
Principles for Developing Comprehensive Network Visibility∗

Mark Allman, Christian Kreibich, Vern Paxson, Robin Sommer, Nicholas Weaver

International Computer Science Institute

Abstract

We argue that for both defending against attacks and ap-

prehending the scope of attacks after they are detected,

there is great utility in attaining views of network activ-

ity that are unified across time and space. By this we

mean enabling operators to apply particular analyses to

both past and future activity in a coherent fashion, and

applied across a wealth of information collected from a

variety of monitoring points, including across adminis-

tratively independent sites. We outline the core design

goals necessary for building systems to develop such vis-

ibility in an operationally viable way.

1 Introduction

Increasingly, network operators, security analysts and

system administrators are faced with wide-scale security

issues that are not easily tackled with information from

a single vantage point over a small window of time. To-

day’s serious attacks manifest over extensive timescales

and often involve disparate components of the targeted

systems. However, monitoring efforts are often burden-

some because operators lack a unified view of network

activity that includes all components of their network, as

well as a wide swath of time. These attacks leave ana-

lysts trying to ferret out answers to key questions: How

did the attackers get in? What did they do once inside?

Where did they come from? What patterns of activity

serve as markers that reflect their presence? How do we

prevent this attack in the future?

Analysts must tackle these questions using a multitude

of monitors (e.g., NIDS, firewalls, NetFlow data, ser-

vice logs) and so must first use custom, generally ad-hoc,

analysis procedures tightly scoped to each source, and

then gather these disparate bits of analysis together to

form a high-level view of the scope of an attack. Pursued

in this fashion, the process is tedious and error prone.

∗USENIX Workshop on Hot Topics in Security (HotSec), July

2008.

As a simplified example, consider a NIDS that de-

velops an understanding that an ssh session originates

from a host that previously scanned the network. From

the NIDS’ vantage point, since the session is encrypted

the operator cannot tell if the attacker has successfully

logged into the ssh server, nor, if so, which account has

been compromised. Meanwhile, looking at the sshd log

on the end system may reveal successful access to an ac-

count, but without the context of the attacker’s previous

scanning activity, which makes such access then sugges-

tive of a compromise. An operator ideally needs to un-

derstand that (i) the peer host is an attacker, (ii) which,

if any, account on the ssh server has been compromised,

(iii) what additional host-level activity the attacker con-

ducted on the ssh server and (iv) whether and which ad-

ditional network services within the enterprise may have

been accessed by the attacker. Gathering the full con-

text of the activity requires drawing upon a multitude of

logging information from a variety of sources, and then

conducting nuanced analysis to form an understanding

of the extent and implications of the attack. Further, de-

tecting similar activity in the future requires additional

effort that today for real-time monitoring often takes a

significantly different form.

Much of the emphasis for today’s intrusion detection

systems (IDSs) focuses on a particular type of moni-

toring data (e.g., host logs or network packets) rather

than synthesizing a broader view across multiple sources

(e.g., keystrokes as seen on a host, past DNS lookups,

honeypot data, internal NetFlow records, correlations be-

tween network activity and local desktop input or lack

thereof). In addition, responding to attacks entails not

only real-time detection but also, and just as importantly,

post facto forensics. Operators can only answer crucial

questions about the scope of an intrusion and the breadth

of possible damage by drawing upon high-quality logs of

past activity. Storing disparate forms of information in a

unified fashion can not only save operators time in find-

ing the answers to their questions, but also renders the

1



process less error-prone.

Another critical situation that can greatly benefit from

a unified system view is the problem of combating in-

sider attacks. Dealing with insider threats has similari-

ties to that of detecting intrusions, but also some salient

differences. The scope of insider attacks is often difficult

to apprehend at the time of detection because the full ex-

tent of an attack can involve a sequence of steps each of

which the attacker had authorization to perform. Only

the specific combination of steps—such as first access-

ing sensitive data, then transferring it to an intermediary

machine, and finally from there exfiltrating it to a non-

authorized third party—constitutes the malicious activ-

ity. When security officers eventually discover the attack,

it becomes crucial to understand the full implications of

the damage, which requires access to readily searchable

logs (i) of a wide range of the computing and network

environment’s activity (ii) over a large window of time.

