
A Tool for Offline and Live Testing of Evasion Resilience
in Network Intrusion Detection Systems

Leo Juan1, Christian Kreibich2, Chih-Hung Lin1, and Vern Paxson2

1 Institute For Information Industry, Taipei City, Taiwan
{lichou,chlin}@nmi.iii.org.tw

2 International Computer Science Institute, Berkeley, USA
{christian,vern}@icir.org

Abstract. In this work we undertake the creation of a framework for testing the
degree to which network intrusion detection systems (NIDS) detect and handle
evasion attacks. Our prototype system, idsprobe, takes as input a packet trace
and from it constructs a configurable set of variant traces that introduce different
forms of ambiguities that can lead to evasions. Our test harness then uses these
variant traces in either an offline configuration, in which the NIDS under test
reads traffic from the traces directly, or a live setup, in which we employ replay
technology to feed traffic over a physical network past a NIDS reading directly
from a network interface, and to potentially live victim machines. Summary re-
ports of the differences in NIDS output tell the analyst to what degree the NIDS’s
results vary, reflecting sensitivities to (and possible detections of) different eva-
sions. We demonstrate idsprobe using two popular open-source NIDSs and
report on their respective abilities in dealing with evasive traffic.

1 Introduction

Network intrusion detection systems (NIDS) monitor network traffic for
potential threats and successful exploits. However, such monitoring faces
a fundamental problem: the traffic as observed by an intermediary such
as a NIDS does not necessarily appear to the recipient in the same seman-
tic terms. Instead, the recipient may either observe a different pattern of
traffic or may impose an alternative interpretation on ambiguous traffic
(such as the arrival of two packets spanning the same sequence range in a
TCP flow, but offering different payload bytes for that sequence). While
attackers can actively exploit such ambiguities to confuse the operation
of the NIDS, ambiguities unfortunately also arise in traffic streams for
benign reasons, requiring valuable analyst time for ascertaining whether
the condition constitutes an actual threat.

Given the fundamental significance of evasion attacks for network in-
trusion detection, it is striking how little has been documented regarding
the efficacy with which modern NIDS address the threat. Vendors publish

extensive performance testing results regarding linespeed and breadth of
attacks detected by a given system, but little information regarding its re-
silience to evasion. Because evasion constitutes a fundamental problem,
however, for vendors to ignore it risks building a “house of cards”: their
products increasingly provide more of an appearance of security than a
reliable foundation. Recently, third-party testing of NIDS products has
begun to include an assessment of evasion vulnerabilities [1]. This test-
ing environment, however, is proprietary: it is not available for inspec-
tion, modification and extension by others. In this work, we argue that
there is significant utility for the network security community at large
to have an easy-to-use, transparent, open-source environment for testing
NIDS for resilience in the presence of evasion.

To this end, we have designed and implemented a framework, termed
idsprobe, to facilitate the creation of evasion test-cases in a pluggable
fashion, coupled with fully automated testing of different NIDS on the
resulting test-cases. In the next section, we describe the requirements that
guided our system development. In § 3 we present the architecture of the
overall framework, and in § 4 some initial experimental results obtained
with using it. We discuss related work in § 5, and offer final thoughts as
well as a look at important future work in § 6.

2 Requirements

For our evasion-testing environment we consider two sets of require-
ments: creating test cases, and then applying those test cases to evaluate
a given NIDS.

For the former, we have the following considerations. First, the frame-
work should support both trace-based test cases and live network op-
eration. Trace-based test cases offer very large advantages in terms of
repeatability, portability, and ease of inspection and verification of cor-
rectness. However, some forms of evasion testing require live testing.
These include: (i) NIDS that gain information from end systems [2–4];
(ii) NIDS that employ some form of traffic modification to remove ambi-
guities to prevent evasions from exploiting them [5, 6]; and (iii) evasion
attacks that rely on resource exhaustion thus causing it to drop packets
and consequently miss an attack. Second, the framework needs to accom-
modate elementary and modular traffic transformations across the rele-
vant layers of the protocol stack. For example, a single test case might in-
clude network-layer (e.g., fragmentation), transport-layer (e.g., ambigu-

Fig. 1. The idsprobe framework. Top: offline testing, bottom: live environment.

ous TCP retransmissions) and application-layer (e.g., ambiguous HTTP
character encoding) evasions all together.

