
A Tool for Offline and Live Testing of Evasion Resilience
in Network Intrusion Detection Systems

Leo Juan1, Christian Kreibich2, Chih-Hung Lin1, and Vern Paxson2

1 Institute For Information Industry, Taipei City, Taiwan
{lichou,chlin}@nmi.iii.org.tw

2 International Computer Science Institute, Berkeley, USA
{christian,vern}@icir.org

Abstract. Network intrusion detection systems (NIDS) face a difficult, funda-
mental problem in the degree to which attackers can exploit ambiguities present
when monitoring network traffic in order to undermine the correctness of the
NIDS’s analysis to evade detection. However, many of today’s NIDSs lack the
additional mechanisms required to resist different forms of evasion, because the
underlying problems are subtle and—critically—not visible to the customers who
purchase these systems.
Remedying this common shortcoming of modern NIDS functionality requires the
widespread availability of test suites oriented towards probing the degree to which
a NIDS exhibits evasion vulnerabilities. In this work we undertake the creation
of a framework to facilitate the development of such test suites. Our prototype
system, idsprobe, takes as input a packet trace and from it constructs a con-
figurable set of variant traces that introduce different forms of ambiguities that
can lead to evasions. Our test harness then uses these variant traces in either an
offline configuration, in which the NIDS under test reads traffic from the traces
directly, or a live setup, in which we employ replay technology to feed traffic over
a physical network past a NIDS reading directly from a network interface, and to
potentially live victim machines. Summary reports of the differences in NIDS
output tell the analyst to what degree the NIDS’s results vary, reflecting sensi-
tivities to (and possible detections of) different evasions. We sketch the overall
architecture of the framework, discuss the technical components it uses, demon-
strate its use for two popular open-source NIDSs, and explore areas for future
work to further refine the approach and increase its power.

1 Introduction

Network intrusion detection systems (NIDS) monitor network traffic in
order to determine the significance of the observed activity in terms of
potential threats and successful exploits. However, such monitoring faces
a difficult, fundamental problem: the traffic as observed by an interme-
diary such as a NIDS does not necessarily appear to the recipient in the
same semantic terms. Instead, the recipient may either observe a differ-
ent pattern of traffic (particularly, a subset if the network or the recipi-
ent’s kernel discards some of the packets), or may impose an alternative



interpretation on ambiguous traffic (such as the arrival of two packets
spanning the same sequence range in a TCP flow, but offering different
payload bytes for that sequence).

Attackers can exploit such ambiguities to confuse the operation of
the NIDS, rendering it prone to either missing attacks or reducing the
precision of the NIDS’s analysis from pinpointing a specific attack to
simply noting that the traffic stream includes an ambiguity. Since unfor-
tunately such ambiguities also arise in traffic streams for benign reasons,
their presence generally does not constitute an “actionable” determina-
tion: the analyst must at a minimum spend considerable effort attempting
to ascertain whether the condition constitutes an actual threat.

Thus, evasion attacks leverage an inherent analysis difficulty present
in observing network traffic from a location other than one of the end-
points. These ambiguities render it hard, or even impossible, for a NIDS
to correctly interpret skillfully crafted packet sequences in the same fash-
ion as the end host receiving them. Such attacks can exploit differing in-
terpretations of traffic at multiple protocol levels. From the application
layer’s point of view, it is generally not possible to pinpoint the exact
location in the protocol stack where the ambiguity was introduced: for a
web server, it might have been within HTTP itself, but could just as well
have occurred due to TCP retransmissions (layer 4) or IP fragmentation
(layer 3).

In a seminal paper [1], Ptacek and Newsham describe several
network- and transport-layer attacks that lead to different payload
streams perceived by the end-system and the NIDS. Approaches that al-
leviate the problem exist (e.g., normalization [2] and active mapping [3]),
but have not seen large-scale deployment, and do not remedy the problem
in its full generality.

Given the fundamental significance of evasion attacks for network in-
trusion detection, it is striking how little has been documented regarding
the efficacy with which modern NIDS address the threat. Users consid-
ering which NIDS products to purchase can find extensive performance
testing results regarding the breadth of attacks detected by a given sys-
tem, or its ability to process line-rate traffic, but little information regard-
ing its resilience to evasion—and, in particular, insight into a system’s
architectural strengths and weaknesses in this regard. Thus, vendors feel
little market pressure to enhance their products’ strengths in this regard.
Because evasion constitutes a fundamental problem, however, for ven-
dors to ignore it risks building a “house of cards”: their products increas-



Fig. 1. Architecture of the idsprobe framework.

ingly provide more of an appearance of security than a reliable founda-
tion.

Recently, third-party testing of NIDS products has begun to include
an assessment of evasion vulnerabilities [4]. This testing environment,
however, is proprietary: it is not available for inspection, modification
and extension by others. In this work, we argue that there is significant
utility for the network security community at large to have an easy-to-
use, transparent, open-source environment for testing NIDS for resilience
in the presence of evasion.

To this end, we have designed and implemented a framework, termed
idsprobe, to facilitate the creation of evasion test-cases in a pluggable
fashion, coupled with fully automated testing of different NIDS on the
resulting test-cases. In the next section, we describe the requirements that
guided our system development. In § 3 we present the architecture of the
overall framework, and in § 4 some initial experimental results obtained
with using it. We discuss related work in § 5, and offer final thoughts as
well as a look at important future work in § 6.

