
GQ: Practical Containment
for Measuring Modern Malware Systems

Christian Kreibich
ICSI & UC Berkeley
christian@icir.org

Nicholas Weaver
ICSI & UC Berkeley

nweaver@icsi.berkeley.edu

Chris Kanich
UC San Diego

ckanich@cs.ucsd.edu
Weidong Cui

Microsoft Research
wdcui@microsoft.com

Vern Paxson
ICSI & UC Berkeley

vern@cs.berkeley.edu

Abstract
Measurement and analysis of modern malware systems such as bot-
nets relies crucially on execution of specimens in a setting that en-
ables them to communicate with other systems across the Internet.
Ethical, legal, and technical constraints however demand contain-
ment of resulting network activity in order to prevent the malware
from harming others while still ensuring that it exhibits its inher-
ent behavior. Current best practices in this space are sorely lack-
ing: measurement researchers often treat containment superficially,
sometimes ignoring it altogether. In this paper we present GQ,
a malware execution “farm” that uses explicit containment prim-
itives to enable analysts to develop containment policies naturally,
iteratively, and safely. We discuss GQ’s architecture and imple-
mentation, our methodology for developing containment policies,
and our experiences gathered from six years of development and
operation of the system.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: NETWORK AR-
CHITECTURE AND DESIGN

General Terms
Design, Measurement, Reliability, Security

Keywords
Malware containment, malware execution, honeyfarm, botnets,
command-and-control

1. INTRODUCTION
Some of the most challenging Internet measurement studies to-

day concern analyzing malicious distributed systems such as bot-
nets. Such measurement often relies crucially on execution: “let-
ting loose” malware samples in an execution environment to study

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’11, November 2–4, 2011, Berlin, Germany.
Copyright 2011 ACM 978-1-4503-1013-0/11/11 ...$10.00.

their behavior, sometimes only for seconds at a time (e.g., to un-
derstand the bootstrapping behavior of a binary, perhaps in tandem
with static analysis), but potentially also for weeks on end (e.g., to
conduct long-term botnet measurement via “infiltration” [13]).

This need to execute malware samples in a laboratory setting ex-
poses a dilemma. On the one hand, unconstrained execution of the
malware under study will likely enable it to operate fully as in-
tended, including embarking on a large array of possible malicious
activities, such as pumping out spam, contributing to denial-of-
service floods, conducting click fraud, or obscuring other attacks
by proxying malicious traffic. On the other hand, if executed in
full isolation, the malware will almost surely fail to operate as in-
tended, since it cannot contact external servers via its command-
and-control (C&C) channel in order to obtain input data or execu-
tion instructions.

Thus, industrial-strength malware measurement requires con-
tainment: execution environments that on the one hand allow mal-
ware to engage with the external world to the degree required to
manifest their core behavior, but doing so in a highly controlled
fashion to prevent the malware from inflicting harm on others. De-
spite the critical importance of proper containment, measurement
researchers often treat the matter superficially, sometimes ignoring
it altogether. We perceive the root cause for this shortcoming as
arising largely from a lack of technical tools to realize sufficiently
rich containment, along with a perception of containment as a chore
rather than an opportunity. To improve the state of affairs, we
present GQ, a malware execution “farm” we have developed and
operated regularly for six years. GQ’s design explicitly focuses on
enabling the development of precise-yet-flexible containment poli-
cies for a wide range of malware. Drawing upon GQ’s development
and operation over this period, we make three contributions:

First, we develop an architecture for malware measurement and
analysis that provides a natural way to configure and enforce con-
tainment policies by means of containment servers. These scalable
decision points remain logically and physically separate from the
system’s gateway, and establish first-order primitives for effecting
containment on a per-flow granularity. We began our work on GQ
during the peak of the “worm era” [9], and initially focused on cap-
turing self-propagating network worms. Accordingly, we highlight
both the system’s original architectural features that have “stood
the test of time,” as well as the shortcomings the emerged as our
usage of GQ began to shift towards broader forms of malware.

Second, we describe a methodical—albeit largely manual—
approach to the development of containment policies to ensure pre-
vention of harm to others. Our goal here is to draw attention to the
issue, highlight potential avenues for future research, and point out

mailto:christian@icir.org
mailto:nweaver@icsi.berkeley.edu
mailto:ckanich@cs.ucsd.edu
mailto:wdcui@microsoft.com
mailto:vern@cs.berkeley.edu

that far from being a chore, containment development can actively
support the process of studying malware behavior.