To use the resulting test cases for evaluating a NIDS, we desire the
follwing. First, reusability of the generated test traces for live testing.
On-the-fly introduction of evasive actions to live traffic is complicated by
the fact that it requires selectiveness as well as careful sequencing. The
ability to leverage input traces containing ready-made evasions in live en-
vironments both reduces effort and improves reliability. Second, automa-
tion of the process of executing the NIDS and capturing its full set of out-
puts, including summaries of differences among individual runs. Finally,
suitable postprocessors to inspect these differences to highlight patterns
corresponding to susceptibility to or thwarting of evasion attempts, par-
ticularly to shed light on architectural issues reflected in the results (such
as whether a given NIDS lacks sufficient state).

3 Framework Architecture

Figure 1 illustrates the current architecture of the idsprobe frame-
work, which accommodates both offline and live testing.

3.1 Overview

For simplicity, we limit the presentation of the framework to reflect a sin-
gle set of related test cases. The process begins with a single, non-evasive
trace which contains some attribute, such as a particular payload string
in a particular context, for which we can configure a NIDS to detect its

presence. We then repeatedly apply a series of transformation profiles to
copies of this trace to yield a set of variants, each of which reflects a par-
ticular potential evasion. After generating these traces, we then employ a
“test harness” to run a set of NIDS-under-test against the traces (includ-
ing the original, unmodified trace), capturing their outputs, from which
we then construct a set of reports summarizing the NIDS’s behavior in
the presence of different evasions.

3.2 Test Case Generation

To support modularity, we encapsulate a set of elementary transforma-
tions in scripts that can be individually invoked and then subsequently
composed. Each script takes as input (from a file or stdin) a libpcap
trace and produces as output a new trace (to a given output file or std-
out). In addition, the idsprobe framework transparently manages any
temporary storage a script requires to perform the transformation, which
facilitates chained application of transformations.

We currently provide tools for the following transformations:

Application layer. We support rewriting of application-layer contents
using the framework developed in our previous work [7] built
upon the Bro intrusion detection system [8]. This framework allows
application-level specification of trace transformations that are then
reflected down to the transport layer (adjustment of sequence num-
bers, checksums, and acknowledgments) and network layer (repack-
etization where required).

Transport layer. This level currently supports adjustment of relevant
header control bits, payload modifications, and adjustment of check-
sums. We implement these using plug-ins for Netdude [9].

Network layer. Our current support for network-layer modifications—
also based on Netdude plug-ins—comprises modification of arbitrary
header fields, duplication/insertion/removal of individual packets, IP
fragmentation, and checksum correction.

Trace file manipulation. We provide additional plug-ins to (i) adjust
packet timestamps in trace files, (ii) correct the flow of time (sort
packets with non-monotonic timestamps), and (iii) recombine multi-
ple sets of packets/traces into a single trace file.

We emphasize that the scripting interface to the transformation tools
can readily accommodate other tools that can provide trace manipulation
at different semantic levels.

Finally, we also note a somewhat subtle point regarding composition
of different evasions: multiple types of evasions need to be applied “top
down” in terms of network protocol layering. That is, we must first apply
application-layer transformations, then transport-layer ones, and finally
those operating at the network-layer. The reason for this is that tools that
manipulate one layer generally assume that the lower layer is unambigu-
ous (and thus the tool is free to rewrite it accordingly).

3.3 Offline Evasion Testing

Once a set of test traces have been generated, the idsprobe frame-
work then enables automated assessment of a number of NIDS against
the suite. Adding a NIDS is a simple process: all that is required is to
provide a shell script that will invoke the NIDS given a number of envi-
ronment variables including, among others, the trace file to be analyzed.
The test harness then invokes the script repeatedly to execute the NIDS
across each of the traces in the variant set, storing the generated files sep-
arately. After execution, idsprobe invokes diff -based file-differencing
to determine the degree to which the NIDS’s behavior changed for given
variants. Once differenced, the results currently require manual inspec-
tion to assess their significance.