2 Requirements

For our evasion-testing environment we consider two sets of require-
ments: creating test cases, and then applying those test cases to evaluate
a given NIDS.

For test-case creation, we have the following considerations:

– The framework should support both trace-based test cases (that is,
we construct packet trace files that we then analyze with a NIDS in
an off-line fashion) and live network operation.



Trace-based test cases offer very large advantages in terms of repeata-
bility, portability, and ease of inspection and verification of correct-
ness. Thus, when possible we prefer use of traces to use of live traffic.
However, some forms of evasion testing require live testing. These
include: (i) NIDS that when responding to possible evasions incor-
porate information they gain from end systems, either by proactive
probing [3], direct feedback from the hosts [5], or passive finger-
printing [6]; (ii) NIDS that employ some form of traffic modification
to remove ambiguities to prevent evasions from exploiting them [2,
7]; and (iii) evasion attacks that rely on resource exhaustion such as
overwhelming the NIDS’s available processing or memory resources,
thus causing it to drop packets and consequently miss an attack.

– The framework should provide modular, pluggable building blocks
for creating complex evasive patterns out of elementary traffic trans-
formations. Related to this, we desire that the framework encourage
others in the network security community to contribute test compo-
nents. By emphasizing modularity and separate plug-ins, we can sus-
tain a low “barrier to entry” for others to contribute to the system and
its suite of test cases.

– The framework needs to accommodate elementary traffic transfor-
mations across the relevant layers of the protocol stack. In addition,
these transformations should be amenable to composition. For exam-
ple, a single test case might include network-layer (e.g., fragmen-
tation), transport-layer (e.g., ambiguous TCP retransmissions) and
application-layer (e.g., ambiguous HTTP character encoding) eva-
sions all together, as a way of detecting when a NIDS’s evasion coun-
termeasures suffer from feature-interaction.

To use the resulting test cases for evaluating a NIDS, we desire:

– Reusability of the generated test traces for live testing. On-the-fly in-
troduction of evasive actions to live traffic is complicated by the fact
that such evasions have to be both selective about the packets they are
applied to, and carefully sequenced in order to work. The ability to
leverage input traces containing ready-made evasions in live environ-
ments therefore yields substantial reduction of effort and improved
reliability.

– Automation of the process of executing the NIDS and capturing its
full set of outputs (log files, alarms, stdout, stderr).



– Automated generation of summaries of the differences in NIDS be-
havior given a non-evasive “base case” versus an evasive test case, as
evidenced in the outputs it produces.

– Suitable postprocessors to inspect these differences to highlight pat-
terns corresponding to susceptibility to or thwarting of evasion at-
tempts, particularly to shed light on architectural issues reflected in
the results (such as whether a given NIDS lacks sufficient state to de-
tect inconsistent retransmissions in full generality, even though it can
detect certain instances that require less state to track).

Given these requirements, we now turn to an architecture that attempts
to meet them to a large degree.

3 Framework Architecture

Figure 1 illustrates the current architecture of the idsprobe frame-
work, which accommodates both offline and live testing.

3.1 Overview

For simplicity, we limit the presentation of the framework to reflect a
single set of related test cases. (In general, we use the framework to con-
struct multiple such sets.) The process begins with a single, non-evasive
trace (shown on the left) which contains some attribute, such as a partic-
ular payload string in a particular context, for which we can configure a
NIDS to detect its presence. We then repeatedly apply a series of trans-
formation profiles to copies of this trace to yield a set of variants, each
of which reflects a particular potential evasion. After generating these
traces, we then employ a “test harness” to run a set of NIDS-under-test
against the traces (including the original, unmodified trace), capturing
their outputs, from which we then construct a set of reports summarizing
the NIDS’s behavior in the presence of different evasions.

Given this overview, in the next three subsections we discuss in more
detail the generation of test cases in the idsprobe framework, followed
by the testing process based on the resulting traces.

3.2 Test Case Generation

To support modularity, we encapsulate a set of elementary transforma-
tions in scripts that can be individually invoked and then subsequently



@load http-reply

redef rewriting_http_trace = T;

event http_request(c: connection, method: string,
original_URI: string, unescaped_URI: string,
version: string)

{
rewrite_http_request(c, method, gsub(original_URI, /\//,

"slash"), version);
}

Fig. 2. Example of altering application-level trace contents using Bro’s trace-transformation
framework.

composed. Each script takes as input (from a file or stdin) a libpcap
trace and produces as output a new trace (to a given output file or std-
out). In addition, the idsprobe framework transparently manages any
temporary storage a script requires to perform the transformation, which
facilitates chained application of transformations.

We currently provide tools for the following transformations:

Application layer. We support rewriting of application-layer contents
using the framework developed in our previous work [8] built
upon the Bro intrusion detection system [9]. This framework allows
application-level specification of trace transformations that are then
reflected down to the transport layer (adjustment of sequence num-
bers, checksums, and acknowledgments) and network layer (origi-
nal packetization preserved if possible, new packets inserted if nec-
essary).
For example, Figure 2 shows a Bro script that changes any occurrence
of a slash (“/”) to the text “slash”.

Transport layer. This level currently supports adjustment of relevant
header control bits (e.g., TCP SYN/FIN/RST/ACK/PSH/URG), pay-
load modifications, and correction (or miscorrection) of checksums.
We implement these using plug-ins for Netdude [10].

