero-bytes
and are of highly fixed structure: the LCSs reach up to 93% of the input
string length for DHCP and 97% for NetBios NS, indicating that the in-
put strings are nearly identical. Second, the encrypted HTTPS has high
randomisation in large parts of the content, and brings out overall best
performance. Knowledge of a protocol’s statistical content distribution is
thus a guideline for the choice of alignment algorithm.

Attacks and Caveats

Attacks on structural traffic analysis can be broadly classified into two cat-
egories: algorithmic complexity and evasion. Threats to application in-
tegrity through means such as buffer overflows and related attacks are a
universal problem of the state of the art of software engineering and not
included in this classification.

Algorithmic Complexity

Algorithmic complexity attacks potentially affect all layers of the network
model. They work by feeding input to applications that makes their algo-
rithms exhibit worst-case performance in space and time, potential lead-
ing to denial of service. An example of a vulnerability in this category is
an algorithm with a hashtable that uses a fixed hash function, and feeding
input to the table that causes all table entries to be mapped to the same
overflow chain. Crosby and Wallach [45] present this attack category in
detail.

50

3.6.2

3.6. ATTACKS AND CAVEATS

In the presence of an adversary who can control the sequence of indi-
vidual packet transmission, TCP stream reassembly must carefully pre-
vent out-of-order reception of TCP segments from consuming unneces-
sary amounts of memory [52]. Beyond that, flow message extraction as
presented in Section 3.3 must prevent message state from becoming stale
and clogging up the state tables and consuming unnecessary amounts of
memory. By using per-flow statekeeping timeouts as described by Dreger
et al. [58], we can ensure that all state will eventually be destroyed. The
challenge is reduced to one of finding the right expiration timeouts.

Evasion

Evasion attacks are another threat present across all network layers. [have
mentioned them briefly in Section 2.3. The goal of these attacks is to sneak
content past detection systems by exploiting divergence between the mon-
itors” model of the protocol state machines of the flow endpoints and their
actual states. Ptacek and Newsham [125] list the possibilities in detail.
There are ways to make evasion harder, for example by normalising traffic
before presenting it to the monitor [71, 163], passively and actively map-
ping the networks a monitor is observing [139], or feeding host-based con-
text to the monitor to reduce ambiguity [56].

Flow message extraction possesses at least the same potential for evasion
as TCP flow reassembly, since the latter is a requirement for the former.
Potential for evasion is present due to inconsistent handling of duplicate
content at the endpoints [125]. Message extraction will always work as
long as both ends of the flow do not transmit messages simultaneously.
The approach is rendered more complicated in the following cases:

o Interactive sessions that transmit user input at per-keystroke granu-
larity, for example in the Telnet and rlogin services. These services
are hardly used today. The monitoring application can be made
aware of this special case by looking for tiny per-packet payloads
that are echoed back to the originator.

e Applications that treat originator — responder and responder — ori-
ginator flows as independent data channels, as is the case when tun-
neling multiple sessions through a single flow. The presence of mul-

51

traffic

normalisation

3.6. ATTACKS AND CAVEATS

tiple sessions in a single tunnel connection obfuscates the per-session
message exchange, rendering message extraction infeasible. Exam-
ples of cases where this occurs are SCTP, where monitoring would
have to be aware of individual channels inside the streams, and SSH,
where encryption renders individual channels inaccessible.

Interestingly, the sequence alignment algorithms presented in this chapter
also present potential for evasion, though only of minor scope. The dif-
ference to biology is particularly evident here through the presence of a
malicious adversary.

e Longest common region: Computation of LCRs using suffix trees
has no inherent potential for evasion. Whatever is the longest com-
mon region between two strings will be returned. The danger with
LCRs is that an attacker may be able to inject long, identical sub-
strings into multiple flows, thus causing the LCR computation into
reporting these injected strings. It depends on the application setting
whether this is a shortcoming or not. I will discuss this issue further
in Chapter 5.

e Smith-Waterman: Smith-Waterman’s flexibility turns into a weak-
ness if the attacker knows the properties of the alignment model
used. Most elementally, with knowledge of the minimum common
substring length used, the attacker can try to keep below this thresh-
old the length of all substrings that have to be present in the flows
for an attack to succeed. It is therefore generally desirable to keep
the minimum substring length as small as possible.

If Smith-Waterman is used for LCS computations, then sequencing at-
tacks are a threat. They potentially allow the attacker to conceal the
presence of crucial substrings common to the input flows. Assume
the attacker has to include strings ‘AA” and ‘BB’ in the attack flow for
the exploit to succeed. Assuming the exploit allows sufficient free-
dom of flow content, the attacker can then include an innocuous de-
coy string to confuse the LCS computation. I now show two variants
of such confusion.

First, by swapping a later common substring with an earlier one in
one of the strings, the attacker can prevent any common substrings

52

sequencing
attacks

3.6. ATTACKS AND CAVEATS

between the swapped strings as long as the remaining common sub-
sequence is still longest. Assume the attacker chooses “PASSWORD” as
the decoy and consider the following two strings:

AABB PASSWORD
AA PASSWORD BB

Despite ‘BB” being present in both strings, it is not reported as a
common substring since it is not part of the LCS, which is ‘AA” -
‘_PASSWORD’. If the decoys are longer than the attack-critical strings in
total, the attacker can evade detection of the relevant bits altogether
by placing the decoys on different sides of the critical strings (‘x” and
'y’ stand for arbitrary content unique to each string):

xxxxxxxx AABB PASSWORD
PASSWORD AABB yyyyyyyy

Since ‘PASSWORD’ is longer than ‘AABB’, the LCS of the two strings is
‘PASSWORD’ and the attacker has managed to evade detection of the
attack-relevant strings ‘AA” and ‘BB’. By adjusting the position of the
decoy string, subsets of the critical strings can also be hidden selec-
tively.

Two aspects significantly weaken this attack. First, using an ACS-
computing variant of Smith-Waterman, the attack-critical common
substrings will be detected anyway. Second, once more than a sin-
gle pair of flows with the same attack is observed by the monitor, it
is increasingly more likely that an LCS detecting the important sub-
strings will be computed. This follows immediately if the attacker
changes the decoy strings, and also holds when the attacker uses the
same decoy strings repeatedly, since there are only a limited number
of possible insertion points in the LCS for the decoy strings.

A related, but weaker and more subtle variant are location attacks. location attacks
Assume an attacker has to include a certain set of strings in a flow
at certain offsets for an exploit to succeed. By including these strings
repeatedly in the attack flows, in different concatenations, and in dif-
ferent locations, it depends on subtleties in the implementation of the
algorithm and the scoring model which LCS is returned. Depending

53

3.7

3.7.1

3.7. RELATED WORK

on the leeway the exploit allows, the attacker has a real chance to ob-
fuscate the location that is crucial to making the attack succeed. On
the other hand, the repeated inclusion of the attack-critical informa-
tion only increases the chance of detection when a Smith-Waterman
variant such as ACS is used.

e Jacobson-Vo: In both the original and the extended version, this al-
gorithm suffers from a shortcoming that permits sequencing attacks
similar to LCS computations using Smith-Waterman, when given
sufficiently flexible attack vectors. The weakness is caused by the fact
that Jacobson-Vo always computes LCSs and cannot switch to a differ-
ent computation such as ACS as readily as Smith-Waterman, because
LCSs are at the very heart of the algorithm. Just as with Smith-
Waterman, however, the observation of larger numbers of attack-
carrying flows renders sequencing attacks more difficult.

Note that these attacks on sequence alignment are intrinsic to the algo-
rithms and in no way depend on the networking domain to succeed. They
apply equally in other domains, for example if they were to be applied
in host-based environments to fingerprint binary code or system call se-
quences.

Related Work

Traffic analysis is a vast field of which I cover but a fraction in this chapter.
This section attempts to put structural traffic analysis in general, and the
methods I introduced in particular, in relation to other ways of investigat-
ing network traffic.

Other Forms of Traffic Analysis

As mentioned in Section 3.2, structural traffic analysis is feasible across all
layers of the network model. In this dissertation, I mostly discuss methods
operating at the application layer, with the exception of Section 5.4, which
presents a method that operates at lower layers. Other methods of struc-
tural analysis are conceivable and have been presented in the literature,

54

3.7.2

3.7. RELATED WORK

for example analysis of the structure of communication patterns[79, 81, 80].
This line of work typically aims to classify traffic according to classes of ap-
plications or protocols, which is the topic of Chapter 4 and thus discussed
in more detail there.

Other types of traffic analysis aim to detect weaknesses in aspects of indi-
vidual distributed applications. In context of privacy-enhancing commu-
nication services[55], traffic analysis aims to assign network-level activ-
ity to individual communicating entities[110]. In context of cryptographic
protocols, traffic analysis aims to identify weaknesses in individual as-
pects of the protocols. An enormous body exists on variants of statistical
traffic analysis at low levels of the network model for predicting traffic
queueing behaviour, router buffer size requirements, and quality of ser-
vice guarantees.

Detection of Commonality

The application of sequence alignment algorithms to network flows with
the purpose of detecting commonality among the flows has emerged only
recently. Generally, detecting commonality is useful at varying levels of
accuracy and granularity. At the high-accuracy end, the context has typi-
cally been automated malware signature generation, which I will discuss
in detail in Chapter 5. Newsome et al. [114] use Smith-Waterman for LCS
computations. Their description indicates that their alignment model is
minimising gaps through penalties. They do not, however, leverage the
precise offset information of the LCS substrings that Smith-Waterman pro-
vides. Given the time-critical environment of their system, they would
most likely benefit from using Jacobson-Vo instead. Cui et al. [48] use
a variant of Needleman-Wunsch for global alignment, trying to identify
varying regions among multiple flows for application-level session replay.
They guide the alignment process using a constraint matrix that prohibits
classes of characters from being paired at certain offsets into the flows.
They furthermore develop a message extraction strategy similar to the one
I propose.

A second-level application of alignment information is the derivation of
ancestral hierarchy among different instances. Beddoe [13] mentions this
possibility in the context of protocol implementations. The recent prolif-

55

communication
patterns

malware
signature
generation

3.8

3.8. SUMMARY

eration of IRC protocol variants for “proprietary” botnet command and
control channels could be a fruitful subject for exploring the viability of
this approach.

Another line of work satisfies itself with detecting individual strings that
occur frequently in a pool of flows, without precise alignment information.
While sacrificing detail, these algorithms allow operation on a per-flow
granularity instead of flow pairs at higher speeds. Kim and Karp [83] pre-
sented Autograph, which extracts frequent common substrings using Ra-
bin fingerprints as previously used in the file system domain to detect re-
dundant content. To automatically determine common substring lengths,
they use a breakmark that has to be defined ahead of time. Singh et al. [140]
likewise base their approach on Rabin fingerprints, but use no adaptive
partitioning technique and instead require fixing the common substring
length ahead of time.

Generalising the notion of common content, Bloom filters [18] detect com-
monality more approximately still and with the presence of false positives.
Their use has been proposed in the literature for applications as diverse as
object location in peer-to-peer networks [47], geographic routing [88], de-
tecting “heavy-hitter” traffic flows [61], IP traceback [142] as well as IP pre-
fix and signature matching [53, 54]. Related is the notion of sketches [87],
which are compact probabilistic summaries of common traffic properties
specifically designed to detect changes to those commonalities in high-
bandwidth environments.

Summary

In this chapter I have presented traffic analysis strategies feasible at differ-
ent layers in the OSI network model. I have shown how the application-
layer message flow can be extracted heuristically from reassembled flows.
Next, I presented several sequence alignment algorithms adapted from
bioinformatics that can operate on these messages, and discussed the com-
monalities and differences incurred when moving these algorithms into
the network security domain.

The algorithms presented include longest common region (LCR) compu-
tation using suffix trees, flexible gap-minimising longest common sub-

56

Rabin
fingerprints

Bloom filters

sketches

3.8. SUMMARY

sequence (LCS) computation using the dynamic programming approach
proposed by Smith and Waterman, and fast LCS computation using the
combinatorial algorithm introduced by Jacobson and Vo. Smith-Water-
man’s major advantage is its flexibility, which allows it to compute other
alignments easily, such as all common substrings (ACS). I then introduced
a novel variant of Jacobson-Vo that adds support for flexible alignment
models to the algorithm while leaving the runtime complexity bounds
intact and causing practically no noticeable overhead in practise. In my
evaluation I have shown that this variant computes LCSs up to almost 60
times faster than Smith-Waterman. I then discussed attacks on structural
traffic analysis and pointed out the potential of evasion attacks in the var-
ious sequence alignment algorithms, which stresses a crucial difference in
the network-based application setting compared to the biological environ-
ment the algorithms were developed in: a malicious adversary.

In the next chapter I will put to use some of the algorithms introduced
above to learn the structure of application-layer protocols and apply it to
the problem of traffic classification.

57

4.1

Fingerprinting the Normal

“What the...? Who are you supposed to be?”
— Mr. Incredible in The Incredibles.

Introduction

Equipped with models of byte sequences and techniques to extract com-
monalities therefrom, I now present techniques for improving the under-
standing of “normal” behaviour on a network. By “normal”, I here mean
investigation without explicit focus on malicious activity. Normal beha-
viour on a network is largely characterised by the mixture of applications
carried by it, and Section 4.2 outlines the difficulty identifying this range
of applications on typical networks in operation today. As will be shown,
even perfectly benign use of current network applications leads to a com-
plex mixture of network activity that can often puzzle the administrator.
However, as pointed out in Section 2.4.2, good understanding of the nor-
mal is a requirement for accurate detection of the malicious. I motivate
the use of content-based traffic analysis as a possible solution and argue
that high input fidelity is an important goal of traffic models that are in-
tended for a wide range of uses. In Section 4.3, I introduce such a model:
taking some of the sequence analysis algorithms introduced in the previ-
ous chapter as building blocks, I propose common substring graphs (CSGs),
a content-based model of flow content suitable for a wide variety of future
applications. I thoroughly evaluate the structural properties of CSGs and
their runtime behaviour in Section 4.4 and present the task of classifying
application-layer protocols as a detailed use case, comparing CSGs to two
lower-fidelity traffic models. Finally, I review related work in Section 4.6
and summarise the chapter in Section 4.7.

58

4.2

4.2. CHARACTERISTICS OF APPLICATION-LAYER TRAFFIC

Characteristics of Application-Layer Traffic

The Internet architecture uses the concept of port numbers to associate
services to end hosts. In the past, the Internet has relied on the notion of
well known ports as the means of identifying the application-layer proto-
col a server is using. These well-known ports are standardised de jure by
IANA [75]. However, in recent years a number of factors have caused a
shift to an increasingly divergent de facto usage of those port numbers.
For example, the widespread adoption of firewalling has made ports that
typically carry mission-critical applications (such as TCP ports 80 and 25
for HTTP and mail traffic, respectively) much less likely to incur any fil-
tering, causing entirely different applications to switch to these ports or
tunnel their traffic through the native protocol where possible. Another
typical scenario is the use of dynamically allocated ports to separate appli-
cation instances, or to explicitly avoid obvious classification. The popular
Skype service initialises its listening port randomly at installation, entirely
abandoning the notion of well known ports for normal clients [12]. Finally,
some applications use non-standard ports explicitly to avoid classification.
Peer-to-peer applications routinely allow users to change the default port
for this purpose and some use combinations of tunnelling and dynamic
port selection to avoid detection [137]. We can expect this trend of irreg-
ular port use to increase further in the future. The decreasing value of
port numbers for determining flow content undermines the accuracy of
network security enforcement, since filtering and access policies are often
predicated on the assumption that individual application-layer protocols
running on certain ports.

None of the typical enforcement mechanisms deployed today can deal
with meandering port number usage without manual inspection or tun-
ing. Thus, there is a strong need for techniques that can identify net-
worked applications without considering well-known port numbers. Since
it is hard to predict the requirements future tools might demand from such
a fingerprinting tool, I argue that the input modelling technique should
strive for fidelity, i.e., its operation should impose as little loss of informa-
tion about the input traffic as possible. For example, irreversible abstrac-
tions of the input due to hashing, partitioning, or filtering all invariably
reduce the operational flexibility of future model applications.

59

IANA port
numbers

Skype

port number
obsolescence

4.3

4.3. PROTOCOL MODELLING WITH COMMON SUBSTRING GRAPHS

In this chapter I introduce and evaluate a technique called common sub-
string graphs (CGSs) for modelling application-layer protocol activity us-
ing network flow content, that achieves this goal. The model is based on
complete protocol-typical substrings in combination with the positions in the
input flows that these substrings occur at and maintains this information
in its entirety for querying after the model build-up phase. CSGs imme-
diately enable elementary operations such as the incremental creation of a
protocol model from a set of input flows, the pairwise comparison of CSGs
to each other to produce a similarity measure between two models of traf-
fic, and the matching of individual flows against CSGs, highlighting the
use of protocol-intrinsic content in the flow. This renders CSGs useful for
a wide range of analysis purposes such as protocol classification, demon-
strated later in the chapter, and whitelisting of protocol-intrinsic content
in flows, as discussed later in Section 5.3.3. The throughput achieved by
these elementary operations, evaluated in Section 4.4.5, is high enough to
allow a wide range of applications with on-line or nearly on-line require-
ments assuming suitable input filtering is performed, but not sufficient for
handling full traffic load in high-bandwidth environments. There, lower-
tidelity modelling techniques should be employed as far as the application
permits.

The central idea behind CSGs is as follows. By comparing the contents of
flows handled by the same destination service (i.e., destination host and
listening port on that host'), sets of some strings will be common to many
compared flows. By capturing the frequency, position, and sequence of
such substrings in a graph we obtain a structural model that captures ac-
curately the typical “look” of the application-layer protocol used by the
service.

Protocol Modelling with Common Substring Graphs

The intuition behind CSGs is as follows: if multiple flows carrying the
same protocol exhibit common substrings, comparing many such flows
will most frequently yield those substrings that are most common in the

Multiple destination hosts are possible in case of load balancing, anycast, etc — what
matters is that a unique destination service instance is analysed.

60

4.3. PROTOCOL MODELLING WITH COMMON SUBSTRING GRAPHS

protocol. By using LCSs, not only can we identify what these commonal-
ities are, but we also expose their sequence and location in the flows. By
furthermore comparing many of the resulting LCSs and combining redun-
dant parts in them, frequency patterns in substrings and LCSs will emerge
that are suitable for classification. CSGs capture much more structural in-
formation about flows they are built from than other content fingerprint-
ing methods such as content n-grams or byte product distributions. In
particular, CSGs

e are not based on a fixed token length but rather use longest common
subsequences between flows,

e capture all of the sequences in which common substrings occur, in-
cluding their offsets in the flows,

e ignore all byte sequences that share no commonalities with other
flows,

e track the frequency with which individual substrings, as well as se-
quences thereof, occur.

I will now formalise these concepts. A CSG is a directed graph
G =(N,A,P,ns,n)

in which the nodes N are labelled and the set of arcs A can contain multi-
ple instances between the same pair of nodes: a CSG is a labelled multidi-
graph. P is the set of paths in the graph. Paths p = (11, ..., n;) are defined
as the sequence of nodes starting from 7n; and ending in #; in the graph,
connected by arcs. P(n) is the number of paths running through a node .
(If context doesn’t clarify which graph is being referred to, I will use sub-
scripts to indicate membership, as in Ng, P, etc.) A CSG has fixed start
and end nodes 7, and n,. Each path originates from 7, and terminates in
n., i-e., Pg(ns) = Ps(n.) = |Ps|. These nodes are ignored for all other pur-
poses; for example, when dealing with a path with a single node on it, we
mean a path originating at the start node, visiting the single node, and ter-
minating at the end node. Along the path, a single node can occur multiple
times; that is, the path may loop. The node labels correspond to common
substrings between different flows, and paths represent the sequences of
such common substrings that have been observed between flows. CSGs

61

4.3. PROTOCOL MODELLING WITH COMMON SUBSTRING GRAPHS

a) @ A [+ B8 | C |[——e
b) A | B | C
KAHD;

C) A B H C

A

d)tjA|_>| Bi“C

e ‘I!I
| D"] O 7]

e A

Figure 4.1. Constructing a CSG: introduction of a new path with subsequent
merging of nodes. (a) A CSG with a single, three-node path. (b) An LCS
(in white) is inserted as a new path. (c) New node A already exists and is
therefore merged with the existing node. (d) New node D overlaps partially
with existing nodes B and C. (e) Nodes B, C, and D are split along the over-
lap boundaries. (f) Identically labelled nodes resulting from the splits are
merged. The insertion is complete.

grow at the granularity of new paths being inserted. Let the LCS between
two strings s; and s, be L(s1, 52) and its cumulative length be |L(s1, s»)|. For
ease of explanation, nodes are synonymous with their labels, thus for ex-
ample when saying that a node has overlap with another node, we mean
that their labels overlap, and L(n,,n,) is the LCS of the labels of nodes n;
and n,. |n;| denotes the length of the label of node n;. Labels are unique,
i.e., there is only a single node with a given label at any one time.

Local alignment is computed using Smith-Waterman as described in Sec-
tion 3.5.3. I now describe four elementary operations on CSGs in more
detail. These operations are (i) construction of a CSG out of input flows,

62

43.1

4.3. PROTOCOL MODELLING WITH COMMON SUBSTRING GRAPHS

Figure 4.2. Scoring a flow against a CSG. The labels of nodes A, B, and C occur
in the flow at the bottom. The shaded area in the graph indicates all paths
considered for the scoring function. While the path containing A-C would
constitute the largest overlap with the flow, it is not considered because A
and C occur in opposite order in the flow. The best overlap is with the path
containing A-B: the final score is (a + b)/f.

(if) comparison of CSGs to each other to obtain a measure of similarity,
(iii) merging of multiple CSGs into one, and (iv) scoring the degree to
which a given flow fits a CSG. Together, they enable a wide range of CSG
applications, as I will exemplify by their use in protocol classification in
Section 4.4.4.

Construction

Insertion of a flow into a CSG works as follows. A flow is inserted as a
new, single-node path. If there are no other paths in the CSG, the insertion
process is complete. Otherwise, we compute the LCSs between the flow
and the labels of the existing nodes. Where nodes are identical to a com-
mon substring, they are merged into a single node carrying all the merged
nodes’ paths. Where nodes overlap partially, they are split into neighbour-
ing nodes and the new, identical nodes are merged. We only split nodes at
those offsets that don’t cause the creation of labels shorter than a minimum
allowable string length.

For purposes of analysing protocol-specific aspects of the flows that are in-

63

4.3. PROTOCOL MODELLING WITH COMMON SUBSTRING GRAPHS

/x-portable-(18)

» —
N\ image(109) =

Figure 4.3. Detail of a CSG for the HTTP requests comprising a single website
download. The numbers in each node represent the number of paths going
through it.

serted into a graph, it is beneficial to differentiate between a new flow and
the commonalities it has with the existing nodes in a graph. I therefore
have implemented a slightly different but functionally equivalent inser-
tion strategy that uses flow pools: a new flow is compared against the flows
in the pool, and LCSs are extracted in the process. Instead of the flow it-
self we then insert the LCSs into the CSG as a path in which each node
corresponds to a substring in the LCS. The node merge and split processes
during insertion of an LCS are shown in Figure 4.1.