3.4 Live Evasion Testing

As mentioned in Section 2, some forms of evasion testing require live
tests. To facilitate these, we extended the idsprobe framework to func-
tion in live environments, while allowing us to re-use the evasive test
traces generated for offline testing whenever possible. Three compo-
nents, connected via a physical link, facilitate live testing: (i) a traffic
generator, which establishes connections to the victim machine(s) and
drives the data exchange; (ii) a NIDS installation which monitors the
link; and (iii) a virtual target network which hosts the victim machines,
responding to the traffic sent by the traffic generator.

The key challenge for the traffic generator is enabling re-use of the
existing test traces. Our approach is to replay traces adaptively, relying
on the causality of exchanged application data units (ADUs) at the ap-
plication level and to ignore the actual content of the responder’s ADUs,
while patching up the sequence and acknowledgement numbers in the
input trace’s packets to keep the TCP exchange working. We used the
scapy packet processing tool [10] to build this replay functionality.

We used honeyd [11] to realize the virtual target network. honeyd
provides the major benefits of allowing easy adjustment of the network
topology (for example in order to introduce additional routers for reach-
ability evasions relying on the IP TTL field), while providing flexible
victim responder configurations. ranging from simple shell scripts to for-
warding to live external systems via honeyd’s subsystem mechanism.

4 Initial Experimental Results

As a preliminary evaluation of the idsprobe framework, we developed
an initial set of 10 different types of test cases. We evaluated each against
the Snort [12] (version 2.6.1.4) and Bro [8] (version 1.2.1) NIDSs.

4.1 Test Cases

In all test cases, we use a set of traces of entire, full-packet TCP connec-
tions. Each contains a single HTTP request with lengths ranging from 8
to 256 bytes, and a corresponding HTTP response. The main objective
is to determine whether the NIDS under test can match a signature (not
necessarily of an attack) that we know is present in the generated, eva-
sive traffic, while also checking for any signs of evasion or other unusual
activity that the NIDS might signal. idsprobe automatically generated
196 test traces based on 5 input traces. Table 1 shows the sets of trans-
formations.

4.2 NIDS Configurations

For the Bro NIDS, we used its default configuration settings. We in-
structed it to monitor all TCP traffic (-f tcp) and loaded the mt, frag,
and signatures analyzers. We configured signatures for the HTTP
requests in the input traces, with each signature matching exactly one of
the HTTP requests. For Snort, we removed the large list of signature file
include directives, since none of the listed rule sets were actually in-
cluded in the Snort distribution, verified that the frag3 and stream4
preprocessors were enabled, and that evasion-related alerts would be gen-
erated.

4.3 Findings

Output of idsprobe-generated traces Table 2 summarizes our findings
based on the idsprobe-generated evasive packet traces. Overall, Bro

– TC1 A single, consistent, and immediate retransmission 1 µsec after the original of a TCP
segment carrying the signature-bearing application-layer payload. This test case checks
whether the NIDS performs a simple form of TCP stream reassembly correctly.

– TC2 Like TC1, but the retransmission consists of only part of the original TCP segment. We
retransmit a right-aligned part of the original segment with correct checksum and sequence
number. This constellation likewise presents neither threat nor ambiguity.

– TC3 Like TC1, but we change the TCP payload on the first (subtest TC3a) or the second
(subtest TC3b) variant of the duplicated packet, respectively, without any checksum correc-
tions. This test does not pose any actual ambiguity.

– TC4 Like TC3, except now the checksums are corrected. Our payload modification is care-
less, thus leading to a different checksum value. This test case represents the first truly am-
biguous traffic. The NIDS needs to decide which version of the byte stream to analyze, and
ideally should note the inconsistency.