The benefits of developing some form of unified view

of network activity across time and space are clear. How-

ever, developing a system that is both inclusive and use-

ful, as well as operationally viable, is highly challenging.

It is not enough to unify a given type of logging informa-

tion (e.g., syslog servers); we need the means to form

holistic views across different forms of monitoring (e.g.,

unifying NIDS results with inferences from system logs).

Finally, we can gain great utility by broadening the

spatial range of network visibility beyond individual

sites. There has been considerable activity, in terms of

both research and operational systems, oriented around

sharing information across sites about network attacks

and attackers. The operational systems range from col-

lecting alerts from intrusion detection systems and fire-

walls [3] to publishing information about vulnerabili-

ties and exploits [2, 12] to live feeds of purported ma-

licious activity such as sourcing of unsolicited email [10,

1], phishing [9], and botnet command-and-control [5].

These efforts focus heavily on sharing information at a

global scope, where the producers and consumers of the

information generally have no established relationship

with one another. Consequently, concerns of privacy

limit the types and granularity of information that sites

are willing to contribute to the data sources, and con-

cerns of trust limit the degree to which information from

the sources can prove “actionable” in terms of incorpo-

rating it into automated response, or deciding to dedicate

always-scarce analyst time to investigate the implications

of the information.

We argue that we can gain both greater power and

greater utility by considering information-sharing sys-

tems with a more restricted scope. Rather than operating

globally, the “sweet spot” for such information sharing

occurs for exchanging information between a set of sites

with similar threat models that have explicitly decided to

work with each other. Such sites needn’t fully trust one

another, but can afford to automate many of the steps

involved in coordinated attack analysis because they pre-

sume that usually the other sites will act in a responsi-

ble manner—and, critically, they have administrative re-

course (can complain to bosses) when that fails. Thus,

we seek the means to provide coherent forms of analysis

not only within sites but across cooperating sites.

In this paper we endeavor to frame the core notions

necessary for developing unified monitoring of network

system activity, drawn from our own efforts at devel-

oping such an architecture. We present our thinking in

terms of a set of design principles that we argue such

a system needs to possess. Our goal in this work is to

both influence current efforts to build broad monitoring

infrastructures, as well as solicit comments on possible

omissions or modifications to the guidelines. We present

our set of design principles in § 2. We then discuss ex-

tensions and additional uses of a system built around our

guidelines in § 3. We conclude in § 4.

2 Design Guidelines

We now turn to developing the essential guidelines on

which we believe a unified network monitoring infras-

tructure should be built. We divide the guidelines into

three categories: (i) overarching basic notions, (ii) the

data in the system, and (iii) critical capabilities.

2.1 Basic Guidelines

We first sketch several base guidelines that we believe

define the basic structure of a unified network visibility

system in ways that make the infrastructure viable for

operational deployment and use.

B.1: Scope. The fundamental scope of a unified net-

work activity monitor will be an administrative domain

(e.g., an enterprise or a department). This scoping keeps

such a system operationally viable (see B.3 below) for

several reasons: (i) the issues of data sensitivity within

this scope are well known and already dealt with, (ii) the

logistics of collecting and archiving the data are man-

ageable (e.g., information volume), and (iii) within this

scope operators have solid notions of how the network

is run, which can be crucial when setting up monitoring

and analyzing the resulting collection of data (e.g., key

services to instrument and watch).

While we argue that the basic scope of a network ac-

tivity monitor should correspond to an administrative do-

main, we do not preclude such systems from being inte-

grated together to form a larger monitoring infrastructure

(as discussed above). To the contrary, we believe such

larger infrastructures have benefits and encourage explo-

ration into such structures. We explore this idea in more

detail in § 3.2.

2



B.2: Incremental Deployability. An important aspect

of gaining a unified vantage point on network activity is

that such a system must not rely on interfacing to every-

thing. The system should accept information from what-

ever data sources will provide data. Further, analyses on

the collected data should not fail because of a lack of

full data—and in fact should explicitly indicate that the

lack of data has an impact on the analysis where possible.

For instance, consider an operator hunting for a particu-

lar requested URL and an analysis process that can un-

derstand that a particular host runs an HTTP server (in-

ferred from NetFlow summaries, say) but does not sub-

mit HTTP logs to the unified data collector. The analy-

sis process can then suggest “data not available” for the

given (presumed) web server, rather than the less infor-

mative “no matching URLs found”.