Since many flows will be inserted into a CSG, state management becomes
an issue. I limit the number of nodes that a CSG can grow to using a two-
stage scheme in combination with monitoring node use frequency through
a least recently used list. The list keeps the recently used nodes at the front,
while the others percolate to its tail. A hard limit imposes an absolute maxi-
mum number of nodes in the CSG. If more nodes would exist in the graph
than the hard limit allows, least recently used nodes are removed from
the graph until the limit is obeyed. To reduce the risk of evicting nodes
prematurely, I use an additional, smaller soft limit, exceeding of which can
also lead to node removal but only if the affected nodes are not important
to the graph’s structure. In order to quantify the importance of a node n
to its graph G I define as the weight of a node the ratio of the number of

64

flow pools

432

4.3. PROTOCOL MODELLING WITH COMMON SUBSTRING GRAPHS

paths that are running through the node to the total number of paths in
the graph:

We(n) =

I say a node is heavy when this fraction is close to 1. As I will show in
Section 4.4, only a small number of nodes in a CSG loaded with network
flows is heavy. Soft limits only evict a node if its weight is below a mini-
mum weight threshold. Removal of a node leads to a change of the node
sequence of all paths going through the node; redundant paths may now
exist. I avoid those at all times by enforcing a uniqueness invariant: no
two paths have the same sequence of nodes at any one time. Where dupli-
cate paths would occur, they are suppressed and a per-path redundancy
counter is incremented. I do not limit the number of different paths in the
mesh because it has not become an issue in practise. Should path elimi-
nation become necessary, an eviction scheme similar to the one for nodes
could be implemented easily.

Comparison

In order to compare two CSGs, a graph similarity measure is needed.
The measure I have implemented is a variant of feature-based graph dis-
tances [130]: the two features used for the computation are the weights
and labels of the graph nodes. Our intuition is that for two CSGs to be
highly similar, they must have nodes that exhibit high similarity in their
labelling while at the same time having comparable weight. I have de-
cided against the use of path node sequencing as a source of similarity
information for performance reasons: the number of nodes in a graph is
tightly controlled, while I currently do not enforce a limit on the number
of paths.

When comparing two CSGs G and H I first sort Ng and Ny by the length
of the node labels, in descending order. Iterating over the nodes in this
order, I then do a pairwise comparison (1;,7;) € Ng X Ny, finding for ev-
ery node n; € Ng the node n; € Ny that provides the largest label overlap,
i.e., for which |L(n;,n;)| is maximised. Let the LCS yielding n;'s maximum
overlap with the nodes of Ny be denoted as L,,x(1;, Ny). The sorting of
the nodes allows us to abort the search once considering nodes that are

65

4.3.3

434

4.3. PROTOCOL MODELLING WITH COMMON SUBSTRING GRAPHS

shorter than the best match previously encountered, so this algorithm is
in O(|Ng| - [Nn|). The score contributed by node #; to the similarity is then
the ratio of the best overlap size to the node label’s total length, multi-
plied by P;(n;) to factor in n;’s importance. The scores of all nodes are
summarised and normalised, resulting in our similarity measure S(G, H)
between two graphs G and H:

Lmax nj, N
Z PG(ni)| (|7’l| H)|
S(G, H) = H<Ne :
’ Y Po(n)
n;€ENg

Merging

The way the merge operation proceeds depends on whether the CSG that
is being merged into another one needs to remain intact or not. If it does,
then merging a CSG G into H is done on a path-by-path basis by dupli-
cating each path p € Pg, inserting it as a new LCS into H, and copying
over the redundancy count. If G is no longer required, all paths can be
unhooked from the start and end nodes, re-hooked into H, and a single
pass made over G’s old nodes to merge them into H.

Scoring

To be able to classify flows given a set of CSGs loaded with traffic, one
needs a method to determine the similarity between an arbitrary flow and
a CSG as a numerical value in the [0, 1] interval. Intuitively I do this by
trying to overlay the flow into the CSG as well as possible, using existing
paths. More precisely, I first scan the flow for occurrences of each CSG
node’s label in the flow, keeping track of the nodes that matched and the
locations of any matches. This is an exact string matching problem and
many algorithms are available in the literature to solve it [68]. I am cur-
rently using a simple memcmp ()-iterative approach. The union of paths
going through the matched nodes is a candidate set of paths among which
I then find the one that has the largest number of matched nodes in the
same order in which they occurred in the input flow. Note that this gives
us the exact sequence, location, and extent of all substrings in the flow

66

44

441

442

4.4. EVALUATION

that are typical to the traffic the CSG has been loaded with—when using
a single protocol’s traffic, one can expect to get just the protocol-intrinsic
strings “highlighted” in the flow. Finally, to get a numerical outcome I sum
up the total length of the matching nodes’ labels on that path and divide
by the flow length, yielding 1 for perfect overlap and 0 for no similarity.
Figure 4.2 illustrates the process.

Evaluation

I implemented CSGs as an extension to the Bro IDS to make them acces-
sible to a wide range of future network monitoring tasks and, developed
in parallel, in a separate framework explicitly designed for testing clas-
sification performance. In the following sections I present an evaluation
of CSGs investigating structural aspects, classification performance, and
run-time behaviour.

Terminology

In this section, I use the term session to refer to all traffic exchanged be-
tween two endpoints, using the same quintuple of originator and respon-
der IP address, originator and responder port numbers, and IP protocol
(TCP or UDP). A session consists of two flows, one containing all pack-
ets in originator — responder direction while the other one comprises all
packets in responder — originator direction. A TCP session thus contains
all traffic belonging to a single TCP connection. A UDP session consists of
all packets exchanged within a quintuple with packet inter-arrival times
below 10s, the passing of which marks the end of the session. Given the
lacking notion of a connection in UDD, a reasonable interval for separat-
ing individual “connections” must be used, and 10s has proven to be a
reasonable value in practice.

Input Traffic

I used three different sets of real-world, full-packet network traffic traces
to evaluate CSGs. The first set was collected at the uplink of the Computer

67

443

4.4. EVALUATION

Laboratory of the University of Cambridge, UK, on 23 November 2003
over a period of 24 hours. This set will be referred to below as the Cam-
bridge trace. The second set consists of traces collected from the uplink of
UCSD’s Computer Science & Engineering Department, ranging from 30
minutes to 2.5 hours, collected between 30 November 2005 and 7 Febru-
ary 2006. I will be referring to this set as the UCSD traces. The third set,
UCSD-w, consists of a five-day capture of the wireless network at UCSD’s
Computer Science & Engineering Department, starting on 17 April 2006.

Graph Structure

The structure of a CSG (i.e., properties such as its size, the distribution of
node frequencies, and path lengths) can influence its usefulness for cap-
turing protocol-specific aspects. CSGs have four parameters: soft/hard
maximum node limits, eviction weight threshold, and minimum string
length. I suggest a soft/hard node limit of 200/500 nodes, a minimum
weight threshold of 10%, and 4-byte minimum string length as reason-
able default choices. To validate that these settings are sound, I used
the Cambridge traces and selected 4 major TCP protocols (FTP, SMTP,
HTTP, HTTPS) and 4 UDP ones (DNS, NTP, NetBIOS Nameservice, and
SrvLoc) and for each of them collected 1000 sessions from destination ser-
vices manually inspected to guarantee they were indeed running the in-
tended protocol. In three separate runs with minimum string lengths of
2-4 bytes, 8 CSGs were loaded with each session’s first message while I
recorded node growth and usage. Figure 4.4 shows the number of nodes
in each graph during the construction. The protocols exhibit fairly dif-
terent growth behaviours, but all of them tolerate the 200-node soft limit.
HTTP repeatedly pushes beyond the limit but never loses nodes at the
eviction weight threshold. Figure 4.5 shows the frequency distribution of
each CSG’s nodes after 1000 insertions. In all CSGs except for the FTP one,
at least 75% of the 200 nodes carry only a single path. The FTP CSG only
grew to 11 nodes in the 2-byte minimum length run, explaining the cruder
distribution. Minimum string length seems to matter little. Thus, my CSG
settings seem tolerant enough not to hinder natural graph evolution.

Figures 4.6 and 4.7 show examples of real-world CSGs for protocols DNS,
DHCP, HTTP, and SMTP after insertions of 1000 LCSs into each CSG.
Darker nodes represent nodes carrying more paths. The visual representa-

68

4.4. EVALUATION

nodes

nodes

nodes

nodes

250
200
150
100

50

250
200
150
100

50

250
200
150
100

50

250
200
150
100

50

TCP/21

— 4 bytes
—— 3 bytes
— 2 bytes

250 500 750 1000

TCP/80

250 500 750 1000

UDP/53

250 500 750 1000

UDP/137

™=

250 500 750 1000
Iteration

250
200
150
100

50

TCP/25
) /Jk :
0 250 500 750 1000
TCP/443

250
200
150
100

250
200
150
100

250
200
150
100

50

250 500 750 1000

50(7

UDP/123
250 500 750 1000
UDP/427
it
250 500 750 1000
Iteration

Figure 4.4. CSG node growth during insertion of 1000 sessions, for minimum
string lengths of 2, 3, and 4 bytes, with a soft node limit of 200 nodes. En-
forcement of the hard node limit of 500 nodes never becomes necessary.

69

4.4. EVALUATION

% nodes

% nodes

% nodes

% nodes

100

90

80

70

100

70

60

100

90 |/

80

70

60

50

100

90

ol

70

60

TCP/21

60

——4byles
— 3bytes
—___2bytes

50
0

2 3 ;

TCP/80

x 10

90

8o

50
0

2 3 -

UDP/53

x 10

50
0

2 3 -
Node Frequency

x 10

TCP/25

100

90

80

70

60

50
0

TCP/443

x 10

100

80

70

60

9oV

50
0

UDP/123

x 10

100

90

80

70

60

50

100

80}

70

60

x 10

90|~

UDP/427

50
0

2 3
Node Frequency

4 5

X104

Figure 4.5. CSG node frequencies after 1000 insertions, for minimum string
lengths of 2, 3, and 4 bytes.

70

4.4. EVALUATION

X00x00x01x00.

X00x00x00x01x00x00x00x00x00 X02acx02ukx00x00

/X00X00x00x01 X01x03c01x03csi

X00x01x00x00)x10x00x00x00x00x00x00

edx00x00x00x00
X00X00X00x00x00x00x00x00x00

~ X0DX00x00x00+00x00x00X00X00X00

X00400¢00x00830xdb

X00X00X0BX00FLXCEXIC

-
| x0000x00xa08 e

/*’ X00X00x00x027x89x6xf8
_—
i/

’ 7 X00K0000X06 xabPxSE
/

Xa5xaldxfdx00x00x00X00

/
/

X00X00X00x10xa4x910x

XEOXDAXO0X00X00x00.

bdsoanass |)

/
P

X00x00x830xd
X01X01X06x00xe4_+

/|

X00x00xE30xcb; \ “_’,’ :OO‘WKWl[(ixasnxznse;
ATt HX00:00x830 \ \ ‘ x"mxmmaxos}ﬁxk
| == \\.\\W,, s—

X01X01X06x00xe7kxadP.

xafx00X00x80xeBKfaxD4

|
\

{xbex00X00E30
XOLOLOBO0L- \ exvacoonsioes | o
O AO1OIX06K00AMAbeS w — dbx0000X00x00
e i

Xe1X00x00x00x00

X0Bxi4x00x00x830

/ D_
L
S
X01x01x06x00xd2Axb15 ~ x00x00x830xdb xfdx13x00x00x00x00 /

/

X6xa9x00x00x830

XOLXO1H06X00NCORO7 e . X93H00000000
000010000
A8xah00x001830
A8BX00X00100300
X4HCSH00K00K830 Adbxi8x00%00x00500 —
Xdbx93400x00x00400 ——

Figure 4.6. CSGs for UDP protocols DNS (top) and DHCP (bottom), flow pre-
fix length 100 bytes, soft node limit 100 nodes. Heavier nodes are rendered in
a darker background. Observe that only a small number of nodes are heavy.

71

4.4. EVALUATION

Figure 4.7. CSGs for TCP protocols HTTP (top) and SMTP (bottom), flow
prefix length 100 bytes, soft node limit 100 nodes. Heavier nodes are ren-
dered in a darker background. Observe that only a small number of nodes
are heavy.

72

444

4.4. EVALUATION

tion mirrors the observation from Figure 4.5 that for all protocols, a small
number of nodes carry the majority of CSG paths. There is also a distinc-
tive structural difference between binary protocols such as DHCP, where
alternative paths often have highly similar nodes, and text-based protocols
such as SMTP, where the resulting overall structure is more complex.

Protocol Classification

The work I present in this section was done in collaboration with Justin
Ma, Kirill Levchenko, Stefan Savage, and Geoff Voelker of the University
of California at San Diego. I contributed to the classification framework
itself, integrated CSGs into it, and performed parts of the evaluation.

A major application of CSGs is protocol classification: given a session’s traf-
fic, the goal is to determine the application-layer protocols present in the
session’s flows, regardless of the session’s transport-layer port numbers. As
pointed out in Section 4.2, port numbers as the traditional means of clas-
sification are becoming increasingly unreliable. To investigate how well
CSGs are suited for the task, we implemented a framework for investigat-
ing multiple classification techniques. The details of the work are avail-
able in a technical report published at UCSD [99] and the corresponding
paper [98].

The framework operates as follows. Starting from the assumption that all
sessions destined to the same host and port form an equivalence class of
application-layer protocol usage, equivalence classes are built for all ses-
sions observed in the input traffic. Each such equivalence class’s sessions
are stored in a cell. For each equivalence class, each session’s flow pair
is collected, reassembled if necessary, and inserted into two CSGs using
the method described in Section 4.3.1, one for each direction. In our ex-
periments, we constrained ourselves to just the first 64 bytes of each flow
and ignored any subsequent data. Flow reassembly thus often was not
required. The CSGs of each pair of cells that have accumulated at least
500 sessions using the method presented in Section 4.3.2 are then com-
pared in a pair-wise fashion and cells with greatest similarity are merged
iteratively, as described in Section 4.3.3, in an agglomerative hierarchical
clustering. As merging proceeds, the merge threshold increases monotoni-
cally until eventually all cells have been merged into a single “supercell.”

73

4.4. EVALUATION

Flow Key C -1 Flow Key C = K=
Flow Key A Flow Key A =T = Flow Key A
—_— 1EI£I Flow Key F ::‘ bt | il Flow Key F § O
== "TowKeD == = ol > b Uk
e § = Flow Key E ::‘ m- Hﬁ R —— Flow Key E |
Flow Key B /ILILI Flow Key B /ILILI Flow Key B 5~ ILILI

a) b) <)

Figure 4.8. The protocol classification framework. (a) Flows are mapped to
flow keys, stored in a hashtable. Each flow key points to a cell; the cells are
only lightly loaded and have not yet been promoted. (b) More flows have
been added, multiple flow keys now point to the same cells. The first cells
have been promoted for merging. (c) Cells have begun merging.

Such a sequence of merges along with the merge thresholds at which they
occur is illustrated in Figure 4.9. Along the sequence of merges, that con-
stellation of cells is selected which comes closest to our goal of merging
only those cells that contain the same application-layer protocol by find-
ing the clustering that minimises the number of misclassifications in each
cell. At this point, each cell is labelled with the application-layer protocol
the majority of sessions in it exhibit. Figure 4.8 illustrates the cell build-up
process. Once the cell configuration is obtained, we can use the frame-
work to classify new sessions by scoring them against cells using the op-
eration presented in Section 4.3.4 and classifying a session as carrying the
application-layer protocol of the cell it most closely resembles.

We compared CSGs to two other content-based models of network pro-
tocols. I only summarise them here; the full description can be found in
the paper [98]. Both models are specifically selected for the classification
task and of lower input fidelity than CSGs. The first is a Markov process
model which represents a protocol as a Markov chain with 256 nodes, one
for each possible byte value. The transition probabilities of each Markov
chain are derived from the totality of sessions present in a cell, separately
for each direction, by adding up the occurrences of transitions among sub-
sequent bytes. Sessions are scored by performing random walks over
the cells” Markov chains, where the walks consist of a number of steps
equal to the flow prefix length used. Note that this model completely ig-
nores positional information about byte occurrences inside the flows, since
the Markov chain transition probabilities sum up the byte occurrences in
their entirety. The second model, which we termed product distributions,
factors in positional information more strongly. Here, a 256-element his-

74

Markov process
model

product
distributions

4.4. EVALUATION

0.8 i g P
o6 T 3-
0.4 i
02| BRI
OF i SRR EENEEEE
_0-2 1
NNNNNNNNNNONALNAIoANWATAAANAAALA
ZZZZZZZZZLO0ZEDXCAEEEZEWSHFFEEQRF<O
DOONDN0A00ZI0Z[{PZZ2ZnZznZzEES=Snlsn
Z2ZZzZzZzZzZz i 42 itdgel il i Z0 ioTTOOD LTy
i SEYECREREBR L TRe T bl aBeg
T RSB IPER I I rIcNIDBRLOILARNSRRD
mmcoc»commlnv—‘“o'-, NMOoO+~TOANT AN ©RVON—© i
VOMNM—MNAQN © Y < ~— — - —9®— — -

o [aV] ~ o~ o [op]

< - 5

- [9V]

[Te)

Figure 4.9. Iterative merging of cells while increasing the merge threshold.
The horizontal line across the graph indicates the resulting merge threshold.

togram is maintained for every byte offset and each direction of a session’s
flows. Each histogram bin corresponds to a possible byte value and counts
the number of occurrences of each byte value at the histogram’s offset. As
the model is trained, the histograms accumulate precise information about
the frequency of individual bytes” occurrences at different offsets. In con-
trast to CSGs, no information is stored about consecutive strings occurring
at different offsets.

In order to be able to evaluate classification accuracy, we required a clas-
sification oracle. We chose Ethereal 0.10.14 ? for this purpose, despite the
fact that it clearly is a weak oracle since it relies almost exclusively on well-
known ports to label flows.? For our traffic sets, this weakness did not
seem to matter. For better classification, the regular expression set from
the L7 project [91] could be used.

Each of the trace sets was split into two halves, using the first half to train
the models and the second for classification. The overall classification re-
sults are shown in Table 4.1. Product distributions achieve best accuracy,
followed by CSGs, and Markov processes come last. The good perfor-

Zhttp://www.ethereal . com
SEthereal uses signature-like heuristic in a small subset of protocol analysers, for ex-
ample for RPC.

75

http://www.ethereal.com

4.4. EVALUATION

CAMBRIDGE UCSD-w UcCsD

flows novelty flows novelty flows novelty

226,046 1.18% 403,752 0.51% | 1,064,844 1.12%

‘ total learned total learned total learned

Product | 1.68% 0.50% 1.78% 1.28% 4.15% 3.03%
Markov | 3.33% 2.15% 4.26% 3.75% 9.97% 8.85%
CSG | 2.08% 0.90% 4.72% 4.21% 6.19% 5.06%

Table 4.1. Overall traffic statistics (top) and classification accuracies for the
three content models (bottom), for the three trace sets. Novelty percentages
indicate the fraction of protocols occurring in the test sets but not the train-
ing sets. The “total” columns show the overall misclassification encountered
in the test trace sets, while the “learned” columns list the misclassifications
among flows labelled with protocols that were present in the training sets.

mance of product distributions largely stems from the fact that they are
able to fingerprint frequently occurring distributions of individual byte
values at fixed offsets, as typically found in binary protocols. While the
substring-based approach taken by CSGs is better at picking up freely
movable strings and their sequencing, this does not translate into a deci-
sive advantage in the classification task. It does however mean that CSGs
are generally better at classifying text-based protocols than binary ones.
Since text-based protocols however typically also have strings occurring
at fixed offsets (such as the beginning of the flows, in particular), product
distributions generally work well in those cases as well. The Markov pro-
cess model cannot leverage any information about different offsets into
the flows and suffers accordingly. These observations are confirmed by
the detailed confusion ratios for CSGs shown in Table 4.2 and the overall
accuracy ratios presented in Table 4.3: the larger contributors to the over-
all classification error are generally binary protocols. DNS, in particular,
is a major culprit. Note that encrypted protocols are not generally hard
to classify, assuming the connection setup is observable: the example of
SSH shows that such scenarios are handled well in general, and CSGs are
in fact performing better than both other models in this case. This would
clearly no longer be the case if flow monitoring was cold-started in the
middle of an already encrypted exchange. In this case, CSGs would strug-
gle to find enough structure to build a model from, while the other models
would likely build a useful model of the homogeneously distributed “line
noise” of encrypted content.