Network layer. Our current support for network-layer modifications—
also based on Netdude plug-ins—support:

– Modification of arbitrary header fields.
– Duplication/insertion/removal of individual packets.
– IP fragmentation.
– Checksum correction.



Fig. 3. idsprobe setup for live testing.

Trace file manipulation. We provide additional plug-ins to (i) adjust
packet timestamps in trace files, (ii) correct the flow of time (sort
packets with non-monotonic timestamps), and (iii) recombine multi-
ple sets of packets/traces into a single trace file.

While our implementation of these transformations leverage Bro and
Netdude, we emphasize that the scripting interface to the transformation
tools can readily accommodate other tools that can provide trace manip-
ulation at different semantic levels.

Finally, we also note a somewhat subtle point regarding composition
of different evasions. When generating test cases that combine multiple
types of evasions, it is important to apply these “top down” in terms of
network protocol layering. That is, we must first apply application-layer
transformations, then transport-layer, and finally network-layer. The rea-
son for this is that tools that manipulate one layer generally assume that
the lower layer is unambiguous (and thus the tool is free to rewrite it
accordingly). If we apply transformations in a different order, we might
lose evasions introduced at a lower layer when we later rewrite a set of
packets at a higher network layer. (Ideally, our framework would detect
such violations of top-down transformation, but at present it does not.)

3.3 Offline Evasion Testing

Once a set of test traces have been generated, the idsprobe framework
then enables automating of assessing a number of NIDS against the suite.
Adding a NIDS is a simple process: all that is required is to provide a
shell script that will invoke the NIDS given a number of environment
variables including, among others, the trace file to be analyzed.

The test harness then invokes the script repeatedly to execute the
NIDS across each of the traces in the variant set, storing the files gen-



erated by each such execution in a separate per-trace directory. After ex-
ecution, idsprobe invokes file-differencing (via the Unix diff utility)
to determine the degree to which the NIDS’s behavior changed for given
variants. We pattern this process on that used for Bro’s regression test-
ing, which includes notions of output files to skip and canonicalizations
to apply to files prior to differencing to remove insignificant differences.

Once differenced, the results currently require manual inspection to
assess their significance. For some tests, the NIDS may correctly gener-
ate different output—for example, a warning about a possible evasion, or
the correct suppression of an alert if by some other means (such as pas-
sive fingerprinting) the NIDS has determined that the attempted evasion
has rendered the attack ineffective.

3.4 Live Evasion Testing

As mentioned in Section 2, some forms of evasion testing require live
tests. To facilitate these, we extended the idsprobe framework to func-
tion in live environments, while allowing us to re-use the evasive test
traces generated for offline testing whenever possible. The architecture
of our live testing setup is shown in Figure 3. It consists of three compo-
nents, connected via a physical link: (i) a traffic generator, which estab-
lishes connections to the victim machine(s) and drives the data exchange;
(ii) a NIDS installation which monitors the link; and (iii) a virtual target
network which hosts the victim machines, responding to the traffic sent
by the traffic generator. We now describe the technical realization of each
of those components in turn.

The key challenge for the traffic generator is enabling re-use of the ex-
isting test traces. Involving packet traces in live environments inevitably
requires replay technology; moreover, we require adaptive replay which
uses the input trace as a guideline for the traffic originator, driving the
data exchange with the victim while robustly aligning the victim’s traf-
fic with the recorded responder traffic in the input trace. Our approach
is to rely on the causality of exchanged application data units (ADUs) at
the application level and to ignore the actual content of the responder’s
ADUs, while patching up the sequence and acknowledgement numbers
in the input trace’s packets to keep the TCP exchange working. We used
the scapy packet processing tool [11] to build this replay functionality.

The NIDS installation uses the same IDS configurations as used for
offline testing and output collection, except for the obvious difference of
sniffing live traffic instead of reading packets from an input trace file.



08:00:09.143206 IP 10.48.0.1.2010 > 10.48.0.81.80: S 2345:2345(0) win 32768 <mss 1024>
08:00:09.143306 IP 10.48.0.81.80 > 10.48.0.1.2010: S 865241303:865241303(0) ack 2346 win 5840 <mss 1460>
08:00:09.161454 IP 10.48.0.1.2010 > 10.48.0.81.80: . ack 1 win 32768
08:00:09.176192 IP 10.48.0.1.2010 > 10.48.0.81.80: . 1:14(13) ack 1 win 32768
        0x0000:  4500 0035 f178 0000 4006 7499 0a30 0001  E..5.x..@.t..0..
        0x0010:  0a30 0051 07da 0050 0000 092a 3392 88d8  .0.Q...P...*3...
        0x0020:  5010 8000 f192 0000 4745 5420 2f31 6162  P.......GET./1ab
        0x0030:  6364 6566 67                             cdefg
08:00:09.176192 IP 10.48.0.1.2010 > 10.48.0.81.80: . 2:14(12) ack 1 win 32768
        0x0000:  4500 0034 f178 0000 4006 749a 0a30 0001  E..4.x..@.t..0..
        0x0010:  0a30 0051 07da 0050 0000 092b 3392 88d8  .0.Q...P...+3...
        0x0020:  5010 8000 8942 0000 4554 202f 3161 6263  P....B..ET./1abc
        0x0030:  6465 6667                                defg
08:00:09.176264 IP 10.48.0.81.80 > 10.48.0.1.2010: . ack 14 win 5840
08:00:09.176846 IP 10.48.0.81.80 > 10.48.0.1.2010: P 1:455(454) ack 14 win 5840
08:00:09.176912 IP 10.48.0.81.80 > 10.48.0.1.2010: F 455:455(0) ack 14 win 5840
08:00:09.368323 IP 10.48.0.1.2010 > 10.48.0.81.80: . ack 456 win 32768
08:00:09.396305 IP 10.48.0.1.2010 > 10.48.0.81.80: F 14:14(0) ack 456 win 32768
08:00:09.396339 IP 10.48.0.81.80 > 10.48.0.1.2010: . ack 15 win 5840