B.3: Operational Realities. A system that provides

network visibility must respect the operational con-

straints of a given situation. The system should leave

operators in control of what data is accumulated, whether

the data is sanitized, how that is accomplished, and with

what retention policies. The system should not be a

“black box” that administrators do not understand but are

expected to simply trust.

B.4: Restricting and Logging Access. Finally, we

must ensure that access to the information is properly

controlled and logged. The sensitivity of the information

such a system could contain is clearly high and therefore

the data store may be a juicy target for attackers. Ideally,

logging about the repository would be to a distinct ser-

vice such that nefarious use could be detected without a

malicious user being able to readily cover their tracks.

2.2 Data-Oriented Guidelines

Next we focus on guidelines that involve the data re-

quired to gain a unified view of network activity.

D.1: Data Breadth. The power in a unified infrastruc-

ture derives from its being able to interface with a mul-

titude of activity monitoring systems, ranging from ap-

plication logs to observations made by intrusion detec-

tion systems, firewalls and routers. Additionally, while

in B.1 we scope basic operation to a single organization,

the design of the infrastructure should accommodate data

from sources outside the organization (see § 3.2). Along

with data variety, the system also needs to scale to ac-

commodate a large number of data providers.

D.2: Large Measurement Window. Serious breaches

often manifest over long time intervals, and therefore

a network activity monitor should be designed to track

as much past activity as possible. Host compromise

may happen well before activity revealing the compro-

mise. Being able to understand all activity undertaken

by a compromised machine has clear benefit in terms of

both assessing further compromise within the organiza-

tion and also understanding any missed signs that would

have pointed to the compromise earlier. Both of these il-

lustrate the clear need for a rich set of information cover-

ing as much of the past as feasible. Ideally, the window

into the past would be unlimited. However, pragmati-

cally this will clearly not be the case and so the next two

guidelines are developed to cope with limited resources

for data storage.

D.3: Smart Storage. As noted above, logistics will ul-

timately creep into a network activity monitor, and we

will have to sacrifice existing data to make room for the

never-ending torrent of new data. As a first pragmatic

step towards keeping the window into the past as large as

possible, a monitoring system should provide hooks for

operators to setup smart data retention policies.

As an example, consider the Time Machine discussed

in [7]. This system can buffer several days of high-

volume packet-level network traffic using commodity

hardware. It relies on the simple but crucial observation

that, due to the heavy-tailed nature of network traffic [8],

the system can record most connections in their entirety,

yet skip the bulk of the total volume by only storing up to

a cutoff limit of bytes per connection. Using this heuris-

tic proves to be an enormous gain in terms of the length

of the monitoring window.

In abstract terms, the existing Time Machine’s opera-

tion relies on three concepts: (i) a high-volume stream

of input that we want to store; (ii) a set of rules identify-

ing how to separate more important input (e.g., the head

of a session) from less important input (e.g., the heavy

tail), which are used to trade off between comprehensive

storage and available resources; and (iii) an aging mech-

anism (e.g., when the storage space fills up, the system

expires the oldest packets from the archive).

We observe that these three notions are in fact quite

general and independent of the type of data being man-

aged. A generic network activity monitor should provide

filtering via operator-defined hooks to establish policies

to be setup that can lengthen the overall monitoring win-

dow by sacrificing unlikely-to-be-useful data.

D.4: Graceful Degradation. Aging mechanisms

needn’t simply discard data. Rather, they can employ

graceful degradation, reducing data into more compact

but still representative forms. To continue with the

Time Machine example from above, before discarding

old packets the system could instead distill these dis-

carded packets into NetFlow-like connection records. A

later aging step might further aggregate these connection

summaries into traffic matrices of which hosts commu-

nicated with which others and the total volume of data

exchanged over a given time interval. Degradation could

also involve random subsamples, allowing some individ-

3



ual records to still be characterized. When aging in this

fashion, the history loses granularity over time, yet still

retains a degree of information that could prove useful

later.

D.5: Uniform Data Model. To deal with heteroge-

neous data sources, a unified network activity monitor

needs a flexible data model that can represent a variety

of information types and is amenable to propagation over

the network. In this context, asynchronous event-based

communication has received particular attention in the

distributed systems community. In this model, commu-

nicating entities publish the availability of information

they can provide, and subscribe to information published

by peers according to local interest [4].