76

4.4. EVALUATION

"}9s SurureI) 9} UI J0U 919M Jey} s[020301d [oA0U djedrpul SUNSI] PISIOI[R)] TOLId [[RISA0 Y} 0}
ANqrIyuod A3y} sadejusdrad pue srequunu 9)njosqe Y3oq Ul UMOYS I SMO[J [000301d pPayISSe[dsIj 19pIo 3ur
-PUS0SaP UI PajIos “S}as 90e1} 921} A3 JO Yded 10§ “SHG)) 10§ suorjedyissedsiu [0do030xd og¢ doy sy zF 9[qeL

dLLH < dSId | %E€P00 | €8 SNA — fuaLo[tg | %L10°0 | €6C SNA + SNAN | %S000 | T¥
dLIH < OHM | %€¥00 | 8¢8 SNd < dSH | %0200 | 9v¢ SNAN < SAN | %S000 | <¥
dLLH < OHDT | %EP00 | S¥8 d1009d < SNAN | %0200 | 6¥¢ dINS < VIVAd-dld | %S000 | €F
dINS < dINDIVSI | %EV00 | SP8 DJAHDA < dVONIddAdn %¥200 | €CF dIINS < dId | %Z000 | 99
Jd1IH < 30145 | %¥%0'0 | €58 dIN < dINAVSI | %000 | ¥¢s dLIH < dIN | %Z000 | 99
dIN — X¥ | %S¥00 | 948 SNAN <~ OLI'TONVIN | %1€00 | 8¢S dIN < SNA | %Z000 | 8S
dINS < VIVd-dId | %L¥00 | €16 NALS < dINd | %€€00 | 089 SNIAVY < dASH | %000 | 09
DOTAYS < Iadl¥ | %L¥00 | V16 SNAIN < dIAIVSI | %¥€00 | €65 SNAN < VIVAd-dLld | %Z000 | €9
SNd < dOWNAX | %L¥00 | TT6 d100d < dIN | %I¥00 | ¥L das/dvs < 8oishAs | %6000 | 8
SNA < 1SS | %8500 | 6¢CIT XA 1SS | %SP00 | 184 SAN «— VIVd-dId | %6000 | 64
198uassaN — JIN | %6800 | OFIT dIN < dVONAIddn %9%0°0 | 864 dAVINI < VIVd-d1d | %0100 | €8
Od¥HDA «— dIN | %E€90°0 | ¥ect dANT <~ XA | %S00 | 16 ddss <« VIVd-dld | %0100 | S8
dLIH < ddsS | %4900 | TI€T SNAN < OLI'TONVIN | %¥%<S00 | 1¥6 SNAN < dIN | %I100 | ¥6
deuniog < SSAN | %S00 | ¥9¥1 dIINS <= dINA | %¥Z0°0 | #8¢1 HSS < 801sAS | %8100 | 0€T
dOHA < SNA | %6800 | LT SNAN < dINH | %4400 | 8€€1 SNAN < ¥ISMO¥YL | %ST100 | T€T
SAN < AMASAA | %c60°0 | 9841 d1OOd < dINd | %€80°0 | 9¥¥l SAN « dvugiod | %z200 | 6l
TPwwelS «— g | %600 | ¢6LL SdND < dINA | %c600 | T09T dLIH « 8o1sfis | %zz00 | €61
JdINIVSI <= SNd | %€0T0 | 600C SNAN < dILN | %S600 | 0991 ddsS < DOTAYS | %6200 | 6¥C
SY20S «— dLLH | %PIT0 | 91CC IV <= dINH | %010 | 4981 HSS < VIVd-dld | %6¢00 | 1SC
SNd < dIANS | %¥CT0 | CI¥e AVINI < dINA | %80T°0 | 6481 dId < dOd | %8£00 | 8c¢
JdLINS < dLLH | %I¥10 | 9¢4C JIANS < dINd | %S¢0 | SZ1¢ dId < VIVAd-dld | %6€0°0 | LE€
dLIH < 1SS | %¢81°0 | ¥99¢ daNd <~ dIN | %6€1°0 | IThe 1SS <~ dIANS | %SP0°0 | €8¢
SNAN < SNd | %S€T0 | T4S¥ AVATO < dINd | %€ST0 | 899¢C SAN < dIN | %4200 | 699
dLLH < SNIAav¥ | %0¥C0 | 149% SNA < dINJAVSI | %¥L1°0 | 820¢ SAN — A-OMY | %600 | S64
SAN « deuniog | %1670 | 6¥95 dLIH < dINA | %1020 | 0S¢ SNAN < SNA | %9110 | 000T
dVAT < dvVATO | %I0c0 | ¢98S SINNSIN < dINH | %1¥C0 | CIch SNA «— dIN | %€ET0 | SPIL
dLINS <= dOd | %9S€0 | 869 SNA < SNAN | %I6T0 | 6405 SNA < SAN | %€LT°0 | 88%1
dILINS <= 7ISS | %ceV'0 | 16£8 dOd < dINH | %¥9€°0 | 849€9 SAN < DOTAUS | %0810 | L¥PST
dDHA + AMASdA | %0850 | S9¢I1 SNAN < SNA | %4850 | €146 ddS/dVS < VIVA-d1d | %0610 | S€91
SNA < dINJAVSI | %S850 | 64¢TL SNA < dINA | %5980 | 680ST dLIH < VIVd-dld | %9690 | €86S
sfooojoxd JOLID 2103 sfooojord JOLID 2103 spooojoxd IOIID 2103

ason M-dsdnN HOATIINVY D

77

*90e1} AITJUL 3} Ut [000301d a3 jJo uonrodod sy st sjooo3o01d a3 Surmor[oy uumod a3ejusdrad sy, *s3as den
pue s[epow dijjer3 ay} [[e 10§ ‘s[020301d Ppajod[as Jo [[eda1 pue “uorswaid I01I8 UOTJedIISSe]d (230, € d[qel,

78

4.4. EVALUATION

10¢8 0¥s6 €00 | 000 000 600 | 818 1889 800 | 800 HSS

8996 7866 9¢’0 | 196C L08L 6£S9 | V666 6666 CO0 | 049 dIN ~
av'e6 ¥096 €0 | 1866 9998 STl | 1866 0000l 100 | €O0Z SNAN Q2
6146 ¥1'S6 ICTT | CL66 1TL6 €€0 | 7966 9%L6 80 | L6 dLIH U
Gr'6e6 L¥86 €F'1 | 8666 €I'Z6 06T |9666 0666 9C0 |8L%S SN
00'00T 6666 000 | 0000T €966 000 |O0000T 8CSL ZIO | ¥¥0 HSS

9487 9998 0FV0 | 6CTT 0000T TS0 |TL66 G666 100 | 490 dIN m
L6'66 ¥€06 180 | 0000T 908 96T | 00001 0000T 000 | ¥69 SNAN &
8C'66 L89L TCO | €666 8906 600 |¥SL6 TO9L LTO | L9°0 dLIH &
6926 LEV6 L6T | 6666 8886 60 | €666 8866 FOO | ¥I'cc SN
0000l ¢C66 SO0 | 0000T 6£Zl OL'T | 0000T 6€89 ¥I0 | CCO HSS A
g9'g6 €866 SCO0 | ¥8ZL 9666 6L'T | 00000T 0000T 000 |6CS dIN Z
6666 1266 LI0 | I€66 866 O0V0 |SC66 00001 G€E0 | 68FF SNAN Z
6666 1666 ¥L0 | 8666 0000T 600 |6666 0000 £Z00 |¥CCl dLLH w
¢966 886 GV0 | L6666 68L6 190 |8L66 F¥666 600 |8C9C SNA
op091 opoa1d opard | o091 opdaxd opuad | o091 opdaxd opaxe | o) [000301d

98D AOIEA PnpoiJ

445

4.4. EVALUATION

x10~° CSG constr., 1000-byte prefix x 10~ CSG constr., 200—node soft limit

1.5
1.5
z / z 1
[0} [0}
£ E
S S
> >
< 05] < 05
0 0
50 100 150 200 50 100 250 500 1000
Soft node limit Flow prefix (bytes)
CSG comparison x107* CSG flow scoring
0.04 . . . 6 . . .
5
0.03
& 5 4
jo] jo]
£ 002 E3s
S)
Zz Z 2
0.01
1
0 0
50 100 150 200 50 100 150 200
Soft node limit Soft node limit

Figure 4.10. Performance of CSG construction with varying soft node limits
and flow prefix sizes (top left and top right, respectively), comparison (bot-
tom left), and flow scoring (bottom right). Error bars are omitted since do
significant variation was noticeable.

Runtime Behaviour

To evaluate the runtime performance of the CSG operations, I first selected
1000 flows of a representative set of application layer protocols: DNS,
DHCP, NTP, NetBios NS, SNMP, SrvLoc, and Syslog for UDP, and FIP’s
command channel, SSH, SMTP, HTTP, POP3, IMAP, and HTTPS for TCP.
All experiments were made on an otherwise idle Pentium 4 running at
2.53GHz and 512MB of memory, the same machine used in Section 3.5.5.5.

To measure CSG creation performance, I then averaged the times needed
to insert 1000 LCSs into individual CSGs per protocol. In separate runs I
adjusted the soft node limit between 50 and 200 nodes while using a flow
prefix of 1000 bytes, and the flow prefix size from 50 to 1000 bytes while
using a soft node limit of 200 nodes. In the former experiment, my im-
plementation of CSGs can insert LCSs at a rate of 1,243 to 761 per second,
while in the latter the rate varies from 5,764 to likewise 761 per second.

79

4.5

4.5. DISCUSSION

The average insertion rate across the two experiments is 1,092 insertions
per second. Note that these results do not include the time required to
obtain the common substrings that were inserted. Recall Section 3.5.5.5
for the runtime requirements to obtain LCSs using Smith-Waterman and
Jacobson-Vo, but also note that depending on the application, CSGs do not
necessarily require common substrings as input but can also use entire

strings, since content unique to individual flows will quickly be pushed
out of the CSG.

Next, I measured the time needed to compare CSGs to each other by load-
ing into memory all CSGs created during the construction experiment
with the same soft node limit, performing pairwise comparisons among
each of those sets 10 times, and computing the average time needed. The
comparison rate ranges from 177 to 30 per second. These rates are signifi-
cantly lower than those needed for CSG construction, but note that traffic
model comparison is often less frequently required than LCS insertions or
flow scoring, which I investigated next.

Again using the CSGs of varying soft node limits built during the CSG
creation experiment, I created a random mixture of 1000 flows from all
protocols in the dataset and measured for each application-layer protocol
the average time needed to score those flows against each of the CSGs.
Scoring performance ranges from 5,630 to 2,334 flows per second.

Figure 4.10 summarises these results.

Discussion

The evaluation shows that CSGs perform well when used as traffic classi-
tiers. When compared to other traffic models, they score worse than prod-
uct distributions, but better than Markov models. Not surprisingly, CSG’s
classification results are best when analysing text-based protocols with
protocol-typical strings that are different from those of the other protocols,
such as HTTP or IMAP. Classification of binary protocols is complicated
by two factors. First, binary protocols do not necessarily have protocol-
intrinsic tokens that naturally delimit semantic entities in the flows. This
results in greater difficulty for sequence alignment algorithms to identify

80

4.6

4.6. RELATED WORK

definitive commonalities. Product distributions manage to overcome this
hurdle due to their single-byte granularity. Second, several binary pro-
tocols exhibit presence of zero-byte strings, sometimes in close proximity
(such as with DNS vs. NTP), which further complicates accurate differen-
tiation.

On the other hand, product distributions are not without shortcomings:
CSGs offer the unique benefit of providing protocol-intrinsic substrings in
their entirety and with precise information about the whereabouts of their
occurrence along with their frequencies. This makes them much easier
to translate into content-based signatures that are immediately useful to
present-day IDSs. CSG’s main strength, the focus on common substrings,
is also its main weakness: only substrings that were observed during train-
ing can later be used for classification. Binary protocols make the presence
of such strings less certain, though the fact that I used a minimum string
length of 4 bytes while achieving good classification results shows that this
is not a fundamental hurdle.

The runtime performance of CSGs is good even though they are more
complex than more statistical models, such as product distributions. The
traffic volumes at which CSGs can operate at line speeds will strongly de-
pend on how CSGs are used. In high-bandwidth environments, sampling
could be used to selectively reduce the load on ports with high traffic vol-
umes during model construction. Once the model is built, CSG compar-
ison and flow scoring are read-only operations on the CSGs and can be
parallelised with ease.

Over time, network traffic undergoes shifts in application-layer content as
new applications are introduced, older ones are phased out, and existing
ones update their protocol implementations. I have not investigated such
“drift” issues and leave them for future work.

Related Work

The work I have presented in this chapter falls under the broad umbrella
of traffic profiling, which has been researched quite thoroughly. It is of-
ten the precursor for anomaly detection, because detecting deviation from

81

4.6. RELATED WORK

the norm first requires a solid understanding of the norm. Much as in at-
tack detection, traffic classification has been attempted with methods at
varying depths of traffic inspection. I group the reviewed work roughly
in increasing order of depth of analysis, i.e., going from lower to higher
levels in the OSI network model.

Recent work by Karagiannis et al. has investigated transport-layer con-
tact patterns among sets of hosts, trying to delineate emerging patterns
for different classes of application-layer services (e.g., peer-to-peer appli-
cations vs. email) [79, 81]. Their approaches work well, but cannot distin-
guish among different protocols exhibiting similar contact patterns. Such
patterns are orthogonal to CSGs and both approaches could be combined
well.

Using a more statistical approach than Karagiannis et al. , Lakhina et al.
[92] likewise employ transport-layer features for classification. Their goal
is to identify anomalies, not necessarily of types known in advance, in
large flow sets. They use entropy as the main feature, and obtain mean-
ingful clusters for several well-known types of anomalies. Similar to our
Cell framework, their approach supports fully unsupervised classification.

Several efforts have used manually generated signatures as the core engine
of flow identification [51, 137, 80]. Manually generated signatures have
two significant drawbacks: first, one has to know in advance what pro-
tocol one is actually looking for; second, manual signature generation is
tedious and prone to errors on the sides of false positives or negatives. Sta-
tistical learning techniques can help with the latter problem, as has been
demonstrated by Haffner et al. [69]. Not only can CSGs provide such sig-
natures without manual intervention; they can also provide information
about the relative frequencies with which elements of such signatures do
occur in practise.

Moore and Papagiannaki [104] use a set of 9 classifiers operating at mul-
tiple levels of the network model and varying levels of complexity. They
suggest a classification procedure using incrementally more classifiers, con-
necting them through causal reasoning. In contrast to our work, their ap-
proach is not fully automated, classifies at the granularity of 10 different
classes of applications, and only manages to achieve or exceed our level
of accuracy if 8 or 9 of their classifiers are used. Zuev and Moore [174]

82

4.6. RELATED WORK

employ network-level packet headers as features for supervised Bayesian
classification. Using flows manually labelled as a baseline, they classify
the packets into 10 general application classes and achieve accuracies rang-
ing from 66% to 83%. The advantage of their approach is that access to
flow-level content is not required; however, their accuracy is significantly
worse than ours.

Zander et al. [171] suggest a framework for unsupervised protocol clas-
sification using Expectation Maximisation [49] to derive classes of traffic
based on elementary statistical features such as packet inter-arrival times,
packet length distribution, and flow size and duration. Their work fo-
cuses on the automated selection of good features for individual traces
and currently gives no information on classification accuracy, whereas our
framework focuses on fully automated classification of traffic given a fixed
feature set.

A problem similar to the classification of flow content is that of classi-
tying file types. Li et al. [93] use n-gram profiles for this purpose and
achieve good accuracy; their work is similar to the product distributions in
our traffic classification framework. Another application using a product-
distribution-like is presented by Tang and Chen [153], who use byte dis-
tributions to fingerprint exploits in flow content.

Another general way of fingerprinting the normal is through specification
and enforcement of adherence to such specification. Normalisation of net-
work traffic [71, 163] consists of first formulating what constitutes compli-
ant traffic, then detecting deviation from that profile, and finally deciding
how and whether the deviation can be corrected without adversely affect-
ing the end-to-end functionality of the traffic flows.

Finally, Cui et al. [48] likewise employ sequence analysis in a protocol-
agnostic fashion, but use it model global commonality in application-layer
sessions with the intent to replay protocol exchanges at one endpoint of
the communication.

83

4.7

4.7. SUMMARY

Summary

In this chapter I have illustrated the importance and difficulty of gain-
ing accurate understanding of the application-layer protocols present in
a network. The main contribution of the chapter is the introduction of
a new model of network flows, called common substring graphs (CSGs).
CSGs use sequence alignment to collect protocol-typical substrings and
associate these substrings with the positions and frequency with which
they occur in the input flows. CSGs are a high-fidelity content model: the
content strings and their positional distributions remain fully accessible
after model build-up, making CSGs useful in a wide range of applications.
CSGs provide elementary operations such as the incremental construction
of a content model from a set of input flows, pairwise comparison of CSGs
to each other to measure similarity between two models, and the matching
of individual flows against CSGs, highlighting the use of protocol-intrinsic
content in the flow. As an example of a CSG application, I have investi-
gated their suitability for classifying application-layer protocols. CSGs are
able to classify individual application-layer protocols with an error rate
ranging from 2.08% in the best to 6.19% in the worst case. When compared
to product distributions and Markov process models, CSGs offer the best
compromise between classification accuracy and detail of flow content.

84

51

52

Fingerprinting the Malicious

“Sergeant. Establish a recon post downstairs.
Code Red. You know what to do.”
— Woody in Toy Story.

Introduction

In the previous chapter I addressed the problem of extracting the structure
of application-layer protocols in the absence of reliable transport-layer la-
belling. The techniques presented can be used to derive a baseline of what
constitutes normal activity. In this chapter, I will narrow the focus to the
identification of malicious activity in network traffic. I begin by showing
ways to do so by contrasting malicious traffic against the normal in Sec-
tion 5.2, and derive ways to capture the essence of such malice in two
forms: a content-based one in Section 5.3, namely automatically generated
signatures for the identification of attack exploits as they are attempted,
and a more statistical one, Packet Symmetry, which can be used proactively
to prevent volume-based attacks from entering the network core, in Sec-
tion 5.4. I survey related work in Section 5.5, and conclude the chapter
with a summary in Section 5.6.

Defining Malice

Network traffic is considered malicious when it violates a site’s security
policy, for example by gaining an attacker access to end hosts, or by ren-
dering services offered by the site unreachable to its legitimate users. Op-
erating specifically on malicious traffic is thus predicated on two require-

85

521

5.2. DEFINING MALICE

ments: first, one requires a means of specifying what constitutes malice;
second, there must be a way to apply this specification to detect traffic
matching the specification. The challenges are to derive a suitable specifi-
cation and to turn it into a classifier that can detect traffic affected by the
specification with suitable accuracy (recall Section 2.4.2).

In this chapter I focus on two kinds of malicious behaviour: (i) content-
based exploitation of vulnerabilities in networked applications due to care-
fully crafted payload, and (ii) volume-based attacks such as aggressive
scanning and denial of service.

Content-based Attacks

A large class of attacks on networked computers aims to exploit vulnera-
bilities in the software running on end systems. Feeding unexpected in-
put to applications not processing such input in a robust fashion can cause
these applications to crash or, as is more frequently attempted, coerce the
software into executing code fed to it by the attacker. The last bit is crucial:
in order for an attack to succeed, the offending content has to be carried to
the victim machines over the network. Therefore, identification of those
parts of a network flow that contain the exploit is one possibility of defin-
ing malice. Content-based traffic signatures are a major pillar of intrusion
detection; the idea here is to express concisely the characteristics of the ex-
ploit as it is observable on the wire, and react according to a site’s policy
when a signature matches live traffic.

This approach to defining and detecting malice is not without problems:

e First, it requires that traffic is not encrypted, since encrypted traffic
completely obscures the actual flow content. This has been known
for a long time, but has not become as fundamental an obstacle to
content-based detection as one would assume. The main reason is
the fact that many major applications (such as the World Wide Web
or electronic mail) do not necessarily require encryption. Strong coun-
ter-arguments to this line of thought are the emergence of new ap-
plications that heavily use encryption and could be used as exploit
vectors (such as Skype [12, 16] and VoIP in general), and the possibil-
ity for attackers to employ encryption in their own communication

86

encryption as a
threat

5.2. DEFINING MALICE

infrastructures such as botnets.

e Second, while there is a duality between vulnerabilities present in
host software and the exploits that attack them, this is not necessar- vulnerabitity vs.
ily a one-to-one relationship: it is frequently possible to encode the ~“"'**
exploit in a number of different ways that still allow the attack to
succeed. Such polymorphism of exploits is a threat to content-based potymorphism
signatures, since they significantly raise the bar of the accuracy re-
quired from a signature set — polymorphism drastically increases
the chance of false negatives. It is worth noting however that there
is no universal agreement on the exact extent of the polymorphism
threat. While a high degree of polymorphism has been demonstrated
for some vulnerabilities [44], the amount of invariant content an at-
tacker can not work around depends strongly on the vulnerability.
Polymorphism underlines the importance of avoiding enumerating
badness [126]: engaging in an arms race with attackers to find a sig- enumerating
nature for every variant of an attack, instead of managing to capture """
the essence of the vulnerability in a smaller set of signatures remain-
ing constant over time.

e Third, detection of attempted exploitation as it occurs is inherently
reactive in nature. Clearly, it is preferable to protect a site’s infrastruc- reactive
ture proactively. Ideally, software would just be written with less """
vulnerabilities, but while this is a vast research field in itself [4], it
is unlikely to become widespread any time soon. A fundamental
hurdle is the fact that the economics of the software industry do not
hold the creators of software liable for errors, leading to insufficient
incentive to make software secure from the outset [134]. More in-
cremental yet proactive measures do exist though; one example is
fast and automated patch handling to fix vulnerabilities as soon as
they are fixed by the vendors. This is becoming more and more of
a basic requirement, since attackers are trying to derive the vulner-
ability from the patches, and the delay between published software
updates and appearance of exploits for the corrected vulnerabilities
is ever-decreasing [156, 157].

Despite these problems, content-based attack detection remains one of the
most important strategies when monitoring a network, and the work I

87

522

53

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

present in Section 5.3 aims to improve one of the most tedious aspects of
content-based defence: identification of attack-crucial elements present in
network traffic.

Volume-based Attacks

Volume-based attacks are orthogonal to payload-based ones: in contrast to
the latter, the content of traffic comprising such an attack matters little, it
is the presence of the attack traffic and the amount of it that is problematic.
In volume-based attacks, malice is defined by the presence of enough un-
wanted traffic to crash the victim machines or to prevent legitimate users
from reaching them. Since the content of such traffic matters little, it is just
as hard to come up with precise attack signatures as with some content-
based attacks, however the danger here is one of high false positive rates,
causing substantial collateral damage by dropping legitimate clients’ traf-
fic along with the attacker’s.

Compared to content-based attacks, the sources of volume-based ones are
frequently much harder to identify since spoofing source addresses is fea-
sible, given enough machines to spoof from. The advent of large-scale
botnets with potentially hundreds of thousands of attacking machines has
made this one of the most dominant threats to the Internet, and much
work has been done to tackle it. While the majority of existing work in
this space proposes reactive mechanisms that attempt to establish intri-
cate and wide-spread filtering once a site detects that it is under attack,
the work I present in Section 5.4 takes a more proactive stance: by making
the detection of abusive volumes of traffic pervasive and placing it close to
the sources of the attack streams, large-scale denial-of-service attacks are
made drastically more difficult.

Automated Signature Generation using Honeypots

In recent years, honeypots (briefly mentioned in Section 2.2), essentially de-
coy computer resources instrumented to monitor and log the activities of
entities that probe, attack or compromise them [146], have become popu-

88

potential false
positives

source address
spoofing

botnet threat

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

lar. Honeypots come in many shapes and sizes; examples include dummy
items in a database, low-interaction network components such as precon-
tigured traffic sinks, or full-interaction hosts with real operating systems
and services. Initially only used to observe manually the ways a broken-
into machine is put to use, they are increasingly being leveraged as ora-
cles for malice. This follows from the fact that activity on honeypots can
be considered suspicious by definition, as they serve no purpose in benign
interaction. Ideally, they should never see any traffic. Unfortunately, hon-
eypot activity cannot automatically be considered malicious, since the In-
ternet today carries a substantial amount of largely benign “background
radiation” consisting of backscatter, misconfigurations, and a large array
of broken traffic whose genesis is barely explicable (more on this in Sec-
tion 5.5). Nevertheless, honeypots currently are among the best network-
based implementations of a malice oracle available. The work I present
in this section was among the first to recognise the potential of honeypots
for automated analysis of malicious traffic and its ideas have been used
and extended by a large body of recent work that I will discuss in detail in
Section 5.5.

At present, the creation of exploit signatures for detection of content-based
attacks is a tedious, manual process that requires detailed knowledge of
both the vulnerability and the attack vectors it is supposed to capture.
Simplistic signatures tend to generate large numbers of false positives, too
specific ones cause false negatives. To overcome these issues, I have de-
veloped Honeycomb, a system that generates signatures for malicious net-
work traffic automatically. The hypothesis is that by applying pattern-
detection techniques and packet header conformance tests to traffic cap-
tured on honeypots, one can identify the elements in those flows charac-
teristic to attacks, and express them in form of content-bases signatures.
The purpose of the system was to find out whether such an approach can
be made to work and highlight the relative difficulties involved. The sys-
tem is an extension of honeyd, a popular low-interaction open-source hon-
eypot. honeyd simulates hosts with individual networking personalities. It
intercepts traffic sent to nonexistent hosts and uses the simulated systems
to respond to this traffic. Each host’s personality can be individually con-
figured in terms of OS type (as far as detectable by common fingerprinting
tools) and running network services (termed subsystems).

89

honeypot
interaction
levels

automated
signature
generation

53.1

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

My implementation spots patterns in traffic previously seen on the hon-
eypot: parts of flows in the traffic are aligned and compared, and the re-
sulting commonalities are one of the input streams for the signatures the
system generates. My original implementation used a suffix-tree based
LCR algorithm as introduced in Section 3.5.1 to spot similarities in the
payloads. Recall that the suffix tree implementation allows computation
of the LCR in linear time; among the several algorithms that have been
proposed to build suitable suffix trees [167, 101, 154] I used my imple-
mentation of Ukkonen’s algorithm as provided by the libstree library
previously mentioned in Section 3.5.1.

Honeycomb’s source code has been publically available from the outset!
and the system remains the only automatic signature generator with avail-
able source code to date.

Architecture

I have added two new concepts to honeyd: a plugin infrastructure, and
event callback hooks. The plugin infrastructure allows the development
of extensions that remain logically separated from the honeyd codebase,
while the event hooks provide a mechanism to integrate the plugins into
the activities inside the honeypot. Event hooks allow a plugin to be in-
formed when packets are received and sent, when data is passed to and
received from the subsystems and to receive updates about honeyd’s con-
nection state. Honeycomb is implemented as a honeyd plugin. Figure 5.1
illustrates the architecture.