Third, we present insights from our extensive operational experi-
ence [4, 9, 13, 18, 19, 25, 21, 3] in developing containment policies
that serve to illustrate the effectiveness, importance, and utility of a
methodical approach to containment.

We begin by reviewing the approaches to containment framed in
previous work (§ 2), which provides further context for our discus-
sion of the issue of containment (§ 3). We then present GQ’s design
goals (§ 4), architecture (§ 5), and implementation (§ 6), illustrat-
ing both initial as well as eventual features as a consequence of our
continued desire to separate policy from mechanism and increase
general applicability of the system. Finally, we report on our oper-
ational experiences over GQ’s lifetime (§ 7), and offer concluding
thoughts, including discussion of containment’s general feasibil-
ity (§ 8).

2. RELATED WORK
A large body of prior work focuses on malware execution for

the purpose of understanding the modi operandi of binary spec-
imens. Historically, “honeyfarms” were the first platforms sup-
porting large-scale malware execution. These systems focused in
particular on worm execution, with the “honey” facet of the name
referring to a honeypot-style external appearance of presenting a
set of infectible systems in order to trap specimens of global worm
outbreaks early in the worm’s propagation. The predecessor [9] of
today’s GQ platform represents a typical example of this line of
work. In contrast to our current platform, its containment policies
were fully hardwired and specific to the goal of capturing worms.
Vrable et al. designed the Potemkin honeyfarm [29] as a (highly)
purpose-specific prototype of a worm honeyfarm that explored the
scalability constraints present when simulating hundreds of victim
machines on a single physical machine. Their work also framed
the core issue of containment, but leveraged a major simplification
that worms can potentially provide, namely that one can observe
worm propagation even when employing a very conservative con-
tainment policy of redirecting outbound connections to additional
analysis machines in the honeyfarm. Jian and Xu’s Collapsar [11],
a virtualization-based honeyfarm, targeted the transparent integra-
tion of honeypots into a distributed set of production networks. The
authors focused on the functional aspects of the system, and while
Collapsar’s design supports the notion of assurance modules to im-
plement containment policies, in practice these simply relied on
throttling and use of “Inline Snort” to block known attacks.

With the waning of the “worm era,” researchers shifted focus
from worm-like characteristics to understanding malware activity
more broadly. Bayer et al. recognized the significance of the con-
tainment problem in a paper introducing the Anubis platform [2],
which has served as the basis for numerous follow-up studies: “Of
course, running malware directly on the analyst’s computer, which
is probably connected to the Internet, could be disastrous as the
malicious code could easily escape and infect other machines.”
The remainder of the paper, however, focuses on technical aspects
of monitoring the specimen’s interaction with the OS; they do not
address the safety aspect further.

The CWSandbox environment shares the dynamic analysis goals
of Anubis, using virtualization or potentially “raw iron” (non-
virtualized) execution instead of full-system emulation [31]. The
authors state that CWSandbox’s reports include “the network con-
nections it opened and the information it sent”, and simply ac-
knowledge that “using the CWSandbox might cause some harm to
other machines connected to the network.”

The Norman SandBox [23] similarly relies on malware execu-

tion in an instrumented environment to understand behavior. As a
proprietary system, we cannot readily infer its containment model,
but according to its description it emulates the “network and even
the Internet.”

Chen et al. [7] presented a “universe” management abstraction
for honeyfarms based on Potemkin, allowing multiple infections
to spread independently in a farm. Their universes represent sets
of causally related honeypots created due to mutual communica-
tion. GQ provides such functionality in a more general fashion via
its support for independently operating subfarms. In contrast to
Potemkin’s universes, GQ’s subfarms do not imply that malware
instances executing within the same subfarm necessarily can com-
municate.

More recently, John et al. presented Botlab [12], an analysis plat-
form for studying spamming botnets. Botlab shares commonalities
with GQ, including long-term execution of bot binaries, in their
case particularly for the purpose of collecting spam campaign intel-
ligence. They also recognize the importance of executing malware
safely. In contrast to GQ, the authors designed Botlab specifically
to study email spam, for which they employed a static containment
policy: “[T]raffic destined to privileged ports, or ports associated
with known vulnerabilities, is automatically dropped, and limits
are enforced on connections rates, data transmission, and the total
window of time in which we allow a binary to execute.” In addi-
tion, the authors ultimately concluded that containment poses an
intractable problem, and ceased pursuing their study: “Moreover,
even transmitting a “benign” C&C message could cause other,
non-Botlab bot nodes to transmit harmful traffic. Given these con-
cerns, we have disabled the crawling and network fingerprinting
aspects of Botlab, and therefore are no longer analyzing or incor-
porating new binaries.”