– TC5 Like TC4, but we change the TCP payload carefully, leaving the checksum unchanged.
We achieve this by swapping 16-bit fields, though one could derive more complex modi-
fications due to the incremental nature of the checksumming algorithm. As with TC3, this
presents a real ambiguity, requiring the NIDS to compare the actual payloads.

– TC6 We duplicate one of the IP datagrams in the TCP flow, setting its IP fragment offset
to a non-zero offset value (adjusting the IP header checksum to reflect the change) on the
first (subtest TC6a) or second (subtest TC6b) variant, respectively. This test case creates an
ambiguous, malformed fragment.

– TC7 We duplicate one of the IP datagrams in the TCP flow and set its IP TTL value to a
number of different values (again with header checksum updated) on the first (subtest TC7a)
or second (subtest TC7b) variant, respectively. This test case does not introduce a serious
ambiguity but can confuse NIDS evasion detection that examines TTL values for anomalies.

– TC8 We consistently fragment one of the IP datagrams in the TCP flow carrying the
signature-bearing payload, using various different fragment sizes. This test case tests
whether the NIDS correctly processes well-formed fragments.

– TC9 Like TC8, but we duplicate one of the fragments, and alter its payload in the first
(subtest TC8a) or second (subtest TC8b) variant, respectively. The alteration is again care-
less, i.e., reassembly of the datagram using the modified payload leads to an incorrect TCP
checksum for the full datagram.

– TC10 Like TC9, but with a careful payload alteration, i.e., reassembly of the datagram using
the modified payload leaves the TCP checksum unchanged. Figures 2 and 3 present the
workings of TC10 in detail.

Table 1. Test cases used for evaluating idsprobe.

and Snort performed similarly as far as signature detection is concerned.
They differ, however, in the amount of detail delivered in addition to the
relevant alerts. After excluding from file-differencing Bro’s .state di-
rectories (which remain empty) and Snort’s tcpdump log files, the total
amount of difference in Bro’s output amounts to 1,665 lines, as opposed
to 17,018 for Snort. Ignoring Snort’s verbose summary output reported
on stdout and stderr reduced the differential data volume to 1,329 lines.

00:01:37.427628 10.48.0.1.2013 > 10.48.0.81.80: . 1:158(157) ack 1 win 32768
0x0000 4500 00c5 7566 0000 4006 f01b 0a30 0001 E...uf..@....0..
0x0010 0a30 0051 07dd 0050 0000 092a 3838 4e57 .0.Q...P...*88NW
0x0020 5010 8000 0fc2 0000 4745 5420 2f31 6162 P.......GET./1ab
0x0030 6364 6566 6768 696a 6b6c 6d6e 6f70 7172 cdefghijklmnopqr
0x0040 7374 7576 7778 797a 3261 6263 6465 6667 stuvwxyz2abcdefg
0x0050 6869 6a6b 6c6d 6e6f 7071 7273 7475 7677 hijklmnopqrstuvw
0x0060 7879 7a33 6162 6364 6566 6768 696a 6b6c xyz3abcdefghijkl
0x0070 6d6e 6f70 7172 7374 7576 7778 797a 3461 mnopqrstuvwxyz4a
0x0080 6263 6465 6667 6869 6a6b 6c6d 6e6f 7071 bcdefghijklmnopq
0x0090 7273 7475 7677 7879 7a35 6162 6364 6566 rstuvwxyz5abcdef
0x00a0 6768 696a 6b6c 6d6e 6f70 7172 7320 4854 ghijklmnopqrs.HT
0x00b0 5450 2f31 2e31 0d0a 484f 5354 3a6e 6f6e TP/1.1..HOST:non
0x00c0 650d 0a0d 0a e....

Fig. 2. tcpdump output for relevant packet from the TC10 input trace. A single TCP segment
contains the relevant application-layer content, “GET /1abcdef”.