Integrating the system into honeyd has several advantages over imple-
menting a standalone bump-in-the-wire design from scratch:

e No duplication of effort: the system needs access to network traf-
fic. For a standalone application, 1ibpcap[100] would be an obvious
choice. honeyd already does this: it inspects the network traffic using
libpcap and passes the relevant packets to the network stacks of the
simulated hosts and eventually to their configured subsystems. My
approach is a minimume-effort solution that avoids performance hits
by making use of packet data already transferred to userspace.

1See http://www.cl.cam.ac.uk/~cpk25/honeycomb/ for details.

90

http://www.cl.cam.ac.uk/~cpk25/honeycomb/

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

honeyd System

Subsystem Services Plugins
HTTP script FTP proxy ¢ ¢ * SMTP script

Virtual Topology
Linux BSD Win98 Cisco

|] | | Protocol Analysis

Flow Reassembly
Pattern Detection
i Connection Signature E ngine
Personalities States
Physical LAN

Figure 5.1. Honeycomb’s architecture, illustrated as a typical honeyd setup.
honeyd is simulating a number of different machines, each running a number
of pre-configured services. The Honeycomb plugin has hooked itself into the
wire to see in- and outgoing connections, and into honeyd’s connection state
management.

e Sufficiently realistic response traffic: honeyd is not passively listening
to traffic going in and out of the honeypot, rather, it actively creates
the traffic coming out of it through the simulated network stacks and
the configured subsystems. This creation of traffic is readily config-
urable and fully under the control of the user; an advantage when
experimenting with signature generation compared to more faithful
virtualisation environments.

e Avoidance of cold-start issues: a major advantage from the state
management perspective lies in the fact that integrating Honeycomb
into honeyd avoids desynchronisation from the current state of con-
nections: when honeyd receives a packet that starts a new connection
(whether in a legal fashion or not), Honeycomb knows that this starts
the connection. The question whether it may have missed the be-
ginning of the connection is a non-issue, in contrast to other systems
that use the bump-in-the-wire approach[71, 125].

5.3.1.1 Signature Creation Algorithm

The philosophy behind the approach is to keep the system free of any
knowledge specific to certain application layer protocols; Honeycomb’s
operation should be fully protocol-agnostic. Thus, each received packet

91

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

Packet Periodic
Interception Timeout

Connection State Update

No
Inb ound?
Yes
. Signature
Protocol Analysis R eport
For each known Connection
Header Comparison Snort
Payload Analysis Bro
File Output
No
Signature?
Yes

Signature Pool Update

Figure 5.2. High-level overview of Honeycomb’s signature creation algo-
rithm.

causes Honeycomb to initiate the same sequence of activities:

o If there is existing connection state for the new packet, that state is
updated, otherwise new state is created. At the same time, the time-
stamp of the new packet is used to potentially time out and expunge
outdated connection state.

o If the packet is outbound, processing stops at this point.

e Honeycomb performs protocol header field analysis at the network
and transport layers.

e For each stored connection state:

— Honeycomb performs protocol header comparison in order to
detect matching IP networks, initial TCP sequence numbers,
etc.

— If the connections have the same destination port, Honeycomb
attempts pattern detection on the exchanged flow content.

e If no useful signature was created in the previous step, processing

92

53.1.2

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

stops. Otherwise, the signature is used to augment the signature pool
as described in Section 5.3.1.5.

e Periodically, the signature pool is logged in a configurable manner,
for example by appending the Bro representation of the signatures
to a file on disk.

Figure 5.2 illustrates the algorithm. Each activity is explained in more de-
tail in the following sections.

Connection Tracking

Honeycomb maintains state for a limited number of TCP and UDP con-
nections, but has rather unique requirements concerning connection state-
keeping. Since the aim is to generate signatures by comparing new traffic
in the honeypot to flows seen previously, it cannot release all connection
state immediately when a connection is terminated. Instead, Honeycomb
only marks connections as terminated but keeps them around as long as
possible, or until it can be sure that there is no benefit in storing them any
longer.

Connections that have exchanged lots of information are potentially more
valuable for detecting matches with new traffic. The system must prevent
aggressive port scans from overflowing the connection hashtables which
would cause the valuable connections to be dropped. Therefore, both UDP
and TCP connections are stored in a two-stage fashion: Connections are
at first stored in a “handshake” table and move to an “established” table
when actual payload is exchanged. In this manner, high-rate connection
attempts cannot cause the more valuable established-connection states to
be dropped.

The system performs flow reassembly and message extraction as described
in Section 3.3: for TCP, Honeycomb reassembles flows up to a configurable
total maximum of bytes exchanged in the connection. It stores the re-
assembled stream as a list of exchanged messages up to a maximum al-
lowed size, where a message is all the payload data that was transmitted
in one direction without any payload (i.e., at most pure ACKs) going the
other way. For example, a typical HTTP request is stored as two messages:
one for the HTTP request and one for the HTTP reply. For UDP, messages
are similarly created for all payload data going in one direction without

93

5.3.1.3

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

payload data going the other way. Figure 5.3 illustrates the idea.

Packet Exchange Connection State

External Host Honeypot External Host Honeypot
— Initial Packet
Message 1
— 100 Bytes
_—pp 100 Bytes
\ Message 2
200 Bytes

*
\» Message 3 /

300 Bytes

_\ \/ Connection terminated

Figure 5.3. A TCP packet exchange (left) and the way Honeycomb traces the
connection (right). The packet initiating the connection is copied separately;
afterwards, two 100-Byte payloads are received and assembled as one mes-
sage. 200 Bytes follow in response, forming a new message. This in turn is
answered by another 300 Bytes, forming the final message. The successful
completion of the TCP teardown triggers the labelling of the connection as
“terminated”.

Protocol Analysis

After updating connection state, Honeycomb creates an empty signature
record for the flow and starts inspecting the packet. Each signature record
has a unique identifier and stores discovered facts (i.e., characteristic prop-
erties) about the currently investigated traffic independently of any par-
ticular NIDS signature language. The signature record is then augmented
continuously throughout the detection process, maintaining a count of the
number of facts recorded?.

Honeycomb performs protocol analysis at the network and transport lay-
ers for IP, TCP and UDP packet headers, using the header-walking tech-
nique previously used in traffic normalisation [71]. Instead of correcting
detected anomalies, it records them in the signature, for example invalid

2The terms “signature record” and “signature” are used interchangeably here except
for cases when I want to stress the difference between a signature record and a NIDS-
specific signature string produced from the record.

94

53.14

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

IP fragmentation offsets or unusual TCP flag combinations. Note that for
these checks, Honeycomb does not need to perform any comparison to
previously seen packets. We refer to a signature at this point as the analy-
sis signature.

Honeycomb then performs header comparison with each currently stored
connection of the same type (TCP or UDP). If the stored connection has
already moved to the second-level hashtable, Honeycomb tries to look up
the corresponding message and uses the headers associated with that mes-
sage. If no such message can be found, the next connection is investigated.
If the connection is still in the first-level hashtable, the initial packet is used
for the comparison.

If any overlaps are detected (e.g., matching IP identifiers or address ranges),
the analysis signature is cloned and becomes specific to the currently com-
pared flows. The discovered facts are then recorded in the new signature.

Pattern Detection in Flow Content

After protocol analysis, Honeycomb proceeds to the analysis of the re-
assembled flow content. Honeycomb applies the LCR algorithm to binary
strings built out of the exchanged messages. It does this in two different
ways, illustrated in Figures 5.4 and 5.5.

e Horizontal Detection: Assume that the number of messages in the
current connection after the connection state update is n. Honey-
comb then attempts pattern detection on the nth messages of all cur-
rently stored connections with the same destination port at the hon-
eypot by applying the LCR algorithm to the payload strings directly.

e Vertical Detection: Honeycomb also concatenates incoming messages
of an individual connection up to a configurable maximum num-
ber of bytes and feeds the concatenated messages of two different
connections to the LCR algorithm. The point here is that horizontal
detection will fail to extract meaningful messages from interactive
sessions like Telnet and thus won’t be able to detect meaningful flow
commonalities, whereas vertical detection will still work. Further-
more, vertical detection is also guaranteed to mask directional TCP
dynamics, since the concatenation effectively recovers the reassem-
bled streams per direction.

95

53.1.5

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

Connection A Connection B
Host A Honeypot C Host B Honeypot D
Initial Packet Initial Packet
Message 1 Message 1
100 Bytes 50 Bytes

\ Message 2 \ Message 2
200 Bytes 500 Bytes
Message 3 Message 3
300 Bytes LCS 200 Bytes

\ M ge 4
1500 Bytes

Connection terminated \/ Connection terminated

Figure 5.4. Horizontal pattern detection: two messages at the same depth
into the stream are passed as input to the LCR algorithm for detection.

In either case, if a common substring is found that exceeds a configurable
minimum length, the substring is added to the signature as a new payload
byte pattern.

Signature Lifecycle

If the signature record contains no facts at this point, processing of the
current packet ends. Otherwise, Honeycomb checks hows the signature
can be used to improve the signature pool, which represents the recent
history of detected signatures.

The signature pool is implemented as a queue with configurable maxi-
mum size; once more signatures are detected than can be stored in the
pool, old ones are dropped. Dropped signatures are not lost, since the
contents of the signature pool are reported in regular intervals (see Sec-
tion 5.3.1.6).

Honeycomb tries to reduce the number of reported signatures as much as
possible by performing signature aggregation. I have defined two relational
operators for the generated signatures for this purpose:

e sigy = sigy: signature identity. This operator evaluates to true when
sig1 and sig, match in all attributes except those which can be ex-
pressed as lists in resulting signatures (e.g., ephemeral source port

96

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

Connection A Connection B

Host A Honeypot C Host B Honeypot D

Initial Packet Initial Packet

Message 1 Message 1
10 Bytes 14 Bytes
Message 3 Message 3
1 Byte 1 Byte
Message 5 Message 5
1 Byte 1 Byte
Message 7 Message 7
1 Byte 1 Byte

Connection terminated \/ Connection terminated

Message 2
15 Bytes

Message 2
28 Bytes

Message 4
1 Byte

Message 4
1 Byte

Message 6 Message 6

1 Byte 1 Byte

Figure 5.5. Vertical pattern detection: for both connections, several incoming
messages are concatenated into one string and then passed as input to the
LCR algorithm for detection.

numbers). An example would be a simple SYN portscan that is not
IP source spoofed: the incoming packets share common source IP
addresses and TCP SYN flags, but the destination ports vary.

e sigy C sigy: signature sig; defines only a subset of sig,’s facts. This
particularly includes any payload patterns detected by the LCR al-
gorithm: A byte sequence b, is considered weaker than b, when b, is
a substring of b,.

If a new signature is a superset of an existing one, the new signature im-
proves the old one, otherwise the new signature is added to the pool as a
new entry.

97

5.3.1.6

5.3.2

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

Signature Output

The contents of the signature pool are periodically reported to an output
module which implements the actual logging of the signature records. At
the moment, there are modules that convert the signature records into Bro
or pseudo-Snort format,® and a module that dumps the signature strings
to a file.

The periodic reporting scheme is an easy way to make sure all signatures
are reported while in the signature pool and also allows for tracking of the
evolution of signature records through the signature identifier in a post-
processing stage.

Evaluation

TCP/UDP Traffic Spectrum

n

o

S
1

Il TCP
[UbP

o
S

Number of connections
@ =
o o

. . .
139 80 445 1214 135 137 1140 22 1433 67 1434 17300 1078 1080 other
Ports

Figure 5.6. Distribution of TCP and UDP traffic destination ports in packets
directed at the honeypot, as observed in the 24 hours.

The implementation consists of roughly 9000 lines of C code, with about
3000 lines for the libstree library. I tested system on an unfiltered cable
modem connection in three consecutive sessions, covering a total period
of three days. I was particularly interested in the traffic patterns and sig-
natures created for a typical home-user connection, which can be assumed
to be often only weakly protected, if at all. Furthermore, a larger honeynet
that would potentially see higher traffic volumes was unavailable at the
time.

SHoneycomb requires the ability to define a list of non-contiguous ports, and Snort’s
signature language currently does not permit this.

98

53.2.1

5322

5323

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

Traffic Characteristics

During the 24-hour period, honeyd captured 224 KB of traffic, comprising
557 TCP connections, 145 UDP connections and 27 ICMP pings. Figure 5.6
shows the distribution of the ports requested at the honeypot, in terms of
numbers of connections.

Signature Detection

Honeycomb created 38 signatures for hosts that just probed common ports.
25 signatures were created containing flow content strings. These are rel-
atively long; on average they contain 136 bytes. The longest strings are
those describing worms: Honeycomb managed to create precise signa-
tures for the Slammer and CodeRed II worms, see Figures 5.7 and 5.8.
Note that these are the overlaps after 6 hits of Slammer and 3 CodeRed II
hits, so they are not just accidental long matches between single pairs of
flows, and are thus more reliable than a match found in only two flows.
Also, Honeycomb did not report the typical HTTP GET string for CodeRed
IT; rather, it reported the longer string of bytes following afterwards.

alert udp any any -> 192.168.169.2/32 1434 (msg: "Honeycomb Fri Jul 18 11h46m33 2003 "; content: "|04 01 01 01 01 01 01
01 01

01 01

01 01 01 01 01 01 01 01 01 01 01 01 DC C9 BO|B|EB OE 01 01 01 01 01 01 Ol|p|AE|B |01|p|AE|B[90 90 90 90 90 90 90 90|h
[DC C9 BO|B|B8 01 01 01 01|1(C9 Bl 18|P|E2 FD|5 [01 01 01 05|P|89 E5|Qh.dllhel32hkernQhounthickChGetTf|BY|110h32.dhws2_f
|B9|etQhsockf |BY|toQhsend |[BE 18 10 AE|B|8D|E|D4|P|FF 16|P|8D|E|E0|P|8D|E|FO|P|FF 16|P[BE 10 10 AE|B|8B 1E 83 03|=U

|8B EC|Qt|05 BE 1C 10 AE|B|FF 16 FF DO|1[C9|QQP|81 F1 03 01 04 9B 81 F1 01 01 01 01|Q[8D|E|CC|P|8B|E|CO|P|FF 16/5]11
§10215102 FF DO|P|8D|E|C4|P|8B|E|CO|P|FF 16 89 C6 09 DB 81 F3|<a|D9 FF 8B|E|B4 8D OC|@|8D 14 88 Cl E2 04 01 C2 Cl E2 08
)IC2 8D 04 90 01 D8 89|E|B4[3|10 8D|E|BO|P1|CI|Qf|81 F1|x|01|Q|8D|E|03|P|8B|E|AC|P|FF D6 EB|";)

Figure 5.7. Signature Honeycomb created for the Slammer Worm.

alert tcp 80.0.0.0/8 any -> 192.168.169.2/32 80 (msg: "Honeycomb Mon May 5 16h59m09 2003 "; flags: A; flow: established,
content: "u|08 81| 0|9A 02 00 00 OF 84 C4 00 00 00 C7|FO|9A 02 00 00 E8 OA 00 00 00|CodeRedII|00 8B 1C|$|FF|U|D8|f|0B CO
OF 95 85|8|FE FF FF C7 85|P|FE FF FF 01 00 00 00|3j|00 8D 85|P|FE FF FF|P|8D 85|8|FE FF FF|P|8B|E|08 FF|p|08 FF 90 84 00
00 00 80 BD|8|FE FF FF 01|thS|FF|U|D4 FF|U|EC 01|E|84|i|BD|T|FE FF FF|,|01 00 00 81 C7|,|01 00 00 E8 D2 04 00 00 F7 DO
OF AF C7 89|F4|8D|E|88|P3|00 FF|lu|08 E8 05 00 00 00 E9 01 FF FF FF[j|00|3j|00 FF|U|FO|P|FF|U|DO|Ou|D2 E8|;|05 00 00|i|BD
T|FE FF FF 00|\&]05 81 C7 00|\&|05|W|FF|U|E8|§|00|j|16 FF|U|8C|J|FF FF|U|E8 EB F9 8B|F4)E|84|jd|FF|U|E8 8D 85|<|FE FF FF
P|FF|U|ICO OF B7 85|<|FE FF FF|=|88 88 00 00|s|CF OF B7 85|>|FE FF FF 83 F8 OA|s|C3|£|C7 85|p|FF FF FF 02 00|£f|C7 85|r
|FF FF FF 00|P|E8|d|04 00 00 89 9D|t|FF FF FF|Jj|00[j101]j|02 FFIU|B8 83 F8 FF|t|F2 89|E|80|Jj|01|Th f|04 80 FF|u|80 FF|U
|A4|Yj|10 8D 85|p|FF FF FF|P|FF|ul|80 FF|U|BO BB 01 00 00 00 OB CO|tK3|DB FF|U|94|=3"]00 00|u?|C7 85|h|FF FF FF OA 00 00
00 C7 85|1|FF FF FF 00 00 00 00 C7 85|‘|FF FF FF 01 00 00 00 8B|E|80 89 85|d|FF FF FF 8D 85|h|FF FF FF|PJj|00 8D 85|‘|FF
FF FF|Pj|00[3j|01 FF|IUIAO 93|j|00|Th"£|04 80 FF|u|80 FF|U|A4|Y|83 FB 01|ul|E8 00 00 00 00|X-|D3 03 00 00|3j|00|h|EA OE 00
00|P|FF|u|80 FF|U|AC|=|EA OE 00 00|ul11(5/00/5/01 8D 85|\ |FE FF FF|P|FF|u|80 FF|U|A8 FF|u|80 FF|U|B4 E9 E7 FE FF FF BB
00 00 DF|w|81 C3 00 00 01 00 81 FB 00 00 00|xul05 BB 00 00 FO BF|‘|E8 OE 00 00 00 8B|dS$S|08|dal|8F|";)

Figure 5.8. Signature Honeycomb created for the CodeRed II Worm.

Performance Overhead

I measured the performance overhead involved when running Honey-
comb compared to normal honeyd operation; the results are displayed in
Figure 5.9.

99

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

Honeycomb Performance Overhead

— Honeycomb
Honeyd alone

o o
o 0

1N
'S

Processing Time (s)

0 { 260 - ;100 o 60 800 1000 1200 1400
Received Packets
Figure 5.9. Performance overhead when running Honeycomb. The packet
processing times are almost entirely dominated by Honeycomb, so the
honeyd part is hardly visible.

5.3.3 Discussion

53.3.1

Honeycomb was one of the first if not the first system to use honeypots
for automating the network-based analysis of attacks as they occur. Many
lessons have been learned since its conception, both about the way Hon-
eycomb does things as well as about the things Honeycomb did not yet
address.

Evasion of Signature Generation Algorithm

The choice of LCR computation for signature generation is likely a bad
one. Assuming sufficient freedom in flow content, all an attacker has to
do to evade detection of valuable attack-relevant strings is to place a de-
coy string of length greater than the attack-relevant ones into the flows,
and the LCR computation will not return the desired result. However,
as pointed out in Section 3.6.2, LCS algorithms such as Smith-Waterman
and Jacobson-Vo, while more appropriate, also need to be used with care.
A solid fallback if the performance of Smith-Waterman is sufficient is the
use of an ACS-computing variant of Smith-Waterman. It is guaranteed
to highlight all common substrings between any pair of flows and thus
feeds the maximum amount of and most consistent combination of com-
mon substrings into the signature generator.

Note however that given the high length of the common substrings re-
ported by the LCR algorithm, it is quite unlikely that sequences of com-

100

5.3.3.2

5333

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

mon substrings computed via some other means than LCR would have
omitted the ones reported by LCR. At most, those algorithms would have
reported additional common substrings, some of which may not be desir-
able, as I will discuss next.

Leveraging Application-Layer Protocol Knowledge

The protocol-agnostic approach employed by Honeycomb is clearly ben-
eficial. Having to encode protocol knowledge would at the very least be
tedious (if the protocol specification if known) and in the worst case be
impossible (in case the workings of a protocol are unknown). However,
the ability to use protocol-specific knowledge without understanding of a
protocol’s exact operation would be highly beneficial to solve the problem
of mistaking highly frequent protocol-intrinsic strings for malicious con-
tent. The goal here is to automate the discovery of such substrings and
treat them accordingly. Such automated whitelisting of protocol-intrinsic
substring could very likely be provided by the CSGs as presented in Sec-
tion 4.3 or, since the full flexibility of CSGs is likely not necessary, a simpli-
tied version thereof. Note that the goal is generally not going to be to drop
such protocol-intrinsic strings altogether, but rather to recognise when sig-
natures would be constructed that consist of nothing but such substrings.

Signature Distillation

Honeycomb has no signature postprocessing stage taking over once sig-
natures are logged to the output file. Indeed, one of the most common
complaints I have received by other users since Honeycomb’s source code
has been available is that it produces too many signatures. Solid signature
distillation, that is, the on-line recognition of redundantly generated sig-
natures and partial commonalities among sets of generated signatures is
a component missing from all systems proposed in the literature to date.
Some systems do not consider live operation at all and satisfy themselves
with operating on fixed malicious and benign flow pools, though the the
main research goal of such systems is the analysis of specific properties of
the signature generators, such as false positive rates [94].

It is worth noting that to the best of my knowledge, no other system ex-
cept Honeycomb has combined protocol header analysis with flow con-
tent analysis in the signature generation process. I believe that protocol

101

automated
substring
whitelisting

5334

5.3.3.5

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

header analysis remains valuable since scripted attack tools often exhibit
idiosyncrasies in the traffic they generate; these idiosyncrasies stand a
good chance of being picked up by the header analysis.

Performance

The runtime performance evaluation of Honeycomb is preliminary. In
my experiments with sequence alignment algorithms in general and flow
pools in context of the CSG work in Chapter 4 I have found that it is
rarely the runtime requirements of sequence alignment algorithms per se
that cause performance bottlenecks, but rather the state-keeping context
in which they are applied. For example, while it might be prohibitively
slow to run a given algorithm on all pairwise combinations of a new flow
message and the corresponding ones in a flow pool, it might very well be
feasible to perform the computation on just those message pairs that have
the greatest potential to yield substantial common substrings. It is a topic
of future work to devise flow pooling and scanning strategies that clev-
erly use knowledge of the content of flows contained in a pool to reduce
the amount of work required.

Automatic Signature Enforcement

The Holy Grail of automated signature generators is fast distribution and
automated enforcement of generated signatures, for example to contain
a worm epidemic in its early stages. Such a degree of automation has
only been discussed theoretically to date, for example by Moore et al.
[109] and Weaver and Paxson [165]. It is generally assumed that auto-
mated containment will be difficult to achieve, not only due to the tight
timescales required, but also the ideal pervasiveness of the enforcement
architecture and the issues of large-scale collaboration, trust issues, etc. It
is worth pointing out that automatic signature creation for the purpose of
containing an expanding epidemic is different from accumulating exploit-
specific signatures in general: in the former case, generated signatures
would serve as an aid in an emergency situation but may not be meant
as a long-term solution, much like the interim relief character proposed by
Wang et al. [161].

Nevertheless, an automated signature creator that captures the “Zeitgeist”

102

53.3.6

5.3. AUTOMATED SIGNATURE GENERATION USING HONEYPOTS

of current malicious activity on the Internet, in the spirit of dshield.org*
would be highly beneficial to many institutions. On the other hand, the
existence of an automated containment infrastructure would open up in-
teresting new questions. For example, given such an infrastructure, the
faster malware spreads, the more obvious its activity will be and thus the
quicker it will be battled by the containment system. It might thus become
more important for malware to operate stealthily to avoid early detection.