Researchers have also explored malware execution in the pres-
ence of complete containment (no external connectivity). These
efforts rely on mechanisms that aim to mimic the fidelity of com-
munication between bots and external machines. The SLINGbot
system emulates bot behavior rather than allowing the traffic of live
malware on the commodity Internet [10]; clearly, such an approach
can impose significant limits on the obtainable depth of analysis.
The DETER testbed [22] relies upon experimenters and testbed op-
erators to come to a consensus on the specific containment policy
for a given experiment. Barford and Blodgett’s Botnet Mesocosms
run real bot binaries, but emulate the C&C infrastructure in order
to evaluate bot behavior without Internet connectivity [1]. Most
recently, Clavet et al. described their in-the-lab botnet experimen-
tation testbed with a similar containment policy to Botnet Meso-
cosms, but with the capability of running thousands of bot binaries
at one time [5]. While all of these systems guarantee that malicious
traffic does not interact with the commodity Internet, they required
substantial effort for enabling a useful level of operational fidelity
and, in the process, necessarily sacrifice the fidelity that precisely
controlled containment can offer.

3. ADDRESSING THE PROBLEM OF
CONTAINMENT

The frequently light treatment of the central problem of execut-
ing malware safely is to some extent understandable. Established
tool-chains for developing containment do not exist, so the result-
ing containment mechanisms are ad-hoc or suboptimal, leaking un-
desirable activity or preventing desired activity. This deficiency
renders containment implementation and verification a difficult,
time-consuming problem—one that frequently gets in the way of
conducting the intended experiment. GQ aims to fill this gap by

making containment policy development a natural component of
the malware analysis process: per-flow containment decisions form
central, explicit notions reflected in much of the system’s architec-
ture.

Development of precise containment requires a balance of (i) al-
lowing the outside interactions necessary to provide the required re-
alism, (ii) containing any malicious activity, all while (iii) convinc-
ingly pretending to the sample under study that it enjoys unham-
pered interaction with external systems. Lacking rigor in this pro-
cess raises ethical issues, since knowingly permitting such activity
can cost third parties significant resources in terms of cleaning up
infections, filtering spam, fending off attacks, or even financial loss.
It also may expose the analyst to potential legal consequences, or at
the very least to abuse complaints. Finally, technical considerations
matter as well: prolonged uncontained malicious activity can lead
to blacklisting of the analysis machines by the existing malware-
fighting infrastructure. Such countermeasures can prevent the ana-
lyst from acquiring unbiased measurements, as these responses can
lead to filtering of key activity elsewhere in the network, or because
the malware itself changes its behavior once it detects suspiciously
diminishing connectivity. We might consider full containment as
a viable option for experiments such as “dry-runs” of botnet take-
downs [5], but we find that frequently the dynamically changing
nature of real-world interactions and the actual content of delivered
instructions holds central interest for analysis.

Thus, we argue for the importance of avoiding the perception
of containment as a resource-draining chore. Indeed, we find that
developing containment from a default-deny stance, iteratively per-
mitting understood activity, in fact provides an excellent way to
understand the behavioral envelope of a sample under study.

GQ currently does not by itself help to automate the develop-
ment of containment policies. However, it provides the basis for
a methodical approach to containment policy development. When
deploying new malware samples, we employ the following strat-
egy. Beginning from a complete default-deny of interaction with
the outside world, we execute the specimen in a subfarm provid-
ing a “sink server” that accepts arbitrary traffic without meaning-
fully responding to it, and to which the containment server reflects
all outbound traffic. We thus understand the extent to which the
specimen comes alive, and can inspect the nature of the attempted
communication and in the best case infer the precise intent, or at
least distinguish C&C traffic from malicious activity. We can then
whitelist traffic believed-safe for outside interaction, in the most
narrow fashion possible. For example, we might only allow HTTP
GET requests, seemingly for C&C instructions, that have a sim-
ilar URL path structure. Generally opening up HTTP would be
overzealous, as malware might use HTTP both for C&C as well
as a burst of SQL injection attacks. We then iterate the process
over repeated executions of the specimen until we arrive at a con-
tainment policy that allows just the C&C lifeline onto the Internet,
while containing malicious activity inside GQ.

Finally, we emphasize that we do not mean for GQ to replace
the use of static or dynamic malware analysis tools. Rather, we ar-
gue that researchers should deploy cutting-edge malware analysis
tools inside a system such as GQ, to provide a mature containment
environment in which they can employ sophisticated malware in-
strumentation safely and robustly.