00:01:37.427628 10.48.0.1.2013 > 10.48.0.81.80: [|tcp] (frag 30054:8@0+)
00:01:37.427629 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@8+)
00:01:37.427630 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@16+)
0x0000 4500 001c 7566 2002 4006 d0c2 0a30 0001 E...uf..@....0..
0x0010 0a30 0051 0fc2 0000 4745 5420 .0.Q....GET.
00:01:37.427631 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@24+)
0x0000 4500 001c 7566 2003 4006 d0c1 0a30 0001 E...uf..@....0..
0x0010 0a30 0051 2f31 6162 6364 6566 .0.Q/1abcdef
00:01:37.427632 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@24+)
0x0000 4500 001c 7566 2003 4006 d0c1 0a30 0001 E...uf..@....0..
0x0010 0a30 0051 2f31 6364 6162 6566 .0.Q/1cdabef
00:01:37.427633 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@32+)
0x0000 4500 001c 7566 2004 4006 d0c0 0a30 0001 E...uf..@....0..
0x0010 0a30 0051 6768 696a 6b6c 6d6e .0.Qghijklmn
00:01:37.427634 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@40+)
00:01:37.427635 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@48+)
...
00:01:37.427650 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@168+)
00:01:37.427651 10.48.0.1 > 10.48.0.81: tcp (frag 30054:1@176)

Fig. 3. tcpdump output of resulting TC10 evasive traffic. The TCP segment shown in Figure 2 has
its application-layer content rewritten, fragmented into 24 8-byte fragments, with a duplicate frag-
ment with the original TCP stream content inserted after the third fragment. The sensitive payload
is now spread across three IP datagrams. The payload variation preserves the TCP checksum’s
validity. Finally, idsprobe patches the packet timestamps to preserve chronological ordering.

Output TC1 TC2 TC3a/b TC4a/b TC5a/b TC6a/b TC7a/b TC8 TC9a/b TC10a/b

Bro Sig. match X X X 7/X 7/X X X X 7/X 7/X
Evasion Â À À Ã ÁÃ ÁÃ

Snort Sig. match X X X 7/X 7/X X X X 7/X 7/X
Evasion Ä Å Ä Ä Æ

Table 2. Bro’s vs. Snort’s results on 10 test cases generated by idsprobe. The first line per
NIDS summarizes signature detection, the second reports evasion-related alerts or messages.
The numbers reflect the following: À “RetransmissionInconsistency”. Á “WeirdActivity” of type
“fragment inconsistency”. Â Bad checksums in weird.log. Ã “WeirdActivity” of type “exces-
sively small fragment” for fragments of 32 bytes or less. Ä “Possible evasive FIN detection”
with nonsensical parameters. Å “TCP checksum changed on retransmission”. Æ “Fragmentation
overlap”.

In TC2, Snort erroneously reported a TCP checksum change on a re-
transmission, where in fact no divergent payload was transferred. In the
event of careful payload alterations that do not affect the TCP checksum

08:00:09.176192 IP 10.48.0.1.2010 > 10.48.0.81.80: . 1:13(12) ack 1 win 32768
 0x0000: 4500 0034 f178 0000 4006 749a 0a30 0001 E..4.x..@.t..0..
 0x0010: 0a30 0051 07da 0050 0000 092a 3392 88d8 .0.Q...P...*3...
 0x0020: 5010 8000 4582 0000 4745 5420 2f31 6162 P...E...GET./1ab
 0x0030: 6364 7878 cdxx
08:00:09.176194 IP 10.48.0.1.2010 > 10.48.0.81.80: . 11:14(3) ack 1 win 32768
 0x0000: 4500 002b f178 0000 4006 74a3 0a30 0001 E..+.x..@.t..0..
 0x0010: 0a30 0051 07da 0050 0000 0934 3392 88d8 .0.Q...P...43...
 0x0020: 5010 8000 80f0 0000 6566 67 P.......efg

Fig. 4. tcpdump of inconsistent retransmission not reported by Snort 2.8.0.1.