Detection and Evasion of Honeypot Architectures

It can be expected that in the foreseeable future only a comparatively small
number of institutions will be running large-scale honeyfarms monitor-
ing substantial ranges of the IP address space. This opens up the ques-
tion of when or whether attackers are taking active steps to evade such
honeynets [15]. While currently the likely truth is that attackers do not
feel sufficiently threatened by the existing monitoring infrastructures, this
might well change in the future. The problem is that big honeyfarms are
not agile, that is, their address ranges cannot easily be changed. A po-
tential alternative is to “outsource” the collection of unwanted traffic to
large numbers of willing participants: by running a tunnelling daemon
on such machines that forwards traffic arriving on participating end hosts
on ports that are closed (e.g., via GRE), the breadth of vision of a hon-
eyfarm could potentially be extended significantly. On the other hand,
such a move causes incentive for the attackers to launch large-scale chaff
attacks that feed garbage into the monitoring system. Furthermore, sim-
ilarly to current malware being able to disable antivirus software upon
machine compromise, the malware might learn to disable such tunnelling
daemons. Hardware-based virtualisation techniques [37, 76] could solve
this problem by sufficiently protecting the integrity of the tunnelling dae-
mon.

Honeypots are also lacking agility in another sense: they can only serve
information about exploits for which they serve the matching vulnerabil-
ities. With most software packages receiving updates and patches on a
regular basis, it can become a management challenge to provide relevant
attack surfaces.

“nttp://www.dshield.org

103

http://www.dshield.org

54

54.1

5.4. CURTAILING MALICIOUS TRAFFIC WITH PACKET SYMMETRY

Curtailing Malicious Traffic with Packet Symmetry

I now move on to an entirely different approach to fingerprinting malice,
using the structure of network traffic at a much lower level in the network
model. I here present the work I contributed to a collaboration with An-
drew Warfield, Jon Crowcroft, and Steven Hand [86].

Packet Asymmetry as a Badness Oracle

The idea of this work is to leverage packet dynamics as a classifier for
identifying badness: by monitoring the symmetry ratio of the number of
outgoing packets to the number of received ones, one obtains a simple yet
flexible detector that allows the gradual throttling of sources ranging from
individual hosts to larger aggregates proportionally to the asymmetry ex-
hibited by the traffic they generate. A high degree of packet symmetry em-
beds the notion of mutual consent within a protocol, allowing the receiver
to implicitly throttle a sender simply by not replying. The next step is to
enforce symmetry on network transmissions at the edge: a simple enforce-
ment mechanism may be placed in NICs or access providers’ line cards, to
delay or drop packets that result in strongly asymmetric communications.
This edge-near placement makes implementation easy, ensures a clear no-
tion of packet provenance, and cannot be compromised by application or
OS exploits on the end-host.

More formally, I define an asymmetry metric S based on the number of
transmitted packets tx and received ones rx as follows:

tx+1
S =log, (rx—l—l)

This metric produces negative values when rx outweighs tx, positive val-
ues when tx outweighs rx, and zero in the case of perfectly balanced traf-
fic. The absolute value of § measures the magnitude of the asymmetry.
This metric has been carefully chosen for analysis: it allows an unbiased
means of evaluating traffic, centred around zero, and compresses wildly
asymmetric traffic ratios into a tractable range. An initial concern was the
question whether this metric would be sufficiently sensitive. Both mea-

104

implicit receiver
signalling

5.4. CURTAILING MALICIOUS TRAFFIC WITH PACKET SYMMETRY

surement and initial implementation have confirmed that it is indeed very
useful to work with.

Given a network vantage point, the value of .§ may be calculated over
traffic at some granularity (e.g. per-host, per-host-pair, per-flow) and over
a window of time. One may then take action against traffic that exceeds
some threshold value of S. There are a number of design decisions in this
approach that should be mentioned explicitly:

e Measure packets, not bytes. Rather than comparing bytes transmit-
ted in each direction, we simply count packets. With no knowledge
of the internals of the data being sent, packets are much more likely
to indicate the message structure that exists within a given protocol.
Moreover, the implicit signalling to receive more data may be as sim-
ple as a TCP ACK, for which byte counts are considerably less useful
than packets.

e Measure and limit close to the transmitter. The outcome of the ap-
proach we advocate is that the policy of implicit signalling is en-
forced end-to-end: Receivers are responsible for generating suffi-
cient backpressure on a channel to allow the transmitter to continue
sending. Monitoring and enforcement, however, are performed with-
in the network just outside the reach of the transmitting software
(e.g. on a smart NIC). There are many reasons for this placement:
First, we may clearly establish packet provenance, eliminating the
need for traceback [142, 143, 168] or pushback [77, 120]. Second, we
eliminate all potential damage done to interior links as well as the
target endpoint. Third, we minimise the aggregate amount of state
that must be tracked, allowing a simpler implementation. And fi-
nally, by mandating that placement be near, but not within the trans-

mitter’s software stack, we are robust against exploits which circum-
vent the OS.

e Delay, then drop. Unlike traditional IP congestion control, we opt to
delay, rather than to drop packets. As asymmetry increases beyond a
selected threshold, we introduce an increasing delay to the transmis-
sion of a queued packet. The intention is to be friendly to protocol
congestion control approaches by more gently throttling transmitted
packets. Where our approach is implemented in a smart NIC, queue-

105

54.2

5421

5.4. CURTAILING MALICIOUS TRAFFIC WITH PACKET SYMMETRY

ing may be completely deferred to the OS. In a non-local device, for
instance in an ISP, we anticipate queueing some number of packets
for delayed transmission, and then beginning to drop.

In the remainder of this section I analyse a large trace of Internet traffic
to establish how the packet symmetry assumption applies in general. The
Hotnets paper [86] presents a prototypical system showing how asymme-
try restrictions can be enforced to curtail malicious senders.

Traffic Analysis

In order to determine what sorts of traffic might be considered ‘well-be-
haved’, I performed a traffic analysis on a 24 hour packet trace collected
at a non-university research institution. The trace captured every packet
on the full-duplex Gigabit Ethernet link which connected the institution
to the Internet. The trace contains over 573 million packets to/from over
170,000 IP addresses and totalling over 250 gigabytes of data — see Moore
and Papagiannaki [104] and our 2003 PAM paper [105] for more details on
the trace characteristics and the monitoring infrastructure used.

I have examined the degree of symmetry present in the trace data at sev-
eral granularities: all traffic from each source host; traffic between host
pairs; and finally per-flow traffic. The aim of this analysis has been to de-
termine to what degree our symmetry metric can be used to distinguish
well-behaved traffic, and how much state it might be useful to maintain in
order to achieve this.

Host Packet Symmetry

I first examined symmetry from the point of view of each of the 170,000
individual hosts in the trace. I calculated S for all packets relating to that
host at a variety of time scales, from one second up to one day. The inten-
tion of this measurement was (i) to characterise the ranges of symmetries
that are exhibited within the trace, and (ii) to determine the timescales at
which it is appropriate to consider symmetry. The results are shown in
Figure 5.10.

Regardless of the time-scale over which § is measured, the vast majority
of hosts exhibit strongly symmetric traffic (|.§| < 2.0). The left-hand tails

106

5422

5423

5.4. CURTAILING MALICIOUS TRAFFIC WITH PACKET SYMMETRY

depict hosts where a considerably larger number of packets were received
than transmitted, while the right-hand tails show the opposite. The small-
est time-scale (one second) most clearly separates symmetric and asym-
metric hosts. Note that the plots for one hour and 24 hour windows com-
pletely overlap.

Host-Pair Packet Symmetry

Next I investigated the level of symmetry observed between the unique
pairs of hosts in the trace. I carried this out for the approximately 320,000
pairs in which both source and destination send packets and use a time-
scale of 1 minute to calculate §. Figure 5.11 shows the cumulative dis-
tribution of § for all host pairs that exchanged packets in both directions
during our observation period. Almost all host pairs maintain extremely
strong symmetry in their communications (|.5| < 1.0), while very few are
significantly skewed towards the receiving side (bottom 1%) or the trans-
mitting side (top 3%). I also measured $ for a further 6.8 million host pairs
in which only the source sends any packets. This clearly undesired traf-
fic demonstrated symmetry values ranging from 0.69-10.5, although with
99.9% less than 2.0, as is shown in Figure 5.12.

Flow Symmetry

To investigate the symmetry of traffic within individual flows, I chose to
examine separately the sets of TCP and UDP flows within the trace. For in-
creased precision, I calculated symmetry values every second. Figure 5.13
shows the cumulative distribution of the maximum value of § for the TCP
flows in the trace. The use of acknowledgement packets in TCP imposes
a degree of symmetry on all flows in the trace; virtually all TCP flows ex-
hibit asymmetry < 1.5 — a ratio of about 4.5 packets to one. Examining
the outlying TCP flows reveals a small number of misbehaving (or at least
irregularly behaving) flows. Considering UDP flows, Figure 5.14 shows
a much broader range of symmetry values. Further examination of the
outlying UDP flows reveals a great deal of misconfigured DNS traffic and
a considerable number of malicious flows; all of these packets are clearly
supposed to be subjected to throttling.

In both sets of flow measurements I examined the effect of ignoring pack-
ets at the beginning of the flow to reduce any transient asymmetry present

107

5.4. CURTAILING MALICIOUS TRAFFIC WITH PACKET SYMMETRY

Cumulative host packet symmetry, 170K hosts, varying windows
100 T T T T

9ot / 1
80 1
70t 1
60 1
50 1

40 1

Percentage of hosts

301 1

208 J —— 24h window |]

/ 1h window
10 —— 1min window |
1s window
P I .

0
-20 -15 -10 -5 0 5 10 15 20

Figure 5.10. Host Symmetry

Cumulative host pair symmetry for responding hosts, 360K pairs, 60s window
100 T T T T -

90
80
701
60
50

401

Percentage of host pairs

301

20

trtl
rarr)

log(

Figure 5.11. Host-Pair Symmetry (rx > 0)

Cumulative host pair symmetry for non-responding hosts, 6835K pairs, 60s windo

90

801

701

60

50

401

Percentage of host pairs

301

201

log(12tL)

Figure 5.12. Host-Pair Symmetry (rx = 0)

108

5.4. CURTAILING MALICIOUS TRAFFIC WITH PACKET SYMMETRY

Cumulative maximum TCP flow asymmetry, 55,000 flows, 60s window
100 . . : : ‘

90

80

70

60

50

40F E

Percentage of flows

30 B

Ignoring no packets

101 Ignoring first 10 packets ||

Ignoring first 100 packets
n n

0 I I I I N N
0 0.5 1 1.5 2 25 3 35 4 4.5

log (355%)

Figure 5.13. Maximum per-flow asymmetry (TCP flows of length > 100)

Cumulative maximum UDP flow asymmetry, 4400 flows, 60s window
100 ‘ . . . " : ‘

90

80

70

60

50

40r 1

Percentage of flows

30+ 1

Ignoring no packets

101 Ignoring first 10 packets |

Ignoring first 100 packets
i ! .

ol ‘ ‘ ‘ :
o 1 2 3 4 5 6 7 8 9

log(354)

Figure 5.14. Maximum per-flow asymmetry (UDP flows of length > 100)

with low packet counts. Both of the flow-granularity CDFs use only flows
from the trace with an excess of 100 packets, and demonstrate that a smooth-
ing effect may be obtained in this manner.

In summary, the analysis shows that packet-level symmetry shows good
promise as a classifier between well-behaved and malicious traffic. Fur-
thermore, monitoring per-flow symmetry did not indicate fundamentally

109

543

54.3.1

5432

5.4. CURTAILING MALICIOUS TRAFFIC WITH PACKET SYMMETRY

different properties than did host-pair granularity, leading to the belief
that the latter is a good starting point for future investigations.

Discussion
Incentives for deployment

In general, deployment of symmetry enforcement faces an asymmetric in-
centive problem somewhat reminiscent of the deployment of ingress filter-
ing [62] or the extinction of open SMTP servers or recursive DNS servers.
Note however that in many cases there is immediate benefit to sites em-
ploying a symmetry shaper. As one example, consider today’s server
farms, providing enormous CPU and bandwidth resources to essentially
anyone, often leaving the site operators in the first line of responsibility in
case of abuse. Here, deployment of symmetry enforcement is of immedi-
ate value.

Evasion

There is some potential for attackers to evade the mechanism by tricking
it into incorrectly allowing sources to keep sending substantial amounts
of undesired traffic. The degree to which this can be avoided depends
on the amount of state being used and whether or not source addresses
are assumed to be spoofable. In the following, assume host-pair symme-
try tracking. The required amount of state should be manageable com-
paratively easily, particularly given deployment close to the edge, while
allowing symmetry enforcement to be protocol-agnostic.

Without help from the outside, individual hosts can only dilute their asym-
metric traffic by ensuring a large fraction of symmetric traffic. This is
clearly a minor concern. A first distributed strategy is to “fly under the
radar” individually, that is, to keep the abusive traffic to a small amount
per node, but use substantial amounts of nodes for the attack, i.e., to lever-
age a botnet. Attackers could, for instance, use a pulsing attack where all
nodes attempt to blast away as much traffic as possible, then fall quiet and
just as the throttling mechanism permits new transmissions, blast away
again. A suitably sensitive delay mechanism would only permit such
blasts for a very brief period, as shown by the short time to disruption

110

5.5

5.5. RELATED WORK

of UDP floods in the paper [86].

Another strategy is collusion: during a DDoS attack, the attacker uses the
nodes of a botnet to send spoofed cross-traffic amongst its members in
order to fool the members’ symmetry monitors into thinking that the vic-
tim is returning substantial amounts of packets. The feasibility of this ap-
proach depends on the following;:

e Source address spoofing. As network ingress filtering becomes more
pervasive, this will become increasingly hard. Note that the symme-
try enforcement mechanism, if widely deployed, would be an ideal
opportunity to enforce widespread deployment of ingress filtering.

e Randomisation of IP ID values by the victim. Without this feature,
a significant number of colluding nodes have to be informed about
the ID value, estimate the IP IDs of the forged packets, and do this
quickly enough so forged packets are labelled accurately and arrive
in a reasonable sequence.

e TTL estimation. Every bot needs to discover by itself the correct TTL
value that matches the TTL of the actual victim’s reply packets as
they arrive at the attacking bot that is colluded with.

While better defence against spoofing-based collusion is conceivable, the
IP ID and TTL combination should be difficult enough to overcome for
the period until symmetry enforcement is deployed widely. Once that is
the case, pervasive enforcement and ingress filtering allow the attacker at
best fragile layered asymmetry exploitation to achieve limited amounts
of gain in abusive traffic. Furthermore, the approach to reducing botnet
effectiveness is aided by an increasing array of other mechanisms highly
compatible with symmetry enforcement, such as rigorous checking of re-
verse path forwarding at the ingress point [10].

Related Work

The search for a reliable way to identify malicious packets on the Internet
is almost as old as the Internet itself and has been iconified humorously by
the suggestion of an Evil Bit that would, for some definition of evilness,

111

55.1

5.5. RELATED WORK

unambiguously flag individual packets as either benign or evil [14]. Much
work has been done over the years to work towards an Evil Bit equiva-
lent, and I now survey the subset relevant for the structural and statistical
approaches presented in this chapter.

Honeypot Architectures

The idea of using honeypots for luring attackers into systems under close
surveillance is rather old and predates the invention of the term “honey-
pot” to express this purpose by decades. Stoll’s book [150], dating from
1986, reports on an elaborate hunt for attackers that involved honeypot
equivalents. Cheswick’s report on his evening with Berferd is another
classic tale of honeypot use [36]. Provos introduced honeyd [124], the ba-
sis for Honeycomb and an excellent tool for experimenting with attacker
interaction at medium levels of abstraction. Spitzner’s book [146] surveys
the honeypot landscape as of 2003. The Honeynet Project [90] aims to de-
velop easily deployable honeypot infrastructures and increasingly focuses
on distributed data management and analysis. The project also establishes
much dominant terminology. Currently, honeypots serve as a primary tool
in the investigation of botnet command and control channels [74, 42]. In
the context of this line of work, one of Honeycomb’s novelties was the
automation of deriving conclusions from observations in honeypot envi-
ronments.

A central component of honeypots is the monitoring of IP address space
that is not in production use. Much work dedicates itself to the analysis of
just the traffic found on such “dark” address ranges. The primary variable
in the literature is the degree to which monitoring systems respond to traf-
fic hitting dark address ranges. The most basic approach is to not respond
at all and satisfy oneself with measuring characteristics of the traffic ob-
served. Moore introduced the term “network telescope” for this class of
monitors [106, 107], and Pang et al. [116] borrowed from physics the term
“background radiation” for the traffic observed on such telescopes. Moore
et al. [108] analyse part of the background radiation, namely the backscat-
ter caused by victimised hosts as they respond to spoofed source pack-
ets, to infer denial-of-service activity. Only slightly more responsive, the
Internet Motion Sensor [9] provides the minimum response traffic neces-

112

dark address
space

network
telescope

background
radiation,
backscatter

552

5.5. RELATED WORK

sary to enable bidirectional communication while focusing on distributed
monitoring, while iSink [169] could be termed a misnomer since it does
not just absorb traffic but instead provides more targeted yet canned re-
sponses for a selection of relevant protocols. Higher still on the interac-
tivity meter rank large-scale honeyfarms, server farms consisting entirely
of high-interaction honeypots, which focus on the data management of
deeply virtualised environments monitoring IP address ranges of several
hundreds of thousands of addresses [159].

Automated Signature Generation

Since Honeycomb, much work on signature generators for malicious traf-
fic has been done. None of these systems are operating publically or pro-
viding source code. It is worth noting that Honeycomb was not the first
system proposed in the literature to attempt automated malware signature
creation. To the best of my knowledge, Kephart and Arnold [82] created
the first such system by exposing “goat files” — the file system equivalent
of a honeypot — to viruses to study patterns emerging after repeated in-
fections. However, to the best of my knowledge, Honeycomb was the first
system to suggest the use of honeypots as a malice oracle for this purpose.
Another early piece of work is SigSniffer [70], whose authors suggested
the use of Bayesian inference to recommend probable signatures to an an-
alyst, comparing traffic generated by known attack tools to normal one.

Singh et al. [140] proposed a system called EarlyBird for automated worm
fingerprinting. The system uses Rabin fingerprints and manual whitelist-
ing to identify frequent individual common strings without positional ac-
curacy, focusing on the challenges of on-line operation of a single monitor.
Simultaneously to EarlyBird, Kim and Karp [83] introduced Autograph.
Both systems have a number of parallels. Like EarlyBird, Autograph uses
Rabin fingerprints to identify prevalent content. Unlike EarlyBird, Auto-
graph uses benign and malicious flow pools and scanning activity as a
badness oracle. Similarly to Honeycomb, signature generation is initiated
explicitly every n minutes. The authors also discuss a distributed compo-
nent for sharing monitoring information. Interestingly, it communicates
only badness oracle information and not generated signature components.

With Polygraph [114], Kim and Karp improved the quality of generated

113

honeyfarm

goat files

content sifting

5.5. RELATED WORK

signatures. Instead of individual frequent substrings, LCSs are computed
using Smith-Waterman. While the generated signatures make no use of
positional information of the common substrings, the goal of the system
is to produce signatures that can fingerprint the invariant bits of polymor-
phic exploits. Beyond subsequence-based signatures they also introduce
Bayes signatures, which probabilistically classify flows according to their
likelihood of being malicious given the token set they exhibit. The sam-
ple signatures the authors give illustrate the problem of Smith-Waterman
identifying protocol-intrinsic signatures alongside exploit-specific ones.
The authors propose manual whitelisting to overcome this hurdle.

Instead of trying to stay protocol-agnostic to enable uniform treatment of
a wide range of traffic, Nemean [170] embraces the opposite and favours
semantic awareness of the protocols it analyses. While this permits the
attribution of different value to commonalities at different points in the
flows, the obvious disadvantage of this approach is the fact that only sup-
ported protocols can be processed. The system is comparatively complex
to the point of using machine learning techniques and heuristic search al-
gorithms, partially due to the fact that it attempts to produce signatures
at the session level as well. The Hamsa system by Li et al. [94] focuses
on guaranteeing bounds on the numbers of false positives produced by
generated signatures. The proposed system is otherwise highly similar to
Polygraph. Hamsa assumes the existence of classifiers separating flows
into benign and malicious flow pools, and bases its evaluation on a single
set of flow pools with static content.

Tang and Chen [153] use byte product distributions similar to the ones de-
scribed in Section 4.4.4 used for protocol classification. They let product
distributions take the role of common substrings, arguing that the prod-
uct distributions will better capture changes in polymorphic exploits. The
method grows complex, employing both simulated annealing and an EM
algorithm to compute the signature. Furthermore, since there is little rea-
son why a polymorphic engine is restricted to mutations of similar byte
distribution, it remains to be seen whether this approach is actually supe-
rior to common subsequences.

Some effort has been made to formalise the treatment of the roles played
by different parts of network flows carrying exploits. Crandall et al. [44]

114

5.5.3

5.5. RELATED WORK

distinguish between the exploit vector itself, irrelevant control data, and
the remaining payload. Beyond making the distinction between these
parts explicit, there seems to be little added value in formalisation at this
level, though it could help to establish common nomenclature.

Another line of work attempts host-based signature creation instead of
the network-based approaches cited above. An immediate benefit of this
approach is the irrelevance of the network-based presentation of an ex-
ploit. On the other hand, the signatures are less generally deployable and
require equally host-based enforcement. The underlying idea of these ap-
proaches is taint tracking, i.e., the tracking of data read from the network
through the execution of the monitored application [43, 113]. Liang and
Sekar [95] attempt to generate vulnerability-specific signatures by analysing
the memory images of corrupted C/C++ programs. Brumley et al. [20]
generalise the approach and investigate the properties required of signa-
tures to be vulnerability-specific more methodically.

Detection and Mitigation of Volume-based Attacks

A problem related to detection of volume-based attacks is the detection
of ongoing changes in traffic volume caused not necessarily by denial-of-
service attacks but possibly also other heavy hitters such as flash crowds,
utilisation surges due to hardware failures, etc. A number of methods
have been suggested for detecting such phenomena. One avenue inspired
by work in the database community uses streaming algorithms, in which a
data model is continuously updated incrementally by each new datapoint
observed. [87] adapt a probabilistic summary and forecasting technique
known as sketches [35] for this purpose. Schweller et al. [136] extend the
approach to be reversible and allow the lookup of individual key values to
identify culprits. Another approach is again the use of Bloom filters [89].
I previously mentioned them in context of detecting common content in
4. The benefit of these approaches is their suitability for non-edge de-
ployments, however in contrast to packet symmetry they are not imme-
diately useful for intervention. Section 5.5.1 already mentioned another
strategy for detection, namely the detection of backscatter in network tele-
scopes [108]. Gil and Poleto [67] described MULTOPS, a router design that
used an approach similar to packet symmetry; their work is focused more

115

taint tracking

heavy hitters

streaming
algorithms

sketches

5.6

5.6. SUMMARY

on practical router data structures than on traffic analysis.

Volume-based attack mitigation and prevention has also undergone a con-
siderable amount of research. Mitigation strategies revolve around iden-
tifying attack signatures, generally at the network level, and pushing fil-
tering/tracing information back into the core, closer to the many attack
sources [77, 120, 131, 144, 142, 143, 168]. These approaches are generally
reactive and quite complex, and require updates to the Internet core. Pre-
ventive measures have focused on enabling the destination to control the
sources’ capability to communicate with the destination at all [5]. Packet
symmetry is again a vastly simpler approach, though capabilities have the
potential to address a wide range of attacks depending on the capability
hand-out policies implemented. However, capabilities have been shown
to be very hard to implement without rendering the capability-issuing
channel susceptible to denial of service itself [7]. A radical idea posing
many questions is the idea of asking legitimate clients to “compete” with
the attackers [160].