When abstracting network activity, an event model

provides an excellent match. Example events would in-

clude “packet observed”, “TCP connection started”, and

“URL U fetched from web server S by client C”. A

key benefit is that events—which already represent an

abstraction of activity—can be further elevated to suc-

cessively higher semantic levels by correlation and ag-

gregation. For instance, a number of unsuccessful con-

nection attempts (already abstracted from the actual ob-

served packets) may be rolled into a summary along the

lines of “N attempts in the last T seconds,” which can

then escalate into an alarm if meeting some threshold. In

terms of our data model, such correlation and aggrega-

tion of activity is vital for reducing the volume of over-

all information, per the discussion of data aggregation in

terms of guideline D.4 above.

D.6: Policy Neutral Data. It is desirable that events

represent policy-neutral activity so that event subscribers

are not restricted in their analysis by receiving an event

stream that contains pre-conceived judgments about ac-

tivity. This decoupling of the data and the analysis allows

for a rich set of data crunching that may not have been

envisioned when the data was collected. For instance,

flow summaries can provide a wealth of insights about

network behavior (e.g., for detecting scanning [6]), even

though they might come from a tool like NetFlow with

an original purpose of simply observing general network

activity.

This guideline could limit the integration of existing

NIDS systems. For example, the popular open-source

Snort NIDS [11] only reports alerts: each time a signa-

ture matches, the system raises an alert. But by defini-

tion any set of signatures implies policy. While we could

convert signature alerts into a stream of events carrying

information about the match, the utility of such an in-

strumentation is limited because of the degree to which

it presupposes what activity is of interest.

D.7: Low Overhead. Moving data to (and possibly

from) the network activity monitor should not be a bur-

densome activity. Clearly, the torrent of activity in even

modest networks is high and therefore fine-grained mon-

itoring may not be feasible. However, the system design

should be such that the overhead of collecting a unified

view is as low as possible. The publish/subscribe model

sketched in guideline D.5 usefully aids this concern by

only transmitting data the receiver has interest in. In ad-

dition, using events to represent network activity helps

reduce the volume by naturally abstracting network ac-

tivity.

D.8: Data Sanitization. The ability to sanitize sen-

sitive information in the data should be designed into

any network activity system. Clearly such features are

needed if the data is to be exported to another organiza-

tion (see § 3.2). However, even internal to a given orga-

nization sanitization has a role. Sanitization can be used

to prevent operators from accidentally tripping across in-

formation they did not need to possess.1 In addition, pol-

icy may deem some information too sensitive to store in

the infrastructure. Such policy will often revolve around

an organization’s risk profile. For example, short term

data retention may have high benefit in understanding

intrusions, but long term data retention may entail risks

through data leakage (including through legal liability or

vulnerability to subpoenas). Once the risk outweighs the

benefit, data will need to be sanitized.

Two different forms of sanitation may be necessary:

local and global. Local sanitation requires policies that

remove individual fields or events from the archive.

Global sanitation is a trickier issue, as individual data

may not be sensitive but the combination of elements

creates a sensitivity issue; thus, it may be necessary to

sanitize the results of analyses and not just the data.

We also note that the aggregation notions sketched

above provide a way for clearing sensitive information:

the correlation logic can alter, or completely remove,

sensitive information; and aggregation limits the degree

to which a remote observer can trace back final results to

the lower-level activities they reflect.

2.3 Capabilities

Finally, we sketch key capabilities that a system for de-

veloping a comprehensive view of network activity will

possess.

C.1: Common Analysis Procedure. A system for

gathering a comprehensive view of network activity

should allow for a common procedure to be used for all

analysis. In other words, the same analysis that retro-

spectively crunches the information store should also be

able to be installed as prospective queries over future in-

formation the system collects. Coupled with the unified

1This can be useful even if it is only a matter of presentation and

operators can go back to the non-sanitized data, as needed.

4



data model sketched in D.5, such a capability allows op-

erators to code an analysis one time, rather than the cum-

bersome current method of developing ad-hoc scripts to

analyze past activity (for each data source) and then turn-

ing around and converting those to work within ongoing

monitoring systems such as a NIDS or a firewall.