Fig. 4. tcpdump output for the TC2 input trace. A single TCP segment contains the relevant
application-layer content, “GET /1abcdefg” at sequence number 2346 (0x092a). It is fol-
lowed by a duplicate segment that misses the first byte, but starts at sequence number 2347
(0x092b), thus benignly overlapping right-aligned with the first segment. (We have omitted full
packet contents of other packets for brevity.)

We used honeyd [12] to realize the virtual target network. honeyd
provides the major benefits of allowing easy adjustment of the network
topology (for example in order to introduce additional routers for reach-
ability evasions relying on the IP TTL field), while providing flexible
victim responder configurations ranging from simple shell scripts to for-
warding to live external systems via honeyd’s subsystem mechanism.

4 Initial Experimental Results

As a preliminary evaluation of the idsprobe framework, we developed
an initial set of 8 different types of test cases. We evaluated each against
the Snort [13] (version 2.6.1.4) and Bro [9] (version 1.2.1) NIDSs.

4.1 Test Cases

In all test cases, we use a set of traces of entire, full-packet TCP connec-
tions. Each contains a single HTTP request with lengths ranging from 8
to 256 bytes, and a corresponding HTTP response. The main objective is
to determine whether the NIDS under test can match a signature that we
know is present in the generated, evasive traffic, while also checking for
any signs of evasion or other unusual activity that the NIDS might sig-
nal. idsprobe automatically generated 196 test traces based on 5 input
traces.

The test cases cover the following sets of transformations:

– TC1: We introduce a single, consistent, and immediate retransmis-
sion of a TCP segment carrying the signature-bearing application-



layer payload. I.e., we locate the packet in the trace, and add an exact
copy of it with a timestamp immediately (1 µsec) following. Such
duplications occur in actual network traffic for benign reasons and
do not represent any sort of actual threat or ambiguity. Thus, this test
case checks whether the NIDS performs a simple form of TCP stream
reassembly correctly.

– TC2: Like TC1, but the retransmission consists of only part of the
original TCP segment. More precisely, we retransmit a right-aligned
part of the original segment with correct checksum, as follows: a
segment containing at least 2 bytes of payload is duplicated to im-
mediately follow the original, shortened by 1 byte, and its sequence
number incremented by 1. This constellation likewise presents nei-
ther threat nor ambiguity. Figure 4 illustrates this arrangement.

– TC3: Like TC1, but we change the TCP payload on the first (sub-
test TC3a) or the second (subtest TC3b) variant of the duplicated
packet, respectively, without any checksum corrections. For a cor-
rectly functioning NIDS, this test does not pose any actual ambiguity;
it should simply discard the variant with the invalid checksum.

– TC4: Like TC3, except now the checksums are corrected. Our pay-
load modification is careless, thus leading to a different checksum
value. This test case represents the first truly ambiguous traffic. The
NIDS needs to decide which version of the byte stream to analyze,
and ideally should note the inconsistency. The semantics of this con-
nection are not well-formed, and it would be reasonable for a reactive
NIDS to terminate the connection.

– TC5: Like TC4, but we change the TCP payload carefully, leaving
the checksum unchanged. We achieve this by swapping 16-bit fields,
though one could derive more complex modifications due to the in-
cremental nature of the checksumming algorithm. As with TC3, this
presents a real ambiguity, though the NIDS will have to compare the
actual payloads in order to notice the difference.

– TC6: We duplicate one of the IP datagrams in the TCP flow, set-
ting its IP fragment offset to a non-zero offset value (adjusting the IP
header checksum to reflect the change) on the first (subtest TC6a) or
second (subtest TC6b) variant, respectively. This test case creates an
ambiguous, malformed fragment.
One interpretation the NIDS might use is to treat the zero-offset (and
complete) version of the datagram as correct, and to eventually dis-
card the second version as an incomplete datagram. Another interpre-



tation would be to treat the two datagrams as overlapping, inconsis-
tent fragments.

– TC7: We duplicate one of the IP datagrams in the TCP flow and
set its IP TTL value to a number of different values (again with
header checksum updated) on the first (subtest TC7a) or second (sub-
test TC7b) variant, respectively. This test case does not introduce a
serious ambiguity (since the contents of the datagrams remain the
same), but can confuse NIDS evasion detection that examines TTL
values for anomalies.

– TC8: We consistently fragment one of the IP datagrams in the TCP
flow carrying the signature-bearing payload, using various different
fragment sizes. This test case tests whether the NIDS correctly pro-
cesses well-formed fragments.