The work perhaps most closely related to packet-level symmetry is the
D-WARD proposal [102] and the MANAnet Reverse Firewall [46]. Both
propose throttling attack traffic close to the source, although they focus on
byte- rather than packet-level metrics, and use more involved algorithms
requiring additional state and computation. Moreover, the packet symme-
try approach does not require access to payload content.

Summary

This chapter has introduced novel approaches for fingerprinting the two
dominant kinds of malicious activity present on the Internet to date: ma-
licious content of individual network flows on the one side, and abusive
volumes of traffic as used in denial-of-service attacks on the other. I intro-
duced the idea of using honeypots not just for satisfying the observer’s
curiosity but for automated analysis of attacks as they occur, and pre-
sented automated content-based signature generation as an example of
such an application. The prototype I have developed operates at both the
protocol header and payload content levels and generates such signatures

116

traceback,pushback

capabilities

5.6. SUMMARY

by applying sequence alignment algorithms as presented in Chapter 3 to
pairs of network flows. My experiments show that the system can gen-
erate highly accurate fingerprints of previously unknown types of attacks
in a fully automated fashion. I then changed the focus to packet-level
analysis and volume-based attacks, and introduced the notion of packet
symmetry as a way to fingerprint and enforce benign behaviour at the
network edge. By preventing end systems from transmitting drastically
more packets than they receive, a wide range of denial-of-service attacks
can be prevented. I have introduced a simple metric to measure this sym-
metry and have demonstrated through trace-based analysis of real-world
network traffic that such enforcement is highly unlikely to affect legitimate
applications.

117

Conclusion

“That was not flying, that was falling in style.”
— Woody in Toy Story II.

Nearing the end of the dissertation, I can now confirm the thesis stated in
the Introduction:

Network traffic exhibits structural properties which, given suitable fil-
tering and vantage points, permit fully automated derivation of finger-
prints of previously unknown network applications and attacks. The
generated fingerprints enable accurate detection as well as filtering of
such network activity.

In this dissertation have examined structural properties of network traffic
at two levels of abstraction: application-layer flow content, and packet-
level transmission statistics. I discuss them in turn.

In Chapter 3 I discussed sequence alignment algorithms and their appli-
cability to network traffic, including the consequences of the adversarial
network security environment. The algorithms I presented extract com-
monalities among sets of network flows in a number of ways with differ-
ent degrees of flexibility and performance. I introduced a novel variant
of the Jacobson-Vo algorithm that allows flexible selection of LCSs, bor-
rowing dynamic programming concepts from Smith-Waterman. In my
experiments it outperformed Smith-Waterman by a factor of 33 on aver-
age and 58.5 in the best case. I then demonstrated the suitability of se-
quence alignment algorithms for fingerprinting the application-layer pro-
tocols in Chapter 4: I introduced Common Substring Graphs (CSGs) as
a means of fingerprinting application-layer protocols and demonstrated
their flexibility through the use in a fully unsupervised framework for
application-layer protocol classification, where they provided the best bal-
ance between flexibility and accuracy when compared to two other proto-

118

6.1

6.1. FUTURE WORK

col models. In Section 5.3 I leveraged an observation about traffic intent:
by focusing the monitoring on machines attached to unused IP address
space, so-called honeypots, the likelihood of observing malicious traffic is
increased dramatically, and I have demonstrated in an experimental pro-
totype the feasibility of extracting content-based malware signatures from
such traffic without the need for human intervention.

In Section 5.4 I investigated a second structural property: the ratio of trans-
mitted to received packets, packet symmetry, measured at the network
edge. The underlying observation is that well-behaved applications do
not send large amounts of packets without receiving any, turning packet
asymmetry highly skewed toward to transmitting side into a fingerprint
of malicious activity. Indeed, a large class of denial-of-service attacks, one
of the greatest threats on the Internet today, operate by blasting traffic at
a single destination from as many hosts as possible. By throttling such
traffic proportionally to its packet-level asymmetry, such attacks are pre-
ventable. I proposed a symmetry metric to measure symmetry compliance
of end systems and presented a measurement study confirming that well-
behaved traffic is indeed highly symmetric at the packet level. In contrast
to the content-based approaches presented earlier, the focus here is not on
automated generation of such a fingerprint but on the feasibility of finding
universal badness fingerprints.

I now conclude the dissertation by summarising potential avenues for fu-
ture work and by discussing my work in the more general context of a
classic design philosophy of the Internet, the end-to-end principle.

Future Work

Sequence analysis of network traffic in general and the investigation in
an adversarial setting in particular is a young field. A number of heuris-
tic alignment algorithms exist which favour speed over accuracy (such as
BLAST [2] and FASTA [97]) whose usefulness in the network traffic con-
text has not yet been investigated. On a more elementary level, substitu-
tion/alignment scoring schemes are highly flexible and their use in dif-
ferent application settings has not yet been investigated. For example, a
scoring scheme that is aware of the keyboard layout could highlight ty-

119

6.1. FUTURE WORK

pographical errors in domain names more generally than the more fixed
approaches that have been used to date [162]. I briefly mentioned sec-
ondary applications of sequence alignment, such as phylogenetic trees, in
Section 3.7.2 in the context of highlighting the relationships between dif-
ferent yet related implementations of the IRC protocol as command and
control channels for botnets.

Fingerprinting of both the normal as well as the malicious as presented in
Chapters 4 and 5 uses flow pools. The dynamic properties of flows stored
in such pools, such as variability of frequent content over time has not
yet been investigated but could significantly affect the design of related
systems such as selective sampling methods of live traffic. On a toolchain
level, there exist no tools at present that use any of the suggested smart
traffic classification schemes routinely, though work on this is underway
in the IDS domain in Bro [57].

Automated signature generators still offer many avenues for future work.
They have yet to prove their value in day-to-day operations. The domi-
nant technical issues concern scalable signature lifecycle management, for
example the robust handling of highly related signatures, or capturing the
evolving quality of the generated signatures over time. Operational expe-
rience to date is lacking, and it is unclear whether all kinds of applications
are equally suitable for signature generation. It remains an open question
just how close one can get to the goal of large-scale automated enforcement
of generated signatures.

Given the many ways in which one can express a traffic signature, dis-
tributing traffic fingerprinting information still poses many questions. In
particular, work needs to be done to determine in what format, at what
granularity, and what frequency fingerprinting information does need to
be communicated to be generally usable. Incorporating different sites’
policies regarding the use of received information and what information
one is willing to share poses further challenges. Finally, it remains to be
seen whether such a system can operate in an open, federated fashion or
whether trust issues and information leakage [15] are issues too funda-
mental to permit this.

120

phylogenetic
trees

6.2

6.2. END-TO-END CONSIDERATIONS

End-to-End Considerations

Historically, one of the most vigorously defended principles of the Inter-
net architecture is the end-to-end principle [129]. This principle argues for
a “dumb” network in which the lower protocol layers handle only the ab-
solutely necessary tasks for enabling end-to-end communication, leaving
complexity to a “smart” network edge whenever possible. It has been ar-
gued that this principle is essential to unhampered growth and innovation
of the Internet [19].

Several elements of this dissertation undermine the end-to-end principle.
Therefore, it behoves me to include a discussion of my work from that per-
spective. Reactive, autonomous filtering components such as automated
signature and packet symmetry enforcement as presented in Chapter 5 can
principally affect a wide range of network traffic, and the further they are
deployed from the edge, the more they collide with the idea of a simple,
transparent bit delivery service.

The concern is less of an issue for packet symmetry enforcement, since a
central part of this idea is deployment at the very edge and we have yet
to witness any application that truly has to use highly asymmetric traffic.
Automated signature enforcement, however, could potentially occur any-
where in the network. Several arguments relativise the concerns. First, in-
core signature enforcement should not be considered an always-on mech-
anism but rather an emergency response to a critical situation, much in
the way Wang et al. [161] proposed Shield not as a solution to the inse-
cure software problem but an interim responsive means to prevent dam-
age until the proper fix has been applied. Second, signature enforcement
is not fundamentally different from previously proposed in-core filtering
techniques such as pushback [77, 120] (albeit occurring at a semantically
higher level), or ISP-based filtering of unsolicited email. Moreover, and
most fundamentally, widespread deployment of technology addressing
present-day needs already constitutes a substantial de-facto erosion of the
principle. Examples of this erosion have frequently grown out of consid-
erations of network security, since relying on end hosts for security-critical
functionality implies capable, benign cooperation that is no longer a given.
Examples of such end-to-end violations include:

121

6.2. END-TO-END CONSIDERATIONS

e NATs: network address translation has become pervasive in the IPv4
world, addressing two problems: firstly, mapping a local host pop-
ulation to a typically smaller set of externally visible IP addresses,
and secondly, host protection from unsolicited external access, since
a NAT cannot be traversed from the outside without third-party ne-
gotiation or prior establishment of state in the NAT. NATs break the
end-to-end principle since they break unique global addressing and
reachability from within the network.

e Firewalls: typically configured statically, firewalls break the end-to-
end principle because end hosts have no unambiguous way of learn-
ing of the firewall configuration. Some firewalls might return an
ICMP port unreachable message, while others might silently drop
connection attempts. Nevertheless, today firewalls are deployed per-
vasively because they serve a clear network security purpose: they
prevent undesired traffic from entering a network.

e Content filtering: at the application layer, content filtering is per-
vasive. Even novice users typically know they need to install mal-
ware scanners on their machines for better protection from malicious
agents on the network. Proxy servers can suppress content while
leaving the network flows otherwise unaffected. Reactive IDSs, typ-
ically termed intrusion prevention systems (IPSs), may similarly fil-
ter network activity. Often the user remains uninformed about such
filtering activity.

I do not mean to justify the erosion of the end-to-end principle by the fact
that it has happened as a consequence of addressing the more immedi-
ate problems the Internet is facing. While openness, global connectivity,
and a generally “well-lit” Internet are preferable to an Internet of walls
and minefields, I do believe that in cases such as the ones listed above, we
have to make a decision: we can either leave all non-elementary function
out of the core and suffer from the malicious reality on today’s Internet,
or we can violate the end-to-end principle in certain aspects as long as the
overall well-being of the Internet is enhanced. The challenge is to find
a precise enough yet general and enforceable definition of malicious be-
haviour. The techniques presented in this dissertation are one step toward
a better classifiability of end-host behaviour along this dimension.

122

Code

A1 Bro Policy for Message Extraction

The policy given in this section implementes message extraction as de-

scribed in Section 3.3. It is included in Bro version 1.1.51 and newer.

adu.bro

1 @load conn—id

2

3 module adu;

4

5 # Generated events:

6

7 # — adu_tx(c: connection, a: adu.state) reports an ADU seen from
8 # c¢’s originator to its responder.

9 #

10 # — adu.rx(c: connection, a: adu_state) reports an ADU seen from
11 # c¢’s responder to the originator.

12 #

13 # — adu.done(c: connection) indicates that no more ADUs will be seen
14 # on connection c¢. This is useful to know in case your statekeeping
15 # relies on event connection_state_.remove (), which is also used by
16 # adu.bro.

17

18 # Input configuration which ports to look at

19

20 redef tcp-content.deliver_all_orig = T;

21 redef tcp_content_deliver_all_resp = T;

2 redef udp-content_deliver_all_orig = T;

23 redef udp_content_deliver_all_resp = T;

24

25 export {

26

27 # Constants

28

29 # The maximum depth in bytes up to which we follow a flow.
30 # This is counting bytes seen in both directions.

31 const adu_conn_max_depth = 100000 &redef;

32

33 # The maximum message depth that we report.

34 const adu_max_depth = 3 &redef;

35

123

A.1. BRO POLICY FOR MESSAGE EXTRACTION

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97

The maximum message size in bytes that we report.
const adu_max_size = 1000 &redef;

Whether ADUs are reported beyond content gaps.
const adu_gaps_ok = F &redef;

—— Types

adu_state records contain the latest ADU and additional flags
showing message direction, depth in the flow, etc.
type adu_state: record {

adu: string &default = ””; # The current ADU.

depth_tx: count &default = 1; # Msg count (>= 1), orig-—>resp.
depth_rx: count &default = 1; # Msg count (>= 1), resp-—>orig.
seen_tx: count &default = 0; # TCP: seqno tracking.

seen_rx: count &default = 0; # TCP: seqno tracking.

size: count &default = 0; # Size of connection, in bytes.
is_orig: bool &default = F; # Whether ADU is orig-—>resp.
ignore: bool &default = F; # Ignore future activity.

I¥

Tell the ADU policy that you do not wish to receive further
adu_tx/adu._rx events for a given connection. Other policies
may continue to process the connection.

#

global adu_skip_further_processing: function(cid: conn.id);

—— Globals

A global table that tracks each flow’s messages.
global adu_conns: table[conn_id] of adu_state;

—— Functions

function adu_skip_further_processing(cid: conn_id)

if (cid !in adu.conns)
return;

adu_conns[cid]$ignore = T;

}

function flow_contents(c: connection, is_orig: bool,
seq: count, contents: string)

local astate: adu_state;

Ensure we track the given connection.
if (c$id !in adu_conns)
adu_conns[c$id] = astate;
else
astate = adu_conns[c$id];

Forget it if we’ve been asked to ignore.
#
if (astate$ignore == T)

return;

Don’t report if flow is too big.
#

124

A.1. BRO POLICY FOR MESSAGE EXTRACTION

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

if (astate$size >= adu_conn_max._depth)
return;

If we have an assembled message, we may now have something
to report.
if (|astate$adu| > 0)

If application—layer data flow is switching

from resp—>orig to orig—>resp, report the assembled
message as a received ADU.

if (is_orig && ! astate$is_orig)

event adu._rx(c, copy(astate));

i

astate$adu = ;

if (++astate$depth_rx > adu_max_depth)
skip_further_processing (c$id);
}

If application—layer data flow is switching

from orig—>resp to resp—>orig, report the assembled
message as a transmitted ADU.

#

if (!is_orig && astate$is_orig)

event adu_tx(c, copy(astate));

i

astate$adu = ;

if (++astate$depth_tx > adu.max_depth)
skip_further_processing (c$id);
}

}

Check for content gaps. If we identify one, only continue
if user allowed it.
#
if ('adu_gaps_ok && seq > 0)
{

if (is_orig)

if (seq > astate$seen_tx + 1)
return;

else
astate$seen_tx += |contents|;

else

if (seq > astate$seen.rx + 1)
return;

else
astate$seen_rx += |contents|;

}

Append the contents to the end of the currently
assembled message, if the message hasn’t already
reached the maximum size.

#

if (|astate$adu| < adu-max_size)

astate$adu += contents;

125

A.1. BRO POLICY FOR MESSAGE EXTRACTION

160 # As a precaution, clip the string to the maximum
161 # size. A loong content string with astate$adu just
162 # below its maximum allowed size could exceed that
163 # limit by a lot.

164 str_clip (astate$adu, adu_max_size);

165

166

167

168 # Note that this counter is bumped up even if we have

169 # exceeded the maximum size of an individual message.

170 #

171 astate$size += |contents|;

172

173 astate$is_orig = is_orig;

174 }

175

176 # —— Event Handlers

177

178 event tcp_contents(c: connection, is_orig: bool,

179 seq: count, contents: string)

180

181 flow_contents(c, is_orig, seq, contents);

182 }

183

184 event udp_contents(u: connection, is_orig: bool, contents: string)
185

186 flow_contents (u, is-orig, 0, contents);

187 }

188

189 event connection_state_remove(c: connection)

190

191 if (c$id !in adu_conns)

192 return;

193

194 local astate = adu_conns[c$id];

195

196 # Forget it if we’ve been asked to ignore.

197 #

198 if (astate$ignore ==T)

199 return;

200

201 # Report the remaining data now, if any.

202 #

203 if (|astate$adu| > 0) {

204 if (astate$is_orig)

205

206 if (astate$depth_tx <= adu.max_depth)
207 event adu_tx(c, copy(astate));
208 }

209 else

210

211 if (astate$depth_rx <= adu.max_depth)
212 event adu._rx(c, copy(astate));
213 }

214 }

215

216 delete adu_conns[c$id];

217 event adu_done(c);

218}

126

A2

A.2. IMPROVED JACOBSON-VO ALGORITHM

Improved Jacobson-Vo Algorithm

The following is my implementation of the improved Jacobson-Vo algo-
rithm presented in Section 3.5.5. It will be included in Bro 1.2. Inclusion of
standard headers and declarations of the relevant Bro data types are not
shown; likewise, straightforward parts of the code are omitted for brevity.

jacobson-vo.h

O ® N U W e

—_ =
= o

12

#define JV_ALPHABET.SIZE 256

class JV_Indices {

public:
typedef list <short> Ind;
typedef Ind::iterator IndlIt;
typedef Ind:: const_iterator IndClIt;

JV_Indices ()

for (int i = 0; i < JV.ALPHABETSIZE; i++)
_indices[i]..ind = new Ind ();

_first = 0;

memset(_iterations , 0, sizeof(int) x JV_ALPHABET.SIZE);
}
“JV_Indices ()
{

for (int i = 0; i < JVLALPHABET.SIZE; i++)

delete _indices[i]..ind;

}

void AddUsage(u_char c, int iteration)
IndLink* ind = &_indices[c];

if (_iterations[c] != iteration)
{
_iterations[c] = iteration;
ind—>_usage = 0;
ind—_ind—>clear ();

}
if (ind—>_usage == 0)
{
ind—_next = _first;
_first = ind;
}

ind—>_usage++;

}

void AddIndex(u.char c, short index, int iteration)

if (-iterations[c] == iteration)
_indices[c]..ind—>push_front(index);

127

A2

IMPROVED JACOBSON-VO ALGORITHM

int GetPiLength ()

{

}

int len = 0;

for (IndLinkx* ind = _first; ind; ind = ind—>_next)
len += ind—>_usage * ind—>_ind—>size ();

_first = 0;
return len;

const Indx GetIndices(u-char c¢) { return _indices[c]..ind; }

private:

struct IndLink {

I¥

Ind* _ind;
int _usage;
IndLink* _next;

IndLinkx _first;
IndLink _indices[JV_ALPHABET. SIZE];
int _iterations[JV_ALPHABETSIZE];

I¥

static JV_Indices jv.indices;

struct Node {
short _sl1_idx; // s1 index of this node
short _s2_idx; // s2 index of this node

short _len; // the node’s running substring length
short _str_len; // length of full substring this node extends
int _score; // the node’s running score.

int _str_score; // the node’s score if following from start of string

Nodex _down; // next node further down in column
Nodex _skip; // next node with smaller s2 index down in column
Nodex _prev; // previous node in best alignment
Nodex _sostr; // start of string: the location at which we might

I¥

// have to adjust the prev pointer.

#define NODEPQ_HEAPSIZE 2000000

// A priority implementing a binary max—heap for the
// score of a node. Node pointers can be updated anywhere
// in the heap in O(1).

//

class JV_NodePQ {

public:
JV NodePQ() : _next(1l), _min(INTMAX), _max(0), _-shift(0)
{ memset(_map, 0, sizeof(int) *x NODEPQHEAPSIZE); }

void Push(Nodex node)

{

int mapping = _map[node—>_score — _shift];

// 1f we have an entry for that score, we just adjust
// the pointer to the new node and are done.

!/

128

A.2. IMPROVED JACOBSON-VO ALGORITHM

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

if (mapping)
{

_heap[mapping] = node;
return;

}

// Otherwise, we have to add the node to the heap,

// and ensure the heap property.

//
heap[-next] = node;
_map[node—>_score — _shift] = _next;

BubbleUp (-next);
_next++;

if (node—>_score < _min)
_min = node—>_score;
if (node—>_score > _max)
_max = node—>_score;
}

Nodex Top() { return _next > 1 ? _heap[1l] : 0; }

void Delete (Node *node)
{

int slot = _map[node—>_score — _shift];

if (_heap[slot] != node)
return;

Swap(slot, _next — 1);

_next——;

BubbleDown (slot);
_map[node—>_score — _shift] = 0;

}

int Size() { return _next — 1; }
void Reset ()

Nodex* ptr = _heap + 1;

for (int i = 1; i < _next; i++, ptr++)
_map|[(* ptr)—>_score — _shift] = 0;
_shift

= (_min != INTMAX ? _min : 0);
_max = 0; _min = INTMAX; _next = 1;
}

void FullReset() { -shift = 0; _max = _next = 0;

private:

_min = INTMAX;

inline int Parent(int slot) const { return slot >> 1; }

inline int LeftChild (int slot) const { return sl

inline int RightChild (int slot) const { return (slot << 1) + 1; }

void Swap(int slotl, int slot2); // Omitted for
void BubbleUp(int slot); // Omitted for
void BubbleDown(int slot); // Omitted for

int _next; // next slot currently available in

ot << 1; }

brevity .
brevity .
brevity .

heap array:

_next

129

A.2. IMPROVED JACOBSON-VO ALGORITHM

174 int _min; // smallest slot entered since last reset.

175 int _max; // largest slot entered since last reset.

176 int _shift; // how far to shift new entries, given minimum
177

178 static Nodex _heap[];

179 static int _map[];

180 };

181

182 Nodex JV_NodePQ:: _heap [NODE_PQHEAPSIZE];
183 int JV_NodePQ :: _map[NODEPQHEAPSIZE|;

184

185 JV_NodePQ pq;

186

187 class JV_CoverMatrix {

188 public:

189

190 struct NSet {

191 Nodex _bottom; // bottom node in column

192 Nodex _top ; // top node in column

193 Nodex _class; // first node in column with current s2 index.
194 };

195

196 struct NWin {

197 Nodex _lo;

198 Nodex _hi;

199 Nodex _ext;

200 Nodex _max;

201 1

202

203 JV_CoverMatrix (const BroString *sl, const BroString =*s2, int pi_length)
204 : _s1(sl), _s2(s2), -last_col(0), _best._score(0), _best_.node(0)
205

206 int max_cols = min(sl—Len(),s2—>Len());

207

208 // We need one node per Pi element.

209 _nodes = new Node[pi-length];

210

211 // We have at most as many columns as the shorter string is long,
212 // since the LCS can’t exceed that length.

213 _nset = new NSet[max_cols];

214

215 memset(.nodes, 0, sizeof(Node) * pi_length);

216 memset(_nset, 0, sizeof(NSet) * max_cols);

217

218 _node = _nodes;

219 }

220

221 “JV_CoverMatrix ()

222

223 delete[] _nodes;

224 delete[] _nset;

225 }

226

227 void SetNode(NSetx set, short s2_idx, short sl_idx)
228 {

229 _node—>_s1_idx = sl_idx;

230 _node—>_s2_idx = s2_idx;

231

232 if (! set—>_bottom)

233 {

234 set—>_class = _node;

235 set—>_top = _node;

130

A.2. IMPROVED JACOBSON-VO ALGORITHM

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

}

else

if (-node—>_s2_idx < set—>_class—>_s2_idx)

{

set—>_class —>_skip = _node;
set—>_class = _node;
}
set—>_bottom—>_down = _node;
}
set—>_bottom = _node;

// Adjust the object’s node pointer so we use next one next time.

_node++;

}

void SetBackpointers ()

{

NSet xset_.p = _nset + _last_col;

NSet *set = set.p — 1;

pq- FullReset ();

// In case of an LCS of only a single character, the two—column

// parallel scan strategy below won’t work and will be skipped.

// To get a best node regardless, we just pick the first one in

// the last column (which will also be the only column).