Further, having a common framework for creating

analysis also aids cross-organizational sharing. Even if

organizations do not share data, operators from differ-

ent organizations would be able to readily share code

that describes what they have observed on their networks

in concrete terms. This contrasts with the ad-hoc, natu-

ral language descriptions currently used across organiza-

tions, which are often inherently imprecise.

C.2: What-If Analysis. The temporal dimension of

network activity analysis should support automated ex-

ploration of how analyses intended for future activity

would have behaved if applied in the past. For example,

understanding that an analysis procedure will trigger nu-

merous false-positives can be vital to understand before

installing that analysis for future events. Another form

of what-if analysis might be to explore the implications

of different possible values for missing data.

3 Extensions

In this section we discuss two additional capabilities that

could be enabled by a unified monitoring infrastructure

following the above design principles.

3.1 Troubleshooting

Troubleshooting network problems shares many of the

same basic demands as coping with attacks. The lay-

ered, modular structure of many network and protocol

designs can make it particularly difficult to pin-point the

sources of errors when the system fails to operate cor-

rectly. Thus, when operators chase down problems they

can find it highly beneficial to draw upon as much logged

information from as many angles as possible.

While the need to understand past activity to find the

source of problems is clear, an infrastructure that also al-

lows operators to easily set up analogous analysis and/or

monitoring for future activity can offer great additional

power. For example, suppose an operator finds that

DHCP leases were failing because of clock drift on one

of the DHCP servers. If, in addition to correcting the

clock to fix the immediate problem, they can also readily

codify the corresponding troubleshooting process, then

they can add it to a repertory of analysis procedures that

they can draw upon in the future to troubleshoot similar

instances of the problem. (They might even use the codi-

fication to install systematic monitoring of the clocks on

each of their DHCP servers, to obtain automated warning

of the problem’s recurrence.)

Another example is that even conceptually simple ser-

vices like “a web page” are today actually comprised

of numerous components—both on the client and server

side—that must interact. A web page may be served

from a farm of servers that includes a load balancer at

the front to manage the workload assigned to each in-

dividual web server. Furthermore, the web servers in

turn may require information contained in one or more

backend database servers. While understanding each of

these components is perhaps straightforward, obtaining

an over-arching view of how the full system is function-

ing and troubleshooting the system when it is not work-

ing properly becomes increasingly difficult as the scope

and complexity of the aggregate system increases.

3.2 Cross-Organization Data Sharing

Finally, we examine the issues that arise when extending

a network activity monitor beyond a single organization,

as scoped in guideline B.1 above. Even when expand-

ing the scope of a particular system, B.1 continues to

serve as the base scope for the system. We frame en-

abling cross-organizational sharing as building on these

local systems.

The operational reality of current cross-institutional

information sharing and response is primitive. From

our experiences working with security officers at a num-

ber of sites (Lawrence Berkeley National Laboratory,

National Energy Research Scientific Computing Center,

UC Berkeley, TU Munich), site operators set up ad-hoc

information exchanges via email, online messaging, or

the telephone. This state of affairs, while wrought with

problems in terms of overhead and response times, also

has some distinct advantages: operators (i) are explicitly

involved in the decision of from whom to accept infor-

mation and how much trust to place in that information,

(ii) decide with whom to share information, (iii) retain

the ability to apply local policies as appropriate for their

organization, and (iv) need not rely on “black boxes”

they may not fully understand.

A network activity monitoring system that follows

the guidelines given in § 2 will be well-positioned to

bridge the gap between ad-hoc telephone calls and fully-

automated “black boxes”. At a minimum, by providing a

single repository for local retrospective analysis the sys-

tem we outline above makes it easier for analysts and

operators to find needed information when (say) talking

to a colleague from another organization on the phone.

An obvious next step is enabling organizations to easily

swap analysis code. This turns key parts of the exchange

between operators into formal definitions rather than in-

formal descriptions.

More speculatively, operators could run queries

against the data archive of other organizations. We en-

vision such cross-organizational data sharing as tenable

between sites that have a high degree of trust in one an-

5



other to act in a responsible manner; we do not envision

a system for global sharing of information. Even in such

a restricted setting, an operator would likely still have to

manually green-light a query across their past activity,

and also for the results being returned to the peer. As

with recording of local information, we see such a semi-

automated approach as working from a “dirty slate”, to

evolve the current state of affairs towards a place where

advanced, efficient, and coordinated sharing is reality—

even if the scale is initially more modest than we might

like. An organization’s own unified activity monitor will

be well-positioned to deal with requests from outside or-

ganizations and to interact with operators, as necessary.