– TC9: Like TC8, but we duplicate one of the fragments, and alter its
payload in the first (subtest TC8a) or second (subtest TC8b) vari-
ant, respectively. The alteration is again careless, i.e., reassembly of
the datagram using the modified payload leads to an incorrect TCP
checksum for the full datagram.

– TC10: Like TC9, but with a careful payload alteration, i.e., reassem-
bly of the datagram using the modified payload leaves the TCP check-
sum unchanged. Figures 5 and 6 present the workings of TC10 in
detail.

4.2 NIDS Configurations

NIDS provide varying degrees of configurability. Therefore, assessors
need to carefully consider the configurations they wish to evaluate, as
these can have quite differing effects on the performance of the NIDS in
the presence of possible evasions.

For the Bro NIDS, we used its default configuration settings. We in-
structed it to monitor all TCP traffic (-f tcp) and loaded the mt, frag,
and signatures analyzers. We configured signatures the HTTP re-
quests in the input traces, with each signature matching exactly one of
the HTTP requests.

Snort’s default configuration file needed more editing before Snort
would accept it (i.e., run without error). We disabled database logging,
which was enabled by default but caused start-up failures since our en-
vironment does not have a database set up. We removed the large list
of signature file include directives, since none of the listed rule sets



00:01:37.391023 10.48.0.1.2013 > 10.48.0.81.80: S 2345:2345(0) win 32768 <mss 1024>
00:01:37.391107 10.48.0.81.80 > 10.48.0.1.2013: S 943214166:943214166(0) ack 2346 win 5840 <mss 1460> (DF)
00:01:37.411887 10.48.0.1.2013 > 10.48.0.81.80: . ack 1 win 32768
00:01:37.427628 10.48.0.1.2013 > 10.48.0.81.80: . 1:158(157) ack 1 win 32768
0x0000   4500 00c5 7566 0000 4006 f01b 0a30 0001        E...uf..@....0..
0x0010   0a30 0051 07dd 0050 0000 092a 3838 4e57        .0.Q...P...*88NW
0x0020   5010 8000 0fc2 0000 4745 5420 2f31 6162        P.......GET./1ab
0x0030   6364 6566 6768 696a 6b6c 6d6e 6f70 7172        cdefghijklmnopqr
0x0040   7374 7576 7778 797a 3261 6263 6465 6667        stuvwxyz2abcdefg
0x0050   6869 6a6b 6c6d 6e6f 7071 7273 7475 7677        hijklmnopqrstuvw
0x0060   7879 7a33 6162 6364 6566 6768 696a 6b6c        xyz3abcdefghijkl
0x0070   6d6e 6f70 7172 7374 7576 7778 797a 3461        mnopqrstuvwxyz4a
0x0080   6263 6465 6667 6869 6a6b 6c6d 6e6f 7071        bcdefghijklmnopq
0x0090   7273 7475 7677 7879 7a35 6162 6364 6566        rstuvwxyz5abcdef
0x00a0   6768 696a 6b6c 6d6e 6f70 7172 7320 4854        ghijklmnopqrs.HT
0x00b0   5450 2f31 2e31 0d0a 484f 5354 3a6e 6f6e        TP/1.1..HOST:non
0x00c0   650d 0a0d 0a                                   e....
00:01:37.427676 10.48.0.81.80 > 10.48.0.1.2013: . ack 158 win 6432 (DF)
00:01:37.428396 10.48.0.81.80 > 10.48.0.1.2013: P 1:575(574) ack 158 win 6432 (DF)
00:01:37.428499 10.48.0.81.80 > 10.48.0.1.2013: F 575:575(0) ack 158 win 6432 (DF)
00:01:37.601154 10.48.0.1.2013 > 10.48.0.81.80: . ack 576 win 32768
00:01:37.619894 10.48.0.1.2013 > 10.48.0.81.80: F 158:158(0) ack 576 win 32768
00:01:37.619929 10.48.0.81.80 > 10.48.0.1.2013: . ack 159 win 6432 (DF)

Fig. 5. tcpdump output for the TC10 input trace. A single TCP segment contains the relevant
application-layer content, “GET /1abcdef”.