(TC5/TC10), however, Snort fails to notice the (rather likely) evasion at-
tempt. Bro handled both cases correctly, remaining silent on the former
but alerting on the latter case. Snort also generated a total of 60 potential
evasive TCP FIN detections in 4 of the test cases. A number of the values
reported in these alerts are nonsensical, such as IP TTL values of 240, IP
ToS fields with values 0x10, and IP IDs of 0. None of these values exist
in the FIN packets in question; in addition, none of the traces actually
reflects an ambiguous TCP FIN packet.

Bro correctly reports TCP retransmission inconsistencies, IP fragment
inconsistencies, the presence of bad checksums, and the presence of ex-
cessively small IP fragments. For Snort, the only correct evasion-related
output concerns IP fragmentation overlap.3

During the course of our work, new releases of Snort appeared. We
experimented with the latest release available, Snort version 2.8.0.1, to
see how its behavior might have changed. The erroneous evasive FIN
alerts have been repaired. However, the new stream reassembly mod-
ule stream5 introduced new issues: a partially overlapping retransmis-
sion (shown in Figure 4) is not reported, while Snort 2.6.1.4 did report a
changed TCP checksum on the retransmission.

Output after long-term operation To better understand the usability of
evasion/anomaly-related events reported by different IDSs, we ran Bro
1.2.1 along with Snort 2.6.1.4 and 2.8.0.1 on a 24-hour, 21 GB trace
recorded at ICSI on 16 March 2007. The NIDSs were not configured to
detect attacks, but only to report anomalous or potentially evasive activ-
ity.

Table 3 summarizes our findings. The absence of consensus in the
reported events is striking, particularly between Bro and the Snort ver-
sions, but to a lesser degree even between two different Snort releases.
TCP SYNs with payload data seem a rare case where there is near-

3 Even that is not the best description of the problem, since IP fragments can overlap for rare-
but-benign reasons. Better would be to highlight that the overlap is inconsistent.

B
RO

1.2
14,591

ContentG
ap

7,546
A

ckA
boveH

ole
2,249

w
indow

recision
735

bad
TCP

checksum
460

SY
N

w
ith

data
311

possible
splitrouting

290
data

before
established

98
bad

ICM
P

checksum
85

above
hole

data
w

ithoutany
acks

35
connection

originator
SY

N
ack

30
bad

TCP
header

len
18

inappropriate
FIN

15
SY

N
seq

jum
p

15
prem

ature
connection

reuse
9

active
connection

reuse
8

data
after

reset
3

SY
N

inside
connection

3
SY

N
after

reset
3

bad
SY

N
ack

2
TCP

christm
as

1
Retransm

issionInconsistency
1

FIN
advanced

lastseq
1

bad
U

D
P

checksum
26,509

S
N

O
RT

2.6
161,862

possible
EVA

SIV
E

FIN
detection

36,873
possible

EVA
SIV

E
RST

detection
27,384

TCP
CH

ECK
SU

M
CH

A
N

G
ED

O
N

RETRA
N

SM
ISSIO

N
1,933

Possible
RETRA

N
SM

ISSIO
N

detection
458

DATA
O

N
SY

N
detection

67
W

A
RN

IN
G

:ICM
P

O
riginalIP

H
eaderTruncated!

30
W

A
RN

IN
G

:TCP
D

ataO
ffsetislessthan

5!
18

Truncated
Tcp

O
ptions

12
Experim

entalTcp
O

ptionsfound
2

Tcp
O

ptionsfound
w

ith
bad

lengths
1

W
A

RN
IN

G
:ICM

P
O

riginalIP
Fragm

ented
and

O
ffsetN

ot0!
228,640

S
N

O
RT

2.8
4,844

TCP
Tim

estam
p

isoutside
ofPAW

S
w

indow
2,058

D
ata

senton
stream

notaccepting
data

807
Bad

segm
ent,adjusted

size
<

=
0

461
D

ata
on

SY
N

packet
67

W
A

RN
IN

G
:ICM

P
O

riginalIP
H

eaderTruncated!
30

W
A

RN
IN

G
:TCP

D
ata

O
ffsetislessthan

5!
18

Truncated
Tcp

O
ptions

12
Experim

entalTcp
O

ptionsfound
5

D
ata

senton
stream

afterTCP
Reset

2
Tcp

O
ptionsfound

w
ith

bad
lengths

1
W

A
RN

IN
G

:ICM
P

O
riginalIP

Fragm
ented

and
O

ffsetN
ot0!