!/
_best_node = set_p—>_top;
_best_score = 0;

for (int i = _last_col — 1;

{

Nodex node;
NWin win;

i > 0; i——, set——, set_.p——)

win. _lo = win._hi = win._max = win. _.ext = set_p—>_top;

pq-Push(win. _lo);

node = set—>_top;

// Skip down from the start of the column as far

// as possible.

//

while (node—>_s2_idx >= win._hi—>_s2_idx)

node = node—>_skip;

for (set—>_top = node; node; node = node—>.down)

{

// Adjust the window

//

if (! AdjustWin(node
break;

// Now see how this
//

, obtaining current maximum.

, &win, (i == _last_col — 1)))

affects our previous—pointer.

node—>_prev = win.._max;
node—>_score = node—>_str_score = win._max—>_score + 1;

node—>_sostr = node;

131

A.2. IMPROVED JACOBSON-VO ALGORITHM

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

if (win._ext—>_sl_.idx — 1 == node—>_sl_idx &&
win. _ext—>_s2_idx — 1 == node—>_s2_idx)

{
int score = win._ext—>_score + win._ext—>_len + 1;
node—>_str_len = win. _ext—>_str_len + 1;
node—>_str_score = win._ext—>_str_score + node—>_str_len;

// We abuse the skip pointer to point to the previous

// node of the string this node is extending. Skip is only

// needed to find the beginning of the region in this column

// that requires analysis and is no longer needed at this point.
//

node—>_skip = win. _ext;

// Check if the running score improves on the current
// maximum via extending a substring.

//

// Equal here is very important for minimising gaps,
// since we want to prefer extension of an existing
// substring over inserting a gap, even though those
// might have identical score.

//

if (score >= node—>_score)

node—>_len = win. _ext—>_len + 1;
node—>_prev = win. _ext;
node—>_score = score;
node—>_sostr = win. _ext—>_sostr;

// 1f the previous string has chopped off a bit of the
// end of the current string, the full substring’s score
// might have surpassed the running one. Compare, and if
// it’s better, adjust accordingly.
//
if (node—>_str_score > node—>_score)
{
node—>_prev = win. _ext;
node—>_sostr —>_prev = node—>_sostr—>_skip;
node—>_score = node—>_str_score;
}
}

if (node—>_score > _best_score)

{

_best_score = node—>_score;
_best_node = node;

}

pq- Reset ();
}

// Finds a sequence (i.e., row in the matrix) to add pi-idx
// (a value in the Pi sequence) to, using binary search to
// maintain O(r log n). We can add an index as long as it’s
// no larger than the last element in a row.

//

NSet* FindSequence(int pi_idx, int& upper)

int lower = 0;

132

A.2. IMPROVED JACOBSON-VO ALGORITHM

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

int middle;
NSet* set = &_nset[upper];

if (upper != 0 &&
set—>_bottom—>_s2_idx >= pi_idx &&
(set—=1)—>_bottom—>_s2_idx < pi-idx)
return set;

while (upper != lower)

middle = (lower + upper) >> 1;
set = &_nset[middle];

if (set—>_bottom—>_s2_idx < pi_idx)

{
lower = middle + 1;
set++;
continue;

}
upper = middle;

// 1f we found the last row and we cannot add pi-idx
// to the sequence because pi_.idx is too big, we need
// to start a new row.

//

if (upper == _last_col && set—>_bottom && set—>_bottom—>_s2_idx < pi.idx)

set++; upper++; _last_col++;

}

return set;

}

void CollectLCS (SWParams& params, SW_LCS& lcs)
Node *node = _best_node;
lcs.clear ();

if (! node)
return;

short start_sl = node—>_sl_idx;
short start_s2 = node—>_s2_idx;
short end_s1l = node—>_s1_idx;
short end_s2 = node—>_s2_idx;
unsigned short len;

while (node)

short sl = node—>_s1_idx;
short s2 = node—>_s2_idx;

if (sl > endsl + 1 || s2 > end_s2 + 1)
{
// Check whether we have a gap and if so whether
// it’s of at least the required minimum string length.
// 1f so, add an alignment to result.
//

len = end_sl — start_sl + 1;

133

A.2. IMPROVED JACOBSON-VO ALGORITHM

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

}

if (len >= params._min_strlen)

BroSubstring *str = _s1-—>GetSubstring(start_s1, len);
str —>AddAlignment(_s1, start_sl);

str —>AddAlignment(_s2, start_s2);

lcs . push_back(str);

}
start_sl = s1;
start_s2 = s2;
}
end_sl = s1;
end_s2 = s2;
node = node—>_prev;
}
// Finish the last substring:
//
len = end_s1l — start_sl + 1;

if (len >= params._min_strlen)

BroSubstring sstr = _s1—->GetSubstring(start_s1, len);
str —>AddAlignment(_s1, start_sl);

str =—>AddAlignment(_s2, start_s2);

lcs . push_back(str);

int NumCols() { return _last_col; }

private:

bool AdjustWin(Nodex guide, NWinx win, bool last_col)

{

Nodex n;

// Adjust high boundary, potentially moving all pointers downward.
/7

n = win—>_hi—>_down;

while (win—>_hi—>_sl_idx <= guide—>_s1_idx)
{
if (win—>_lo == win—>_hi)
win—>_lo = 0;
if (win—>_ext == win—>_hi)
win—>_ext = n;

pq.- Delete (win—>_hi);
win—>_hi = n;

if (! n || ('last_col && n && ! n—>_prev))
return false;

n = n—>_.down;

}

if (! win—>_lo)

{

win—>_lo = win—>_hi;

134

A.2. IMPROVED JACOBSON-VO ALGORITHM

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

¥

pq-Push(win—>_hi);

// Adjust low boundary, potentially updating the maximum.

!/

n = win—_lo—>_down;
while (n && n—>_s2_idx > guide—>_s2_idx)

if (! last_col && ! n—>_prev)
break;

pq-Push(n);
win—>_lo = n;
n = n—>_.down;

}
win—>_max = pq.Top();

// Adjust extension boundary, if feasible.

//

// After pushing down the top end of the window, the extension’s
// sl index already is smallest possible bit larger than guide’s.
// Now keep scanning while the s2 index is too big.

!/

n = win—>_ext—>_down;
while (n && n—>_s2_idx > guide—>_s2_idx && n—>_sl_idx == win—>_ext—>_sl_idx)

if (! last_col && ! n—>_prev)
break;

win—>_ext = n;
n = n—>.down;

}

return true;

}

// Input strings — sl is aligned along rows, s2 along columns.
/7

const BroStringx _s1;

const BroStringx _s2;

Node *_nodes;

Node *_node; // current node among _nodes
NSet *_nset;

int _last_col; // current last column

int _best_score;

Node *_best_node; // Overall best node

void jacobson_vo(const BroString* sl, const BroStringsx s2,

{

SWParams& params, SW_LCS& result)

byte_vec sl_bytes = sl->Bytes();

byte_vec sl_bytes_end = sl_bytes + sl—>Len();
byte_vec s2_bytes = s2—>Bytes ();

byte_vec s2_bytes_end = s2_bytes + s2-—>Len();
int i, numrows = 0, pi-length = 0;

byte_vec bv;

135

A.2. IMPROVED JACOBSON-VO ALGORITHM

546 static int iteration = 0;

547

548 iteration ++;

549

550 // Pi build—up.

551 //

552 for (bv = sl_bytes; bv < sl_bytes_end; bv++)

553 jv-indices .AddUsage(xbv, iteration);

554 for (i = 0, bv = s2_bytes; bv < s2_bytes_end; i++, bv++)
555 jv_-indices .AddIndex(xbv, i, iteration);

556

557 pi-length = jv_indices.GetPiLength ();

558 JV_CoverMatrix cover(sl, s2, pi-length);

559

560 for (i = 0, bv = sl_bytes; bv < sl_bytes_end; i++, bv++)
561 {

562 const JV_Indices::Ind* ind = jv_indices.GetIndices (xbv);
563 int last_col = cover.NumCols();

564

565 // Greedy cover generation over Pi.

566 for (JV_.Indices::IndCIt it = ind—>begin(); it != ind-—>end(); ++it)
567 {

568 int sl_idx = i;

569 int s2_idx = *it;

570 JV_CoverMatrix :: NSetx set = cover.FindSequence(s2_idx, last_col);
571 cover.SetNode(set, s2_idx, sl_idx);

572 }

573 }

574

575 cover. SetBackpointers ();

576 cover.CollectLCS (params, result);

577}

136

Bibliography

Each entry in this bibliography includes in parentheses the page numbers
on which it was referenced.

[1] Christopher Alberts and Audrey Dorofee. Managing Information Se-
curity Risks: The OCTAVE (SM) Approach. Addison-Wesley, July 2002.
(Page 7.)

[2] S.E Altschul, W. Gish, W. Miller, E.W. Myers, and D.]. Lipman. Basic
local alignment search tool. J. Mol. Biol, 215(3):403-410, 1990. (Page
119.)

[3] James P. Anderson. Computer security threat monitoring and
surveillance. Technical report, James P. Anderson Co., Ford Wash-
ington, PA, April 1980. (Page 8.)

[4] RJ. Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley & Sons, Inc. New York, NY, USA,
2001. ISBN 0471389226. (Pages 18, 87.)

[5] T. Anderson, T. Roscoe, and D. Wetherall. Preventing internet
denial-of-service with capabilities, 2003. (Page 116.)

[6] William A. Arbaugh, William L. Fithen, and John McHugh. Win-
dows of vulnerability: A case study analysis. Computer, 33(12):52—
58, 2000. (Page 12.)

[7] K. Argyraki and D. Cheriton. Network Capabilities: The Good, the
Bad and the Ugly. Proc of 4th ACM Workshop on Hot Topics in Net-
works, 2005. (Page 116.)

[8] Stefan Axelsson. Intrusion Detection Systems: A Survey and Tax-
onomy. Technical Report 99-15, Depart. of Computer Engineering,
Chalmers University, March 2000. (Page 13.)

[9] M. Bailey, E. Cooke, F. Jahanian,]J. Nazario, and D. Watson. The
Internet motion sensor: A distributed blackhole monitoring system.

137

Proceedings of the 12th Annual Network and Distributed System Security
Symposium (NDSS05), San Diego, CA, Feb, 2005. (Page 112.)

[10] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks.
RFC 3704, IETF, March 2004. URL http://www.ietf.org/rfc/
rfc3704.txt. (Page 111.)

[11] Paul Baran. On Distributed Communication Networks. IEEE Trans-
actions on Communications, 12:1-9, Mar 1964. (Page 7.)

[12] S.A.Baset and H. Schulzrinne. An analysis of the Skype peer-to-peer
internet telephony protocol. Technical report, Columbia University,
New York, NY, 2004. (Pages 59, 86.)

[13] Marshall Beddoe. Protocol informatics.
http://www.baselineresearch.net/PI, 2005. (Page 55.)

[14] S. Bellovin. The Security Flag in the IPv4 Header. RFC 3514, IETF,
April 2003. (Page 112.)

[15] J. Bethencourt, J. Franklin, and M. Vernon. Mapping Internet Sen-
sors With Probe Response Attacks. Proceedings of the 14th USENIX
Security Symposium, Baltimore, MD, August, 2005. (Pages 103, 120.)

[16] Philippe Biondi and Fabrice Desclaux. Silver Needle in the Skype.
In BlackHat Europe, March 2006. (Page 86.)

[17] DNS Providers Blacklist. http://www.dnsbl.org/. (Page 14.)

[18] Burton H. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Commun. ACM, 13(7):422-426, 1970. ISSN 0001-0782.
(Page 56.)

[19] M. Blumenthal and D. Clark. Rethinking the Design of the Internet:
the End-to-End Arguments vs. the Brave New World. ACM Transac-
tions on Internet Technology, 1(1), August 2001. (Page 121.)

[20] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards
automatic generation of vulnerability-based signatures. In Proceed-
ings of the 2006 IEEE Symposium on Security and Privacy, Oakland, CA,
USA, pages 2-16, May 2006. (Page 115.)

[21] J. Brunner. Shockwave Rider. Del Rey, 1984. (Page 9.)

[22] Deutscher Bundestag. Gesetz iiber den Datenschutz bei Telediensten.
Bundesministerium der Justiz, July 1997. BGBL. 1S. 1870, 1871. (Page
18.)

[23] Christian Burks, James W. Fickett, Walter B. Goad, Minoru Kanehisa,
Frances I. Lewitter, Wayne P. Rindone, C. David Swindell, Chang-

138

http://www.ietf.org/rfc/rfc3704.txt
http://www.ietf.org/rfc/rfc3704.txt
http://www.baselineresearch.net/PI
http://www.dnsbl.org/

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Shung Tung, and Howard S. Bilofsky. The genbank nucleic acid
sequence database. Comput. Appl. Biosci., 1(4):225-233, 1985. doi:
10.1093 /bioinformatics/1.4.225. (Page 27.)

Internet Storm Center. Mcafee 4715 dat false positive deletion re-
ports follow-up. http://isc.sans.org/diary.php?storyid=1184,
March 2006. (Page 16.)

V.C. Cerf and R.E. Kahn. A Protocol for Packet Network Intercon-
nections. IEEE Transactions on Communications, COM-22(5), May
1974. (Page 8.)

CERT. Advisory CA-1991-04 Social Engineering.
http://www.cert.org/advisories/CA-1991-04.html,
April 1991. (Page 10.)

CERT. Advisory CA-1992-03 Internet Intruder Activity.
http://www.cert.org/advisories/CA-1992-03.html,
February 1992. (Page 9.)

CERT. Advisory CA-1992-14 Altered System Binaries Incident.
http://www.cert.org/advisories/CA-1992-14 . html,
June 1992. (Page 9.)

CERT. Advisory CA-1994-01 Ongoing Network Monitoring At-
tacks.

http://www.cert.org/advisories/CA-1994-01.html,

February 1994. (Page 10.)

CERT. Advisory CA-1996-01 UDP Port Denial-of-Service Attack.
http://www.cert.org/advisories/CA-1996-01.html,
February 1996. (Page 10.)

CERT. Advisory CA-1996-26 Denial-of-Service Attack via ping.
http://www.cert.org/advisories/CA-1996-26.html,
December 1996. (Page 10.)

CERT. Advisory CA-1997-28 IP Denial-of-Service Attacks.
http://www.cert.org/advisories/CA-1997-28.html,
December 1997. (Page 10.)

CERT. Advisory CA-1998-01 Smurf IP Denial-of-Service Attacks.
http://www.cert.org/advisories/CA-1997-28.html,
January 1998. (Page 10.)

CERT. Advisory CA-1999-04 Melissa Macro Virus.
http://www.cert.org/advisories/CA-1999-04.html,
March 1999. (Page 10.)

139

http://isc.sans.org/diary.php?storyid=1184
http://www.cert.org/advisories/CA-1991-04.html
http://www.cert.org/advisories/CA-1992-03.html
http://www.cert.org/advisories/CA-1992-14.html
http://www.cert.org/advisories/CA-1994-01.html
http://www.cert.org/advisories/CA-1996-01.html
http://www.cert.org/advisories/CA-1996-26.html
http://www.cert.org/advisories/CA-1997-28.html
http://www.cert.org/advisories/CA-1997-28.html
http://www.cert.org/advisories/CA-1999-04.html

[35] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. Theoretical Computer Science, 312(1):3-15, 2004. (Page
115.)

[36] William R. Cheswick. An evening with Berferd, in which a cracker
is lured, endured, and studied. In Proceedings of the 1992 Winter
USENIX Conference, 1992. (Page 112.)

[37] Chris Clark, Wenke Lee, David Schimmel, Didier Contis, Mohamed
Kone, and Ashley Thomas. A hardware platform for network intru-
sion detection and prevention. In Proceedings of The 3rd Workshop on
Network Processors and Applications (NP3), Madrid, Spain, February
2004. (Page 103.)

[38] Fred Cohen. Computer viruses : Theory and experiments. Computers
and Security, 6:22-34, 1987. (Page 8.)

[39] U.S. Congress. Freedom of Information Act. U.S. Department of State,
2002. 5 U.S.C. §552. (Page 18.)

[40] U.S. Congress. Health Insurance Portability and Accountability Act.
U.S. Department of Health & Human Services, 1996. (Page 18.)

[41] U.S. Congress. Children’s Online Privacy Protection Act. U.S. Federal
Trade Commission, 1998. (Page 18.)

[42] Evan Cooke, Farnam Jahanian, and Danny McPherson. The zombie
roundup: Understanding, detecting, and disrupting botnets. In Pro-
ceedings of SRUTI'05: Steps to Reducing Unwanted Traffic on the Internet
Workshop, pages 39-44, June 2005. (Pages 11, 112.)

[43] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham. Vigilante: end-to-end containment of internet
worms. Proceedings of the twentieth ACM symposium on Operating sys-
tems principles, pages 133-147, 2005. (Page 115.)

[44] Jedidiah R. Crandall, Shyhtsun Felix Wu, and Frederic T. Chong.
Experiences using minos as a tool for capturing and analyzing novel
worms for unknown vulnerabilities. In DIMVA, pages 32-50, 2005.
(Pages 87, 114.)

[45] S.Crosby and D. Wallach. Denial of service via algorithmic complex-
ity attacks. In Proceedings of the 12th USENIX Security Symposium.
USENIX, August 2003. (Page 50.)

[46] CS3, Inc. MANAnet Reverse Firewall: Fighting DDoS attacks at
their origins. http://www.cs3-inc.com/ps_rfw.html. (Page 116.)

140

http://www.cs3-inc.com/ps_rfw.html

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

FM Cuenca-Acuna, C. Peery, RP Martin, and TD Nguyen. PlanetP:
using gossiping to build content addressable peer-to-peer informa-
tion sharing communities. High Performance Distributed Computing,
2003. Proceedings. 12th IEEE International Symposium on, pages 236—
246,2003. (Page 56.)

W. Cui, V. Paxson, N. Weaver, and R. H. Katz. Protocol-independent
adaptive replay of application dialog. In 13th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, USA,
February 2006. (Pages 55, 83.)

AP Dempster, NM Laird, and DB Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1-38, 1977. (Page 83.)

Dorothy Denning. An intrusion-detection model. IEEE Transactions
on Software Engineering, SE-13(2):222-232, February 1987. (Page 9.)

Christian Dewes, Arne Wichmann, and Anja Feldmann. An analysis
of Internet chat systems. In Proc. of the Second Internet Measurement
Workshop (IMW), Nov 2002. (Page 82.)

S. Dharmapurikar and V. Paxson. Robust TCP stream reassembly in
the presence of adversaries. In Procedings of the 14th USENIX Security
Symposium. USENIX, August 2005. (Page 51.)

S. Dharmapurikar, P. Krishnamurthy, and D.E. Taylor. Longest pre-
fix matching using Bloom filters. Proceedings of 2003 ACM SIG-
COMM Conference, pages 201-212, 2003. (Page 56.)

S. Dharmapurikar, P. Krishnamurthy, T.S. Sproull, and J.W. Lock-
wood. Deep packet inspection using parallel bloom filters. IEEE
Micro, 24(1):52-61, 2004. (Page 56.)

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. Proceedings of the 13th USENIX Security
Symposium, 2, 2004. (Page 55.)

H. Dreger, C. Kreibich, R. Sommer, and V. Paxson. Enhancing the
accuracy of network-based intrusion detection with host-based con-
text. In Proceedings of the conference on Detection of Intrusions and Mal-
ware & Vulnerability Assessment (DIMVA), Vienna, Austria, July 2005.
(Page 51.)

H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer.
Dynamic application-layer protocol analysis for network intrusion
detection. In Procedings of the 15th USENIX Security Symposium.
USENIX, August 2006. (Page 120.)

141

[58] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer.
Operational experiences with high-volume network intrusion de-
tection. In Proceedings of the 11th ACM Conference on Computer and
Communications Security, pages 2-11, October 2004. (Pages 22, 25,
51.)

[59] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence
Analysis. Cambridge University Press, 1998. (Page 28.)

[60] Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison.
Biological Sequence Analysis. Cambridge University Press, April 1998.
(Pages 26, 34.)

[61] C. Estan and G. Varghese. New directions in traffic measurement
and accounting. In ACM SIGCOMM Computer Communication Re-
view, Proceedings of the 2002 SIGCOMM Conference, volume 32, pages
323-336, 2002. (Page 56.)

[62] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating De-
nial of Service Attacks which employ IP Source Address Spoofing.
RFC 2827, IETF, May 2000. (Page 110.)

[63] National Center for Biotechnology Information. GenBank Statis-
tics.
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html,
March 2006. (Page 27.)

[64] Fritz Froehlich and Allen Kent. The Froehlich/Kent Encyclopedia
of Telecommunications, volume 10, pages 231-255. Marcel Dekker,
March 1995. (Page 7.)

[65] David Geer. Malicious bots threaten network security. Computer, 38
(1):18-20, 2005. (Page 11.)

[66] D. Gerrold. When Harlie Was One. Ballantine Books, 1975. (Page 9.)

[67] T.M. Gil and M. Poleto. MULTOPS: a datastructure for bandwidth
attack detection. In Proceedings of the 10th Usenix Security Symposium,
Aug 2001. (Page 115.)

[68] Dan Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge
University Press, 1997. (Pages 26, 29, 30, 33, 34, 50, 66.)

[69] Patrick Haffner, Subhabrata Sen, Oliber Spatscheck, and Dongmei
Wang. ACAS: Automated construction of application signatures.
In Proc. of the ACM SIGCOMM Workshop on Mining Network Data,
August 2005. (Page 82.)

142

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

[70] Hong Han, Xian Liang Lu, Jun Lu, Chen Bo, and Ren Li Yong. Data
mining aided signature discovery in network-based intrusion detec-
tion system. SIGOPS Oper. Syst. Rev., 36(4):7-13, 2002. ISSN 0163-
5980. (Page 113.)

[71] Mark Handley, Christian Kreibich, and Vern Paxson. Network intru-
sion detection: Evasion, traffic normalization, and end-to-end proto-
col semantics. In Proceedings of the 9th USENIX Security Symposium,
August 2001. (Pages 12, 51, 83, 91, 94.)

[72] L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood, and
D. Wolber. A network security monitor. In IEEE Computer Society
Symposium on Research in Security in Privacy, pages 296-304, Oak-
land, CA, USA, May 1990. (Page 9.)

[73] Paul G. Higgs and Teresa K. Attwood. Bioinformatics and molecular
evolution. Blackwell Science Ltd, 2005. ISBN 1-4051-0683-2. (Page
28.)

[74] Thorsten Holz and Georg Wicherski. Know your enemy: Track-
ing botnets. http://www.honeynet.org/papers/bots/, March 2005.
(Page 112.)

[75] IANA. TCP and UDP port numbers.
http://www.iana.org/assignments/port-numbers. (Page 59.)

[76] Intel vPro: Built-in Manageability and Improved Security for Desktop
PCs. Intel Corp., 2006. ftp://download.intel.com/vpro/pdfs/
vpro_wp.pdf. (Page 103.)

[77] J. Ioannidis and S.M. Bellovin. Implementing pushback: Router-
based defense against DDoS attacks. Proceedings of the Symposium on
Network and Distributed Systems Security (NDSS 2002), 2002. (Pages
105, 116, 121.)

[78] G.Jacobson and K. P. Vo. Heaviest increasing /common subsequence
problems. In Proc. of the 3rd Symposium on Combinatorial Pattern
Matching, volume 644, pages 52-65. Springer LNCS, 1992. (Page 34.)