00:01:37.391023 10.48.0.1.2013 > 10.48.0.81.80: S 2345:2345(0) win 32768 <mss 1024>
00:01:37.391107 10.48.0.81.80 > 10.48.0.1.2013: S 943214166:943214166(0) ack 2346 win 5840 <mss 1460> (DF)
00:01:37.411887 10.48.0.1.2013 > 10.48.0.81.80: . ack 1 win 32768
00:01:37.427628 10.48.0.1.2013 > 10.48.0.81.80: [|tcp] (frag 30054:8@0+)
00:01:37.427629 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@8+)
00:01:37.427630 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@16+)
0x0000   4500 001c 7566 2002 4006 d0c2 0a30 0001        E...uf..@....0..
0x0010   0a30 0051 0fc2 0000 4745 5420                  .0.Q....GET.
00:01:37.427631 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@24+)
0x0000   4500 001c 7566 2003 4006 d0c1 0a30 0001        E...uf..@....0..
0x0010   0a30 0051 2f31 6162 6364 6566                  .0.Q/1abcdef
00:01:37.427632 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@24+)
0x0000   4500 001c 7566 2003 4006 d0c1 0a30 0001        E...uf..@....0..
0x0010   0a30 0051 2f31 6364 6162 6566                  .0.Q/1cdabef
00:01:37.427633 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@32+)
0x0000   4500 001c 7566 2004 4006 d0c0 0a30 0001        E...uf..@....0..
0x0010   0a30 0051 6768 696a 6b6c 6d6e                  .0.Qghijklmn
00:01:37.427634 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@40+)
00:01:37.427635 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@48+)
00:01:37.427636 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@56+)
00:01:37.427637 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@64+)
00:01:37.427638 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@72+)
00:01:37.427639 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@80+)
00:01:37.427640 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@88+)
00:01:37.427641 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@96+)
00:01:37.427642 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@104+)
00:01:37.427643 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@112+)
00:01:37.427644 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@120+)
00:01:37.427645 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@128+)
00:01:37.427646 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@136+)
00:01:37.427647 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@144+)
00:01:37.427648 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@152+)
00:01:37.427649 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@160+)
00:01:37.427650 10.48.0.1 > 10.48.0.81: tcp (frag 30054:8@168+)
00:01:37.427651 10.48.0.1 > 10.48.0.81: tcp (frag 30054:1@176)
00:01:37.427676 10.48.0.81.80 > 10.48.0.1.2013: . ack 158 win 6432 (DF)
00:01:37.428396 10.48.0.81.80 > 10.48.0.1.2013: P 1:575(574) ack 158 win 6432 (DF)
00:01:37.428499 10.48.0.81.80 > 10.48.0.1.2013: F 575:575(0) ack 158 win 6432 (DF)
00:01:37.601154 10.48.0.1.2013 > 10.48.0.81.80: . ack 576 win 32768
00:01:37.619894 10.48.0.1.2013 > 10.48.0.81.80: F 158:158(0) ack 576 win 32768
00:01:37.619929 10.48.0.81.80 > 10.48.0.1.2013: . ack 159 win 6432 (DF)

Fig. 6. tcpdump output of resulting TC10 evasive trace file. The TCP segment shown in Fig-
ure 5 has its application-layer content rewritten, fragmented into 24 8-byte fragments, with a
duplicate fragment with the original TCP stream content inserted after the third fragment. The
sensitive payload is now spread across three IP datagrams. The payload variation preserves the
TCP checksum’s validity. Finally, idsprobe patches the packet timestamps to preserve chrono-
logical ordering.

were actually included in the Snort distribution. We also verified that
the frag3 and stream4 preprocessors were enabled, and that evasion-
related alerts would be generated.



Test Cases
Output TC1 TC2 TC3a/b TC4a/b TC5a/b TC6a/b TC7a/b TC8 TC9a/b TC10a/b

Bro
Sig. match X X X 7/X 7/X X X X 7/X 7/X

Evasion À À Á Á
Other Â Ã Ã Ã

Snort
Sig. match X X X 7/X 7/X X X X 7/X 7/X

Evasion Ä Å Ä Ä Æ
Other

1 Bro signaled a “RetransmissionInconsistency”.
2 Bro signaled a “WeirdActivity” of type “fragment inconsistency”.
3 Bro signaled bad checksums in weird.log.
4 Bro signaled a “WeirdActivity” of type “excessively small fragment”

for fragments of 32 bytes or less.
5 Snort signaled “possible evasive FIN detection” with nonsensical pa-

rameters.
6 Snort signaled “TCP checksum changed on retransmission”.
7 Snort signaled “fragmentation overlap”.

Table 1. Summary of the results produced by idsprobe on 10 test cases with the Bro and Snort
NIDS. The first line for each of the NIDS summarizes whether the signature was detected or not,
the second reports any evasion-related alerts or messages, and the third lists any other output.

[**] [111:24:1] (spp_stream4) possible EVASIVE FIN detection [**]
03/19-00:00:09.176188 10.48.0.1:2010 -> 10.48.0.81:80
TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:77
***AP*** Seq: 0x92A Ack: 0x33928A9F Win: 0x8000 TcpLen: 20

Fig. 7. Erroneous evasion alert produced by Snort 2.6.1.4 in 4 of the test cases.

4.3 Findings

Output of idsprobe-generated traces Table 1 summarizes our findings
based on the idsprobe-generated evasive packet traces. Overall, Bro
and Snort performed similarly as far as signature detection is concerned.
They differ, however, in the amount of detail delivered in addition to
the relevant alerts. To the extent of our testing, both NIDS deal well
with IP fragmentation as well as TCP stream reassembly. More basic
issues such as broken IP/TCP checksums are also properly recognized
by both. In their default configurations, both Bro and Snort follow a first-
seen-first-delivered policy when dealing with IP fragments as well as
TCP segments, causing signature detection to fail in those cases where



08:00:09.176192 IP 10.48.0.1.2010 > 10.48.0.81.80: . 1:13(12) ack 1 win 32768
        0x0000:  4500 0034 f178 0000 4006 749a 0a30 0001  E..4.x..@.t..0..
        0x0010:  0a30 0051 07da 0050 0000 092a 3392 88d8  .0.Q...P...*3...
        0x0020:  5010 8000 4582 0000 4745 5420 2f31 6162  P...E...GET./1ab
        0x0030:  6364 7878                                cdxx
08:00:09.176194 IP 10.48.0.1.2010 > 10.48.0.81.80: . 11:14(3) ack 1 win 32768
        0x0000:  4500 002b f178 0000 4006 74a3 0a30 0001  E..+.x..@.t..0..
        0x0010:  0a30 0051 07da 0050 0000 0934 3392 88d8  .0.Q...P...43...
        0x0020:  5010 8000 80f0 0000 6566 67              P.......efg

Fig. 8. tcpdump output of an inconsistent, partially overlapping retransmission that is not reported
by Snort 2.8.0.1.

idsprobe-generated evasive traffic hides the sensitive payload in the
most recently arrived fragments/segments. Both NIDSs allow changing
this behavior: while Snort allows the user to specify preferences at the
granularity of destination networks,3 Bro allows policy specification us-
ing end-host databases automatically generated via active mapping [3].