In addition, by following the guidelines given in § 2 the

system will include hooks for aggregating and sanitizing

data before transmitting it to another organization.

In general, we identify the following high-level guide-

lines as desirable for any approach that allows operators

to share information with peers with whom they have a

reasonable amount of trust:

S.1: The approach does not presume any particular

analysis policies, nor require participants to agree on

common policies (as similarly developed in D.6 above).

S.2: The scheme provides each site with control over

the information that it imports and exports. Specifically,

each site independently (i) selects information to provide

to peers, (ii) scrubs sensitive content from information it

shares, and (iii) chooses which externally received infor-

mation to incorporate into its local analysis. In addition,

different policies can be applied to each peer.

S.3: The approach augments the local security appara-

tus. Hosts, NIDS, service daemons, and the like do not

require knowledge of the site’s sharing policies to carry

out their functions.

S.4: The setup should be robust against failures (in-

cluding those induced by attacks). When a failure oc-

curs, the site’s existing security components must con-

tinue working as they would have had there been no ad-

ditional sharing infrastructure in place.

S.5: The approach calls for sharing only moderate vol-

umes of data. The goal should be to exchange semantic

abstractions of activity (expressed by queries over event

logs); therefore, we favor robustness over efficiency.

We believe these guidelines—in conjunction with

organization-level systems that are consistent with the

guidelines developed in the previous section—hold the

possibility of facilitating significantly greater sharing and

easier communications among the operator community.

4 Summary

In this paper we lay the systematic design groundwork

for systems that provide unified network monitoring. We

believe that following the guidelines sketched in this pa-

per will yield systems that provide enough flexibility to

be highly useful in a wide range of situations. While

some of the guidelines might seem mundane, and even

perhaps low on vision to the research community, it is

our position that starting from the current operational re-

ality is the best way to make progress on these sorts of in-

formation collection systems. The principles we outline

are fundamentally rooted in this “dirty slate” approach.

We would not, however, preclude additional layers and

extensions from being built on top of systems that follow

the principles outlined in this paper (e.g., to do automated

distributed intrusion detection). In some sense, gaining

a unified view of network activity is not only an opera-

tional win, but will likely prove to be a research win in

terms of both increasing researchers’ understanding and

providing a platform that will ultimately enable new re-

search.

5 Acknowledgments

This work was supported by the National Science Foun-

dation under grants CNS-0716640, ITR/ANI-0205519,

and NSF-0722035, for which we are grateful. The opin-

ions expressed in this work are solely those of the authors

and should not necessarily be considered to be the opin-

ions of the funding agency.

References

[1] BLACKLIST, D. P. http://www.dnsbl.org.

[2] CENTER, C. C. http://www.cert.org.

[3] Distributed Intrusion Detection System DShield.org. http://

www.dshield.org.

[4] EUGSTER, P., FELBER, P., GUERRAOUI, R., AND KERMAR-

REC, A. The Many Faces of Publish/Subscribe. ACM Computing

Surveys 35, 2 (2003), 114–131.

[5] FOUNDATION, T. S. http://shadowserver.org.

[6] JUNG, J., PAXSON, V., BERGER, A. W., AND BALAKRISH-

NAN, H. Fast Portscan Detection Using Sequential Hypothesis

Testing. In IEEE Symposium on Security and Privacy (2004).

[7] MAIER, G., SOMMER, R., DREGER, H., FELDMANN, A., PAX-

SON, V., AND SCHNEIDER, F. Enriching Network Security

Analysis with Time Travel. In ACM SIGCOMM (2008).

[8] PAXSON, V., AND FLOYD, S. Wide-Area Traffic: The Failure of

Poisson Modeling. IEEE/ACM Transactions on Networking 3, 3

(1995), 226–224.

[9] PHISHTANK. http://www.phishtank.com.

[10] PROJECT, T. S. http://www.spamhaus.org.

[11] ROESCH, M. Snort: Lightweight Intrusion Detection for Net-

works. In Proc. Systems Administration Conference (1999).

[12] SECURITYFOCUS. Bugtraq mailing list. http://www.

securityfocus.com/archive/1.

6