8,305

Table3.A
ggregate

sum
m

ariesofanom
aliesand

evasion-related
eventsreported

by
the

N
ID

Ssundertest,on
the

24h
ICSItrace.

consensus, with the three NIDSs reporting 460, 458, and 461 instances,
respectively. Bro reports a single retransmission inconsistency (which we
have verified to be correct, but it does not reflect a malicious evasion).
Snort 2.6 reports this as one of 36,873 “possible EVASIVE RST detec-
tion” events, and Snort 2.8 as 3 of the 5 “Data sent on stream after TCP
Reset” events recorded. For the 22,137 flow reassembly issues reported
by Bro (“ContentGap” and “AckAboveHole”), which have direct signifi-
cance for content-based analysis, there is no apparent corresponding alert
in either of the Snort logs. These events account for the main reason why
Snort 2.8 reports fewer events than Bro, whose output volume is almost
an order of magnitude below Snort 2.6’s.

5 Related Work

The fundamental problem of NIDS evasion was first framed in the sem-
inal paper by Ptacek and Newsham [13]. Aspects of the problem also
appear in the discussion of the Bro system [8], particularly in the context
of inconsistent TCP retransmissions. In response to the threat of evasion,
researchers have developed several types of countermeasures, such as
traffic normalization [5, 6], active mapping [2], passive fingerprinting [4],
and the use of host-based context [3].

Several tools have been developed for testing NIDS for vulnerabilities
to evasion. Fragrouter4 implements some network-layer evasions based
on IP fragmentation. Unlike our framework, it modifies live traffic only.
The libwhisker5 library provides basic functionality for testing HTTP
implementations. Nikto6 leverages the library, adding HTTP content ob-
fuscation techniques. Both tools primarily target live-traffic operation.

Regarding systematic evaluation of NIDS in the presence of possi-
ble evasions, Vigna and colleagues present a framework for NIDS test-
ing based on traffic transformation [14]. Rather than testing the NIDSs’
awareness of evasion, they emphasize evaluating the robustness of indi-
vidual signatures used by such NIDSs. Their system takes as input an
attack trace, to which it applies semantically invariant transformations
and then and monitors for changes in the alerts generated by the NIDSs.

4 Per http://www.securityfocus.com/tools/176, nominally available at http:
//www.anzen.com/research/nidsbench/, but in fact that location no longer re-
solves.

5 http://www.wiretrip.net/rfp/libwhisker/
6 http://www.cirt.net/code/nikto.shtml

Similarly, Rubin et al. developed a framework to facilitate traffic transfor-
mations on different network layers [15], again aiming to produce vari-
ants of a specific attack. Marty [16] similarly proposed a platform for
subjecting NIDS to automatically generated variations of attack traffic.
His system exclusively operates on live traffic.

In contrast to these efforts, our framework does not assume the ex-
istence of an attack, but instead determines the general effects of traffic
transformations. This allows us to separate the NIDS’s specific attack
detection logic from its architectural analysis limitations. In addition, the
work of Rubin et al. develops a formal model of possible transforma-
tions, which allows them to exhaustively test a NIDS against attack vari-
ants. Our work, on the other hand, aims to facilitate a public, open-source
effort for developing NIDS evasion test suites, with a related emphasis
for our framework on modularity and a plug-in architecture.

6 Discussion and Future Work

The idsprobe framework does not attempt to provide “turnkey” eval-
uation of NIDS evasion vulnerabilities. Rather, our aim is to provide the
means for an experienced assessor to more readily construct good test
cases, and more efficiently apply those test cases in a repeatable fash-
ion across a set of NIDS under consideration. We also do not strive to
ourselves provide a comprehensive set of evasion tests; rather, we aim
to facilitate that others can collectively work towards such a goal. These
considerations motivate our open-source, modular/plug-in approach.