4. INITIAL & EVENTUAL DESIGN
GOALS

As we mentioned above, our initial design for GQ targeted a
worm-oriented honeyfarm architecture. Over the past years, we fo-

cused on evolving the system into a generic malware farm—a plat-
form suitable for hosting all manner of malware-driven research
safely, routinely, and at scale. In the following we outline our orig-
inal design goals as well as those we came to formulate at later
stages of building the system.

Versatility. In contrast to previous work, GQ must serve as a
platform for a broad range of malware experimentation, with no
built-in assumptions about inmates belonging to certain classes of
malware, or acting exclusively as servers (realizing traditional hon-
eyfarms) or clients (realizing honeycrawlers [30]). Our initial focus
on worms imposed design constraints that became impractical once
we wanted to experiment with non-self-propagating malware. Sim-
ilarly, focus on a particular class of botnets (say those using IRC as
C&C, or domain generation algorithms for locating C&C servers
via DNS), restricts versatility.

Separation of policy and mechanism. This goal closely relates
to the former, but we needed to invest considerable thought in or-
der to achieve it in an effective fashion. In our original honeyfarm
architecture we tightly interwove mechanism (a highly customized
packet forwarder) and policy (worm containment) in forwarding
code that we could adapt only with difficulty and by imposing sys-
tem downtime. At the time, the need for greater containment flexi-
bility when running arbitrary kinds of malware had not yet become
clear to us. GQ must clearly separate a comparatively stable con-
tainment enforcement mechanism from an adaptable containment
policy definition.

Verifiable containment. GQ must provide complete control
over all inbound and outbound communication. This remains as
true now as it was at the outset of GQ’s development. Depending
on a flow’s source, destination, and content the system must allow
dropping, reflecting, redirecting, rewriting, and throttling the flow
flexibly according to current execution context. Moreover, ideally
mechanisms would exist to verify that developed policies operate
as intended; we have not implemented such, a deficiency of our
current system.

Multiple execution platforms. Malware frequently checks the
nature of its execution platform in order to determine whether it
likely finds itself running in an analysis environment or as a suc-
cessful infection in the wild. For example, malware often considers
evidence of virtualization a tell-tale sign for operation in a malware
analysis environment [8] and ceases normal operation. Indepen-
dently of potential virtualization, malware also might only execute
correctly on certain operating system types, versions, or patch lev-
els, so we need to ensure support for a diverse range of such con-
figurations. For these configurations, GQ must support virtualized,
emulated, and raw iron execution as desired, on a per-inmate gran-
ularity, in a fashion transparent to the containment process.

Multiple experiments. While extending GQ we increasingly
encountered the need for running multiple malware-driven setups at
the same time. The original single-experiment design made it dif-
ficult to accommodate this. For GQ, we aim to provide a platform
for independently operating experiments involving different sets of
machines, containment policies, and operational importance. For
example, we have found it exceedingly useful to run both “deploy-
ment” and “development” setups for studying spambots; one for
continuously harvesting spam from specimens for which we have
developed mature containment policies, the other one for develop-
ing such policies on freshly obtained samples.

Infection strategy & threat model. We need to consider the
way in which machines on our inmate network become infected,
as well as the behavioral envelope once a machine has become in-
fected. Regarding the former, if an experiment so desires, GQ fully
supports the traditional honeyfarm model in which external traffic

Gateway

Management

Access

Management

Network

Inmate

Network

Figure 1: GQ’s overall architecture.

directly infects honeypot machines. Today, we find intentional in-
fection with malware samples collected from external sources more
relevant and useful. We describe our mechanism for facilitating
such infections in § 6.6. Regarding post-infection behavior, we
adopt the position of other systems executing malware in virtual-
ized environments and assume that the program cannot break out of
the virtual environment. The malware may corrupt user and kernel
space on the infected host arbitrarily and conduct arbitrary network
I/O.

5. GQ’S ARCHITECTURE

5.1 Overall layout
We show GQ’s architecture in Figure 1. A central gateway sits

between the outside network and the internal machinery, separating
it into an inmate network on which we host infected machines—
inmates—and a management network that we use to access virtual
machine monitors (VMMs) and other farm control infrastructure.