[79] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and
KC Claffy. Transport layer identification of p2p traffic. In Proc. of
the Second Internet Measurement Workshop (IMW), Nov 2002. (Pages
55, 82.)

[80] Thomas Karagiannis, Andre Broido, Nevil Brownlee, KC Claffy, and
Michalis Faloutsos. Is P2P dying or just hiding? In IEEE Globecom
2004 - Global Internet and Next Generation Networks, Dallas/Texas, USA,
Nov, 2004. IEEE. (Pages 55, 82.)

143

http://www.honeynet.org/papers/bots/
http://www.iana.org/assignments/port-numbers
ftp://download.intel.com/vpro/pdfs/vpro_wp.pdf
ftp://download.intel.com/vpro/pdfs/vpro_wp.pdf

[81] Thomas Karagiannis, Dina Papagiannaki, and Michalis Faloutsos.
BLINC: Multilevel traffic classification in the dark. In Proceedings of
the 2005 ACM SIGCOMM Conference, oct 2005. (Pages 55, 82.)

[82] J.O. Kephart and W.C. Arnold. Automatic Extraction of Computer
Virus Signatures. 4th Virus Bulletin International Conference, pages
178-184, 1994. (Page 113.)

[83] H.-A. Kim and B. Karp. Autograph: Toward automated, distributed
worm signature detection. In Proceedings of the 13th Usenix Security
Symposium, San Diego, CA, 2004. (Pages 56, 113.)

[84] Stefan Kornexl, Vern Paxson, Holger Dreger, Anja Feldmann, and
Robin Sommer. Building a time machine for efficient recording and
retrieval of high-volume network traffic. In Proceedings of the 2005
Internet Measurement Conference, Berkeley, CA, USA, pages 267-272.
USENIX, October 2005. (Page 27.)

[85] Christian Kreibich and Robin Sommer. Policy-controlled event man-
agement for distributed intrusion detection. In Proceedings of the 4th
International Workshop on Distributed Event-Based Systems (DEBS’05),
June 2005. (Page 14.)

[86] Christian Kreibich, Andrew Warfield, Jon Crowcroft, Steven Hand,
and Ian Pratt. Using packet symmetry to curtail malicious traffic. In
Proceedings of the Fourth Workshop on Hot Topics in Networks (HotNets-
1V), College Park/Maryland, USA, November 2005. (Pages 104, 106,
111.)

[87] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based
change detection: methods, evaluation, and applications. Proceed-
ings of the 2003 ACM SIGCOMM Conference on Internet Measurement,
pages 234-247,2003. (Pages 56, 115.)

[88] J. Kubiatowicz, C. Wells, B. Zhao, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, et al. OceanStore: an ar-
chitecture for global-scale persistent storage. Proceedings of the ninth
international conference on Architectural support for programming lan-
guages and operating systems, pages 190-201, 2000. (Page 56.)

[89] A.Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li. Space-code bloom
filter for efficient per-flow traffic measurement. INFOCOM 2004.
Twenty-third Annualjoint Conference of the IEEE Computer and Com-
munications Societies, 3:1762-1773, 2004. (Page 115.)

[90] George Kurtz, Bruce Schneier, Alfred Huger, Martin Roesch,

144

and Jennifer Granick. The Honeynet Project. http://project.
honeynet.org, 1999. (Page 112.)

[91] L7 Application-layer Filtering. L7 application-layer filtering. http:
//17-filter.sourceforge.net. (Page 75.)

[92] A.Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic
feature distributions. Proceedings of the 2005 ACM SIGCOMM Con-
ference, pages 217-228, 2005. (Page 82.)

[93] WJ]. Li, K. Wang, S] Stolfo, and B. Herzog. Fileprints: identifying
tile types by n-gram analysis. In Proceedings of the Systems, Man and
Cybernetics (SMC) Information Assurance Workshop, 2005. Proceedings
from the Sixth Annual IEEE, pages 64-71,2005. (Page 83.)

[94] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian
Chavez. Hamsa: Fast signature generation for zero-day polymor-
phic worms with provable attack resilience. In Proceedings of the
2006 IEEE Symposium on Security and Privacy, Oakland, CA, USA, May
2006. (Pages 30, 101, 114.)

[95] Z.Liang and R. Sekar. Fast and automated generation of attack sig-
natures: a basis for building self-protecting servers. Proceedings of the
12th ACM conference on Computer and communications security, pages
213-222,2005. (Page 115.)

[96] J.C.R. Licklider. Man-Computer Symbiosis. IRE Transactions on Hu-
man Factors in Electronics, HFE-1:4-11, Mar 1960. (Page 8.)

[97] DJ Lipman and WR Pearson. Rapid and sensitive protein similarity
searches. Science, 227(4693):1435, 1985. (Page 119.)

[98] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. Voelker. Un-
expected means of identifying protocols. In Proceedings of the 2005
Internet Measurement Conference, October 2006. (Pages 73, 74.)

[99] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. Voelker. Au-
tomatic protocol inference: Unexpected means of identifying pro-
tocols. Technical Report CS2006-0850, University of California, San
Diego, February 2006. (Page 73.)

[100] S. McCanne, C. Leres, and V. Jacobson. tcpdump/libpcap. http:
//www . tcpdump . org/, 1994. (Page 90.)

[101] Edward. M. McCreight. A space-economical suffix-tree construction
algorithm. Journal of the ACM, 23:262-272, 1976. (Pages 30, 90.)

[102] J. Mirkovic, G. Prier, and P. Reiher. Attacking DDoS at the source. In

145

http://project.honeynet.org
http://project.honeynet.org
http://l7-filter.sourceforge.net
http://l7-filter.sourceforge.net
http://www.tcpdump.org/
http://www.tcpdump.org/

Proceedings of 10th IEEE International Conference on Network Protocols,
Nov 2002. (Page 116.)

[103] J. Mogul, R. Rashid, and M. Accetta. The packet filter: An efficient
mechanism for user-level network code. In Proceedings of the 11th
ACM Symposium on Operating Systems Principles (SOSP), volume 21,
pages 39-51, 1987. (Page 9.)

[104] Andrew Moore and Dina Papagiannaki. Toward the accurate iden-
tification of network applications. In Proc. of the Passive and Active
Measurement Workshop, March 2005. (Pages 82, 106.)

[105] Andrew Moore, James Hall, Christian Kreibich, Euan Harris, and
Ian Pratt. Architecture of a network monitor. In Passive and Active
Measurement Workshop Proceedings, pages 77-86, La Jolla, California,
April 2003. (Page 106.)

[106] D. Moore. Network Telescopes: Observing Small or Distant Security
Events. Invited presentation at the 11th Usenix Security Symp.(SEC 02),
Aug, 2002. (Page 112.)

[107] D. Moore, C. Shannon, G. Voelker, and S. Savage. Network tele-
scopes. Technical report, Technical Report C52004-0795, CSE De-
partment, UCSD, July 2004. (Page 112.)

[108] D. Moore, C. Shannon, D.J. Brown, G.M. Voelker, and S. Savage. In-
ferring Internet denial-of-service activity. ACM Transactions on Com-
puter Systems (TOCS), 24(2):115-139, 2006. (Pages 112, 115.)

[109] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan
Savage. Internet quarantine: Requirements for containing self-
propagating code. In INFOCOM, 2003. (Pages 14, 102.)

[110] S.J. Murdoch and G. Danezis. Low-Cost Traffic Analysis of Tor. Pro-
ceedings of the 2005 IEEE Symposium on Security and Privacy, pages
183-195, 2005. (Page 55.)

[111] Computer History Museum. Internet History.

http://www.computerhistory.org/exhibits/internet_history/,
2004. (Page 7.)

[112] S. B. Needleman and C. D. Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of two pro-
teins. Journal of Molecular Biology, 48:443-453, 1970. (Page 29.)

[113] J. Newsome and D. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. Proceedings of the 12th Annual Network and Distributed Sys-

146

http://www.computerhistory.org/exhibits/internet_history/

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]
[124]

tem Security Symposium (NDSS05), San Diego, CA, Feb, 2005. (Page
115.)

James Newsome, Brad Karp, and Dawn Song. Polygraph: Automat-
ically generating signatures for polymorphic worms. In Proc. 2005
IEEE Symposium on Security and Privacy, pages 226-241, Washing-
ton, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2339-0.
doi: http://dx.doi.org/10.1109/SP.2005.15. (Pages 55, 113.)

Tim Oliver, Bertil Schmidt, and Douglas Maskell. Hyper customized
processors for bio-sequence database scanning on FPGAs. In FPGA
"05: Proc. of the 2005 ACM/SIGDA 13th international symposium on
Field-programmable gate arrays, pages 229-237, New York, NY, USA,
2005. ACM Press. ISBN 1-59593-029-9. doi: http:/ /doi.acm.org/10.
1145/1046192.1046222. (Page 33.)

R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson.
Characteristics of Internet background radiation. Proceedings of the
4th ACM SIGCOMM Conference on Internet Measurement, pages 27—
40,2004. (Page 112.)

UK Parliament. Regulation of Investigatory Powers Act. The Stationery
Office, Ltd., 2000. ISBN 0-10-542300-9. (Page 17.)

UK Parliament. Data Protection Act. The Stationery Office, Ltd., 1998.
ISBN 0-10-542998-8. (Page 17.)

Vern Paxson. Bro: A system for detecting network intruders in real-
time. Computer Networks (Amsterdam, Netherlands: 1999), 31(23-24):
2435-2463, 1998. (Pages 10, 45.)

T. Peng, C. Leckie, and K. Ramamohanarao. Defending against dis-
tributed denial of service attack using selective pushback. Proceed-
ings of the Ninth IEEE International Conference on Telecommunications
(ICT 2002), 2002. (Pages 105, 116, 121.)

Ian Peter. History of the Internet. http://www.nethistory.info,
2004. (Page 7.)

P. Pevzner and M. Waterman. Matrix longest common subsequence
problem, duality and Hilbert bases. In Proc. of the 3rd Symposium on
Combinatorial Pattern Matching, volume 644, pages 79-89. Springer
LNCS, 1992. (Page 34.)

The Spamhaus Project. http://www.spamhaus.org/. (Page 14.)

Niels Provos. Honeyd - a virtual honeypot daemon. In 10th DFN-
CERT Workshop, Hamburg, Germany, February 2003. (Page 112.)

147

http://www.nethistory.info
http://www.spamhaus.org/

[125] T. H. Ptacek and T. N. Newsham. Insertion, evasion and denial of
service: Eluding network intrusion detection. Technical report, Se-
cure Networks, Inc., 1998. (Pages 12, 14, 51, 91.)

[126] Marcus Ranum. The six dumbest ideas in computer secu-
rity. http://www.ranum.com/security/computer_security/
editorials/dumb/, September 2005. (Page 87.)

[127] AMA Research. Electronic monitoring & surveillance survey. Tech-
nical report, American Management Association, 2005. (Page 17.)

[128] Martin Roesch. Snort: Lightweight intrusion detection for networks.
In Proceedings of the 13th Conference on Systems Administration, pages
229-238,1999. (Page 10.)

[129] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end
arguments in system design. ACM Transactions on Computer Systems,
2(4):277-288, Nov 1984. (Page 121.)

[130] A. Sanfeliu and K. Fu. A distance measure between attributed rela-
tional graphs for pattern recognition. IEEE Transactions on Systems,
Man and Cybernetics, SMC-13(3):353-362, 1981. (Page 65.)

[131] Stefan Savage, David Wetherall, Anna R. Karlin, and Tom Anderson.
Practical network support for IP traceback. In Proceedings of the 2000
ACM SIGCOMM Conference, pages 295-306, 2000. (Page 116.)

[132] S.E. Schechter. Computer Security Strength & Risk: A Quantitative Ap-
proach. PhD thesis, Harvard University, 2004. (Page 11.)

[133] Bruce Schneier. Secrets and Lies, pages 318-333. John Wiley and Sons,
New York, 2000. (Page 7.)

[134] Bruce Schneier. Beyond Fear: Thinking Sensibly about Security in an
Uncertain World. Copernicus Books, 2003. (Page 87.)

[135] David V. Schuehler and John Lockwood. TCP-Splitter: A TCP/Ip
flow monitor in reconfigurable hardware. In 10th Symposium on High

Performance Interconnects (HotI'02). IEEE Computer Society, August
2002. (Page 25.)

[136] R. Schweller, A. Gupta, E. Parsons, and Y. Chen. Reversible
sketches for efficient and accurate change detection over network
data streams. Proceedings of the 4th ACM SIGCOMM Conference on
Internet Measurement, pages 207-212, 2004. (Page 115.)

[137] Subhabrata Sen, Oliver Spatscheck, and Dongmei Want. Accurate,
scalable in-network identification of P2P traffic using application

148

http://www.ranum.com/security/computer_security/editorials/dumb/
http://www.ranum.com/security/computer_security/editorials/dumb/

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

signatures. In Proc. of the 13th International World Wide Web Confer-
ence, may 2004. (Pages 59, 82.)

Steven L. Shaffer and Alan R. Simon. Network Security. Academic
Press Professional, Inc., San Diego, CA, USA, 1994. ISBN 0-12-
638010-4. (Page 6.)

Umesh Shankar and Vern Paxson. Active mapping: Resisting NIDS
evasion without altering traffic. In Proceedings of the 2003 IEEE Sym-
posium on Security and Privacy, pages 41-59. IEEE, 2003. (Pages 12,
51.)

Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage.
Automated worm fingerprinting. In Proceedings of the ACM/USENIX
Symposium on Operating System Design and Implementation, Dec 2004.
(Pages 56, 113.)

Temple F. Smith and Michael S. Waterman. Identification of com-
mon molecular subsequences. Journal of Molecular Biology, 147, 1981.
(Page 29.)

A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, E. Tchakoun-
tio, S. T. Kent, and W. T. Strayer. Hash-based IP traceback. In ACM
SIGCOMM Computer Communication Review, Proceedings of the 2001
SIGCOMM Conference, volume 34, pages 3—-14, 2001. (Pages 56, 105,
116.)

A. C.Snoeren, C. Partridge, C. E. Jones L.A. Sanchez, F. Tchakountio,
B. Schwartz, S. T. Kent, and W. T. Strayer. Single-packet IP traceback.
IEEE/ACM Transactions on Networking (TON), 10:721-734, Dec. 2002.
(Pages 105, 116.)

D.X. Song and A. Perrig. Advanced and authenticated marking
schemes for IP traceback. INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceed-
ings. IEEE, 2:878-886, 2001. (Page 116.)

Eugene Spafford. The Internet worm: Crisis and aftermath. Commu-
nications of the ACM, 32(6):678-687, June 1989. (Page 9.)

Lance Spitzner. Honeypots: Tracking Hackers. Addison-Wesley, 2003.
URL http://www.tracking-hackers.com/book/. (Pages 11, 19, 88,
112.)

S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in
your spare time. In Proceedings of the 11th USENIX Security Sympo-
sium, August 2002. (Page 11.)

149

http://www.tracking-hackers.com/book/

[148] Bruce Sterling. The Hacker Crackdown: Law And Disorder On The Elec-
tronic Frontier. Bantam, 1993. Also online athttp://stuff.mit.edu/
hacker/hacker.html. (Page 8.)

[149] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Tay-
lor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control
Transmission Protocol. RFC 2960, IETF, October 2000. (Page 22.)

[150] Clifford Stoll. The Cuckoo’s Egg. Addison-Wesley, 1986. (Pages 9,
112.)

[151] Symantec. Support: Cannot connect to AOL after running LiveUp-
date on march 15, 2006. http://servicel.symantec.com/SUPPORT/
sharedtech.nsf/docid/2006031520164313, March 2006. (Page 16.)

[152] Peter Szor. The Art of Computer Virus Research and Defense. Addison-
Wesley /Symantec Press, 2005. (Page 9.)

[153] Yong Tang and Shigang Chen. Defending against Internet worms:
A signature-based approach. In Proc. of IEEE INFOCOM 05, Miami,
Florida, USA. IEEE, May 2005. (Pages 83, 114.)

[154] Esko Ukkonen. On-line construction of suffix trees. Algorithmica,
(14):249-260, 1995. (Pages 30, 90.)

[155] Carnegie Mellon University. DARPA Establishes Computer Emer-
gency Response Team. Press release. http://www.cert.org/about/
1988press-rel.html, Dec 1988. (Page 9.)

[156] M. Vojnovic and A. Ganesh. On the effectiveness of automatic patch-
ing. Proceedings of the Third Workshop on Rapid Malcode ACM-SIGSAC
(WORM), 2005. (Page 87.)

[157] M. Vojnovi¢ and A. Ganesh. On the race of worms, alerts and
patches. Technical report, Technical Report TR-2005-13, Microsoft
Research, February 2005. (Page 87.)

[158] G. Voss, A. Schroder, W. Miiller-Wittig, and B. Schmidt. Using
graphics hardware to accelerate biological sequence analysis. In
Proc. of IEEE Tencon, Melbourne, Australia, 2005. (Page 33.)

[159] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A.C. Snoeren,
G.M. Voelker, and S. Savage. Scalability, fidelity, and containment
in the Potemkin virtual honeyfarm. Operating Systems Review, 39:
148-162, 2005. (Page 113.)

[160] M. Walfish, H. Balakrishnan, D. Karger, and S. Shenker. DoS: Fight-
ing fire with fire. Proc of 4th ACM Workshop on Hot Topics in Networks,
2005. (Page 116.)

150

http://stuff.mit.edu/hacker/hacker.html
http://stuff.mit.edu/hacker/hacker.html
http://www.cert.org/about/1988press-rel.html
http://www.cert.org/about/1988press-rel.html

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugen-
maier. Shield: vulnerability-driven network filters for preventing
known vulnerability exploits. In Proceedings of the 2004 ACM SIG-
COMM Conference, volume 34, pages 193-204. ACM Press, October
2004. (Pages 102, 121.)

YM. Wang, D. Beck, J. Wang, C. Verbowski, and B. Daniels. Strider
Typo-Patrol: Discovery and analysis of systematic typo-squatting.
In Proceedings of the 2nd Workshop on Steps to Reducing Unwanted Traf-
fic on the Internet (SRUTI), July 2006. (Page 120.)

David Watson, Matthew Smart, G. Robert Malan, and Farnam Ja-
hanian. Protocol scrubbing: Network security through transparent
flow modification. [IEEE/ACM Transactions on Networking, 12(2):261-
73, April 2004. (Pages 51, 83.)

N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxon-
omy of computer worms. Proceedings of the 2003 ACM workshop on
Rapid Malcode, pages 11-18, 2003. (Page 11.)

Nicholas Weaver and Vern Paxson. A worst-case worm. In Proceed-
ings of the third Annual Workshop on Economics and Information Security
(WEIS04), May 2004. (Pages 11, 102.)

Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very fast con-
tainment of scanning worms. In Proceedings of the 13th Usenix Secu-
rity Symposium, San Diego, CA, pages 29-44, 2004. (Page 14.)

P. Weiner. Linear pattern matching algorithms. In Proceedings of the
14th IEEE Symposium on Switching and Automata Theory, pages 1-11,
1973. (Pages 30, 90.)

A. Yaar, A. Perrig, and D. Song. Pi: A path identification mecha-
nism to defend against ddos attacks. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, pages 1-15, 2003. (Pages 105,
116.)

V. Yegneswaran, P. Barford, and D. Plonka. On the design and use
of Internet sinks for network abuse monitoring. Proceedings of Sym-
posium on Recent Advances in Intrusion Detection (RAID), Sept, 2004.
(Page 113.)

V. Yegneswaran,].T. Giffin, P. Barford, and S. Jha. An architecture
for generating semantics-aware signatures. In Proceedings of the 14th
Usenix Security Symposium, 2005. (Page 114.)

Sebastian Zander, Thuy Nguyen, and Grenville Armitage. Self-
learning IP traffic classification based on statistical flow characteris-

151

[172]

[173]

[174]

tics. In Proc. of the 6th Passive and Active Network Measurement Work-
shop, March 2005. (Page 83.)

Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the
characteristics and origins of Internet flow rates. In Proceedings of
the 2002 ACM SIGCOMM Conference, pages 309-322, New York, NY,
USA, 2002. ACM Press. ISBN 1-58113-570-X. (Page 27.)

Hubert Zimmermann. OSI reference model: The ISO model of ar-
chitecture for open systems interconnection. IEEE Transactions on
Communications, 28(4):425-432, April 1980. (Page 21.)

Denis Zuev and Andrew Moore. Traffic classification using a statisti-
cal approach. In Proc. of the Passive and Active Measurement Workshop,
March 2005. (Page 82.)

152

	1 Introduction
	1.1 Motivation
	1.2 Outline
	1.3 Contributions
	1.4 Published Work

	2 Background
	2.1 Network Security
	2.2 Evolution of Network Security in the Internet
	2.2.1 1960s
	2.2.2 1970s
	2.2.3 1980s
	2.2.4 1990s
	2.2.5 2000-Present

	2.3 Arms Races in Network Security
	2.4 Detecting Malicious Behaviour
	2.4.1 Purpose, Mode, and Consequence of Detection
	2.4.2 Binary Classification

	2.5 Legal Implications of Network Monitoring
	2.5.1 Corporate Law
	2.5.2 Civil Law
	2.5.3 Implications for this Dissertation

	2.6 Summary

	3 Structural Traffic Analysis
	3.1 Introduction
	3.2 Abstraction Levels for Network Monitoring
	3.3 Flow Reassembly & Heuristic Message Extraction
	3.4 Sequence Alignment Algorithms
	3.4.1 Inspiration from Bioinformatics
	3.4.2 Similarities to Biology
	3.4.3 Differences from Biology

	3.5 String Alignment Models for Network Traffic
	3.5.1 Longest Common Substrings
	3.5.2 Longest Common Subsequences
	3.5.3 Smith-Waterman: Dynamic Programming
	3.5.4 Jacobson-Vo: Combinatorial Reduction
	3.5.5 Improving Jacobson-Vo: Targeted LCS Selection

	3.6 Attacks and Caveats
	3.6.1 Algorithmic Complexity
	3.6.2 Evasion

	3.7 Related Work
	3.7.1 Other Forms of Traffic Analysis
	3.7.2 Detection of Commonality

	3.8 Summary

	4 Fingerprinting the Normal
	4.1 Introduction
	4.2 Characteristics of Application-Layer Traffic
	4.3 Protocol Modelling with Common Substring Graphs
	4.3.1 Construction
	4.3.2 Comparison
	4.3.3 Merging
	4.3.4 Scoring

	4.4 Evaluation
	4.4.1 Terminology
	4.4.2 Input Traffic
	4.4.3 Graph Structure
	4.4.4 Protocol Classification
	4.4.5 Runtime Behaviour

	4.5 Discussion
	4.6 Related Work
	4.7 Summary

	5 Fingerprinting the Malicious
	5.1 Introduction
	5.2 Defining Malice
	5.2.1 Content-based Attacks
	5.2.2 Volume-based Attacks

	5.3 Automated Signature Generation using Honeypots
	5.3.1 Architecture
	5.3.2 Evaluation
	5.3.3 Discussion

	5.4 Curtailing Malicious Traffic with Packet Symmetry
	5.4.1 Packet Asymmetry as a Badness Oracle
	5.4.2 Traffic Analysis
	5.4.3 Discussion

	5.5 Related Work
	5.5.1 Honeypot Architectures
	5.5.2 Automated Signature Generation
	5.5.3 Detection and Mitigation of Volume-based Attacks

	5.6 Summary

	6 Conclusion
	6.1 Future Work
	6.2 End-to-End Considerations

	A Code
	A.1 Bro Policy for Message Extraction
	A.2 Improved Jacobson-Vo Algorithm

	Bibliography