Our most striking result is Snort’s unreliable reporting of evasion at-
tempts. It both substantially over-reports non-issues while also failing to
report real indications of evasive activity.

After excluding from file-differencing Bro’s .state directories
(which remain empty) and Snort’s tcpdump log files, the total amount of
difference in Bro’s output amounts to 1,665 lines, as opposed to 17,018
for Snort. After manually inspecting some of the differences reported for
Snort, we found that the majority are due to the verbose summary output
reported on stdout and stderr. To aid in analysis of the significance of the
differences, we decided to ignore these files in the file-differencing pass
and focus on Snort’s remaining output files. This change brought Snort’s
differential data volume down to 1,329 lines.

In TC2, Snort erroneously reported a TCP checksum change on a re-
transmission, where in fact no divergent payload was transferred. In the
event of careful payload alterations that do not affect the TCP checksum
(TC5/TC10), however, Snort fails to notice the (rather likely) evasion at-
tempt. Bro handled both cases correctly, remaining silent on the former
but alerting on the latter case. Snort also generated a total of 60 potential
evasive TCP FIN detections in 4 of the test cases. Figure 7 illustrates one
of these. We note that a number of the values reported in these alerts are
nonsensical—there were no IP TTL values of 240 in the input traces, nor
IP ToS fields with values 0x10, nor IP IDs of 0. In addition, none of the
traces reflects an ambiguous TCP FIN packet.

We see that Bro generates significantly more (correct) output regard-
ing the presence in the inputs of possible evasions. These include TCP

3 Prior to version 2.8, only a global flag was supported.



retransmission inconsistencies, IP fragment inconsistencies, the presence
of bad checksums, and the presence of excessively small IP fragments.
For Snort, the only correct evasion-related output concerns IP fragmen-
tation overlap.4

During the course of our work, new releases of Snort appeared. We ex-
perimented with the latest release available, Snort version 2.8.0.1, to see
how its behavior might have changed. We noticed that the erroneous eva-
sive FIN alerts have been repaired. However, the new stream reassembly
module stream5 introduced new issues, as evidenced by the fact that a
partially overlapping retransmission that extends into sequence number
space (as shown in Figure 8) is not reported at all, while Snort 2.6.1.4 did
report a changed TCP checksum on the retransmission.

Output after long-term operation The difference in output volume and qual-
ity demonstrated by Snort and Bro on idsprobe’s test traces suggests
that reliably identifying evasion attempts is not yet a feature set that users
can assume will be fully and correctly provided by mainstream NIDSs.
To better understand the usability of evasion/anomaly-related events re-
ported by different IDSs, we ran Bro 1.2.1 along with Snort 2.6.1.4
and 2.8.0.1 on a 24-hour, 21 GB trace recorded at ICSI on 16 March
2007. In contrast to typical NIDS configurations, the NIDSs were not
configured to detect attacks, but only to report anomalous or potentially
evasive activity.

Table 2 summarizes our findings. The absence of consensus in the
reported events is striking, particularly between Bro and the Snort ver-
sions, but to a lesser degree even between two different Snort releases.
TCP SYNs with payload data seem a rare case where there is near-
consensus, with the three NIDSs reporting 460, 458, and 461 instances,
respectively. Bro reports a single retransmission inconsistency (which we
have verified to be correct, but it does not reflect a malicious evasion).
Snort 2.6 reports this as one of 36,873 “possible EVASIVE RST detec-
tion” events, and Snort 2.8 as 3 of the 5 “Data sent on stream after TCP
Reset” events recorded. For the 22,137 flow reassembly issues reported
by Bro (“ContentGap” and “AckAboveHole”), which have direct signifi-
cance for content-based analysis, there is no apparent corresponding alert
in either of the Snort logs. These events account for the main reason why

4 Even that is not the best description of the problem, since IP fragments can overlap for rare-
but-benign reasons. Better would be to highlight that the overlap is inconsistent.



Snort 2.8 reports fewer events than Bro, whose output volume is almost
an order of magnitude below Snort 2.6’s.

These results clearly demonstrate the importance of reliable evasion
detection in a NIDS, lest the volume of alerts can render the reported
events operationally useless as evidence of actual evasions.

5 Related Work

The fundamental problem of NIDS evasion was first framed in the sem-
inal paper by Ptacek and Newsham [1]. They considered ambiguities at-
tackers can use to insert or delete traffic such that the NIDS’s view of
activity differs from the recipient’s, as well as the threat of attackers im-
posing denial-of-service on the NIDS itself. Some of these issues also
appear in the discussion of the Bro system [9], particularly in the context
of inconsistent TCP retransmissions.