Within the gateway, custom packet forwarding logic enables and
controls the flow of traffic between the farm and the outside net-
work, as well as among machines within the farm. This takes sev-
eral forms. First, a custom learning VLAN bridge selectively en-
ables crosstalk among machines on the inmate network as required,
subject to the containment policy in effect. Its ability to learn about
the hosts present reduces the configuration overhead required to
bootstrap the inmate network. Second, we devote the majority of
the forwarding logic for redirecting outgoing and incoming flows to
a containment server, which serves two purposes. First, it decides
what containment policies to enforce on a given flow, and second,
for some containment decisions it also proceeds to enforce the con-
tainment. (We describe this further in § 5.4.) Finally, a safety filter
ensures that the rate of connections across destinations and to a
given destination never exceeds configurable thresholds.

5.2 Inmate hosting & isolation
We employ three different inmate-hosting technologies: full-

system virtualization (using VMware ESX servers), unvirtualized
“raw iron” execution (more on this in § 6.4), and QEMU for cus-
tomized emulation [4]. The hosting technology we employ for a
given inmate remains transparent to the gateway.

GQ enforces inmate isolation at the link layer: each inmate sends
and receives traffic on a unique VLAN ID. VLAN IDs thus serve
as handy identifiers for individual inmates. Physical and, where
feasible, virtual switches (for simplicity not shown in Figure 1) be-
hind the gateway enforce the per-inmate VLAN assignment, which
our inmate creation/deletion procedure automatically picks and re-
leases from the available VLAN ID pool.

The gateway’s packet forwarding logic enables connectivity to

the outside Internet when permissible, while selectively enabling
inmate crosstalk as required.

5.3 Network layout
We use network address translation for all inmates. The packet

forwarder dynamically assigns internal addresses from RFC 1918
space, triggered by the inmates’ boot-time chatter. It maps source
addresses in inside→outside flows to configurable global address
space, and depending on configuration either drops outside→inside
flows (emulating typical home-user setups) or forwards them on,
rewriting destination addresses to the corresponding internal ones
(thus providing Internet-reachable servers). This provides one level
of indirection and allows us to keep the inmate configuration both
simple and dynamic at inmate boot time. To facilitate this, the in-
mate network provides a small number of infrastructure services
for the inmates, including DHCP and recursive DNS resolvers.
The gateway places these services into a restricted broadcast do-
main, comprising all machines the inmates can reach by default.
In addition, infrastructure services include experiment-specific re-
quirements such as SMTP sinks, though these do not belong to the
broadcast domain.

5.4 Containment servers
GQ’s design hinges crucially on the notion of an explicit con-

tainment server that determines each flow’s containment policy.
Having such a separate component represents a major improvement
over existing systems. Our original design included no equivalent;
instead, the packet router in the gateway alone implemented the
containment policy. The current design results from our desire to
reduce the gateway’s forwarding logic to an infrequently changing
mechanism to the greatest extent possible, while keeping contain-
ment policies configurable and adaptable. This contrasts starkly
with our initial design, which intermixed a fixed nine-step contain-
ment policy with the mechanisms for enforcing that policy, all in-
side the gateway.

The containment server is both a machine—typically a VM,
for convenience—and a standard application server running on the
machine. Conceptually, the combination of the gateway’s packet
router and the containment server realizes a transparent application-
layer proxy for all traffic entering and leaving the inmate network.
The gateway’s packet router informs the containment server of all
new flows to or from inmates, enabling it to issue containment ver-
dicts on the flows.1 Our implementation (§ 6.2) ensures that race
conditions cannot occur. The router subsequently enforces these
verdicts, which enable both endpoint control and content control.

1 Note that this approach parallels the architecture of Open-
Flow [20] devices to some extent. However, our implementation
predates OpenFlow’s wide availability.

(a) Forward (b) Rate-limit (c) Drop

(d) Redirect (e) Reflect (f) Rewrite

Figure 2: GQ’s flow manipulation modes, illustrated on flows initiated by an inmate.

Gateway

Figure 3: A possible subfarm scenario in GQ: three independent routers handle disjunct sets of VLAN IDs, thus enabling parallel
experiments. For sake of clarity, we do not show per-subfarm infrastructure services individually.