The focus of our future work is to devise methodologies for assessing
live-traffic evasions based on overloading NIDS resources and to assess
the efficacy of on-line anti-evasion technology.

7 Summary

We have designed and implemented the idsprobe framework to facili-
tate the creation of offline as well as live evasion test-cases in a pluggable
fashion, coupled with fully automated testing of different NIDS on the
resulting test-cases. We aim for the system to encourage extension and
broad use by the community, and to this end will provide the software
to others upon request, and ultimately aim to maintain it in as a public
open-source resource.

8 Acknowledgments
This work was partially supported by the iCAST project sponsored by the National Science
Council (NSC), Taiwan, under Grants 95-3114-P-001-002-Y02, 95-3114-P-307-003-Y, 96-3114-
P-001-002-Y, 95-2221-E-017-007, 95-3113-P-017-001, as well as by the Ministry of Economic
Affairs, Taiwan, under Grant 96-EC-17-A-31-F1-0824. Christian Kreibich was supported by a
postdoctoral grant provided by DAAD. The opinions expressed in this work are solely those
of the authors and should not necessarily be considered to be the opinions of any government,
funding agency, or other organization.

References
1. Group, N.: Network IPS Testing Procedure (V4.0) (2006) http://www.nss.co.uk/

certification/ips/nss-nips-v40-testproc.pdf.
2. Shankar, U., Paxson, V.: Active mapping: resisting NIDS evasion without altering traffic.

Proc. Symposium on Security and Privacy (2003) 44–61
3. Dreger, H., Kreibich, C., Paxson, V., Sommer, R.: Enhancing the accuracy of network-based

intrusion detection with host-based context. In: Proc. Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA). (2005)

4. Taleck, G.: Ambiguity resolution via passive os fingerprinting. In: Proc. Conference on
Recent Advances in Intrusion Detection (RAID). (2003) 192–206

5. Handley, M., Paxson, V., Kreibich, C.: Network Intrusion Detection: Evasion, Traffic Nor-
malization, and End-to-End Protocol Semantics. Proc. USENIX Security Symposium (2001)

6. Watson, D., Smart, M., Malan, G.R., Jahanian, F.: Protocol Scrubbing: Network Security
through Transparent Flow Modification. IEEE/ACM Transactions on Networking 12(2)
(April 2004) 261–273

7. Pang, R., Paxson, V.: A High-Level Programming Environment for Packet Trace
Anonymization and Transformation. In: Proceedings of the ACM SIGCOMM Conference.
(August 2003)

8. Paxson, V.: Bro: A system for detecting network intruders in real-time. Computer Networks
31(23-24) (1999) 2435–2463

9. Kreibich, C.: Design and Implementation of Netdude, a Framework for Packet Trace Ma-
nipulation. Proc. USENIX Technical Conference, FREENIX track (2004)

10. Biondi, P.: Scapy, a powerful interactive packet manipulation program http://www.
secdev.org/projects/scapy/.

11. Provos, N.: A Virtual Honeypot Framework. Proceedings of the 13th USENIX Security
Symposium (2004) 1–14

12. SourceFire: Snort, the Open Source Network Intrusion Detection System http://www.
snort.org/.

13. Ptacek, T., Newsham, T.: Insertion, evasion, and denial of service: Eluding network intrusion
detection. Secure Networks, Inc., Jan (1998)

14. Vigna, G., Robertson, W., Balzarotti, D.: Testing network-based intrusion detection signa-
tures using mutant exploits. Proceedings of the 11th ACM Conference on Computer and
Communications Security (2004) 21–30

15. Rubin, S., Jha, S., Miller, B.: Automatic Generation and Analysis of NIDS Attacks. Proceed-
ings of the 20th Annual Computer Security Applications Conference (ACSAC’04)-Volume
00 (2004) 28–38

16. Marty, R.: Thor – A Tool to Test Intrusion Detection Systems by Variations of Attacks.
Master’s thesis, Swiss Federal Institute of Technology, Zurich, Switzerland (2002)