In response to the threat of evasion, researchers have developed
several types of countermeasures. One approach concerns “normaliza-
tion” [2] or “scrubbing” [7] of traffic, by which an active network el-
ement modifies traffic flowing through it in order to remove classes of
ambiguities. These approaches can address many network- and transport-
layer evasion threats, but have more difficulty addressing application-
layer threats.

A different strategy, active mapping, seeks to proactively determine
how recipients of network traffic (or the network traffic between them
and a NIDS) will actually resolve ambiguities [3]. The NIDS conducts
periodic probing of the site it protects in order to construct a database that
it then consults in the presence of ambiguous traffic in order to determine
the correct interpretation to assume. A similar scheme avoids the need to
conduct probing by instead using passive inference, such as deducing op-
erating system type and then resolving ambiguities in the manner known
a priori to be used by the given OS [6]. A limitation of active mapping is
the need to maintain an up-to-date database in the presence of churn and
end systems changing their network-layer identity, as well as a degree of
incompleteness since some ambiguities do not provide externally visible
manifestations of their resolution by end systems. A limitation of passive
fingerprinting concerns the degree to which passively observable infor-
mation such as OS type provides relatively coarse-grained information
from which to draw inferences. (For example, different OS variants may
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exhibit different ambiguity resolutions even though their passive finger-
prints are indistinguishable.)

A third class of defense is to acquire information on ambiguity res-
olution directly from the end systems as the ambiguity arises. For ex-
ample, Dreger et al. describe incorporating host-based context into the
Bro system, for which (among other functionality) they demonstrate in-
strumenting an Apache web server to send to Bro the URLs that the
server ultimately resolves (after all OS and server preprocessing has com-
pleted) [5].

Several tools have been developed for testing NIDS for vulnerabilities
to evasion. Fragrouter5 implements some network-layer evasions based
on IP fragmentation. Unlike our framework, it modifies live traffic only.
The libwhisker6 library provides basic functionality for testing HTTP
implementations. Nikto7 leverages the library, adding HTTP content ob-
fuscation techniques. Both tools primarily target live-traffic operation.

Regarding systematic evaluation of NIDS in the presence of possi-
ble evasions, Vigna and colleagues present a framework for NIDS test-
ing based on traffic transformation [14]. Rather than testing the NIDSs’
awareness of evasion, they emphasize evaluating the robustness of indi-
vidual signatures used by such NIDSs. Their system takes as input an at-
tack trace, to which it applies semantically invariant transformations and
then and monitors for changes in the alerts generated by the NIDSs. Sim-
ilarly, Rubin et al. developed a framework to facilitate traffic transforma-
tions on different network layers [15], again aiming to produce variants
of a specific attack.

In contrast to these efforts, our framework does not assume the ex-
istence of an attack, but instead determines the general effects of traffic
transformations. This allows us to separate the NIDS’s specific attack
detection logic from its architectural analysis limitations. In addition, the
work of Rubin et al. develops a formal model of possible transforma-
tions, which allows them to exhaustively test a NIDS against attack vari-
ants. Our work, on the other hand, aims to facilitate a public, open-source
effort for developing NIDS evasion test suites, with a related emphasis
for our framework on modularity and a plug-in architecture.

5 Per http://www.securityfocus.com/tools/176, nominally available at http:
//www.anzen.com/research/nidsbench/, but in fact that location no longer re-
solves.

6 http://www.wiretrip.net/rfp/libwhisker/
7 http://www.cirt.net/code/nikto.shtml



6 Discussion and Future Work

It is important to recognize that our idsprobe framework does not at-
tempt to provide “turnkey” evaluation of NIDS evasion vulnerabilities.
Rather, our aim is to provide the means for an experienced assessor to
more readily construct good test cases, and more efficiently apply those
test cases in a repeatable fashion across a set of NIDS under consid-
eration. We emphasize that we also do not strive to ourselves provide
a comprehensive set of evasion tests; rather, we aim to facilitate that
others—in particular, the network security community as a whole—can
collectively work towards such a goal. These considerations motivate our
open-source, modular/plug-in approach.

The elements of our framework that focus on packet trace transfor-
mation are now fairly mature. The focus of our immediate future work is
to further develop and refine the components of our framework that sup-
port live testing (i.e., evaluation based on dynamically generated, actual
network traffic). As reported above, we have the basic building blocks
for such testing in place. The next steps are then to devise methodologies
for assessing evasions based on overloading NIDS resources (CPU and
memory), which aim to induce a NIDS to either crash or perform dimin-
ished analysis no longer capable of detecting an attack that accommo-
dates the stress traffic; and to assess the efficacy of on-line anti-evasion
technology, such as traffic normalizers like norm [2], techniques that
probe end-systems (e.g., active mapping [3]), and network-host hybrids,
where hosts communicate information to the NIDS (e.g., [5]). For all of
these, correct assessment of their effectiveness cannot use trace-based
testing, but rather requires live testing.

7 Summary

We have designed and implemented the idsprobe framework to facili-
tate the creation of offline as well as live evasion test-cases in a pluggable
fashion, coupled with fully automated testing of different NIDS on the
resulting test-cases. We aim for the system to encourage extension and
broad use by the community, and to this end will provide the software
to others upon request, and ultimately aim to maintain it in as a public
open-source resource.
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