Endpoint control happens at the beginning of a flow’s lifespan and
allows us to (i) forward flows unchanged, (ii) drop them entirely,
(iii) reflect them to a sink server or alternative custom proxy, (iv)
redirect them to a different target, or (v) rate-limit them. Once the
gateway has established connectivity between the intended end-
points, it alone enforces endpoint control, conserving resources
on the containment server. Content control, on the other hand,
remains feasible throughout a flow’s lifespan, and works by fully
proxying the flow content through the containment server. We can
thus (i) rewrite a flow, (ii) terminate it when it would normally still
continue, or (iii) prolong it by injecting additional content into a
flow that would otherwise already terminate. Note that the connec-
tion’s destination need not necessarily exist: the containment server
can simply impersonate one by creating response traffic as needed.
Endpoint and content control need not mutually exclude each other;
for example, it can make sense to redirect a flow to a different desti-
nation while also rewriting some of its contents. Figure 2 illustrates
the flow manipulation modes. Note how the containment server re-
mains passive during containment enforcement except in case of
content rewriting (Figure 2(f)).

Besides flow-related containment management, the containment
server also controls the inmates’ life-cycle. As the containment
server witnesses all network-level activity of an inmate, it can react
to the presence—and absence—of such network events using ac-
tivity triggers. These triggers can terminate the inmate, reboot it,
or revert it to a clean state for subsequent reinfection. For exam-

ple, a typical life-cycle policy for a spambot might automatically
restart the bot once it has ceased spamming activity for more than
an hour. Another common policy is to terminate an inmate that has
begun sending a particular recipient more than a certain number of
connection requests per minute.

5.5 Inmate control
To facilitate inmate life-cycle control, we require a component in

the system that can create inmates, expire them, or adjust their life-
cycle state by starting, stopping, or reverting them to a clean snap-
shot. In GQ’s architecture, the containment servers issue life-cycle
actions to an inmate controller located centrally on the gateway. 2

Since we keep containment servers logically and physically sepa-
rate from the gateway, we require a mechanism allowing them to
communicate with the inmate controller. We do so by maintaining
an additional network interface only on “maintaining ... only on”
reads peculiarly –VP the containment servers that allows them to
interact directly (out-of-band of the inmate-related network activ-
ity), with the gateway via the management network. This controller
understands the inmate hosting infrastructure and abstracts physi-
cal details of the inmates, such as their hosting server and whether
they run virtualized or on raw iron. The controller requires only the
2Conceptually, we could place the controller on a separate server.
For practical reasons, including immediate access to all VMMs and
the Raw Iron Controller (see 6.4), we decided to keep it on the
gateway.

inmate’s VLAN ID in order to identify the target of a life-cycle ac-
tion. The thin arrowed line in Figure 1 illustrates the trigger–action
flow from the containment server to the hosting infrastructure.

The combination of central gateway and inmate network par-
allelizes naturally: instead of a global packet forwarding logic
handling the entire range of VLAN IDs on the inmate network,
multiple instances of the packet router process traffic on disjoint
sets of VLAN IDs. This creates independent, self-contained, non-
interfering habitats for different experiments. We call these habitats
subfarms. Subfarms generally have their own containment server
(thereby distributing load and allowing other subfarms to continue
operating while we tune a given subfarm’s configuration) and in-
frastructure services, but can vary widely in experiment-specific
additional services. Shared network resources, as mentioned by
Chen et al. [7], are possible, but we have not found them necessary
in practice—the very reason for creating independent subfarms is
typically the need to configure systems differently or record sepa-
rate data sets. Figure 3 illustrates subfarms.

5.6 Monitoring and packet trace archival
We use a two-pronged packet trace recording strategy. First, the

gateway’s packet routers record each subfarm’s activity from the in-
mate network’s perspective, i.e., with unroutable addresses for the
inmates. Using these local addresses has the benefit of providing
some degree of immediate anonymity in the packet traces, simplify-
ing data sharing without the risk of accidentally leaking our global
address ranges. Second, system-wide trace recording happens at
the upstream interface to the outside network, thus capturing all
activity globally and as seen outside of GQ.

6. IMPLEMENTATION

6.1 Packet routing
We implement the subfarm’s packet routers on the gateway us-

ing the Click modular router [16]. We separate each subfarm’s
Click configuration into a module containing invariant, reusable
forwarding elements shared across all subfarms (400 lines), and
a small (40 lines) configuration module that specifies each sub-
farm’s unique aspects, including the external IP address ranges, set
of VLAN ID ranges from the inmate network, and logfile naming.
The custom Click elements for the VLAN bridge, NAT, contain-
ment server flow handling, and trace recording comprise around
5,000 lines of C++.

6.2 Containment server
We wrote the containment server in Python, using a pre-forked,

multi-threaded service model. The server logic comprises roughly
2,200 lines, with 600 lines for the event-trigger logic. The contain-
ment policies, including content rewriters, add up to 1,000 lines.

Shimming protocol. To couple the gateway’s packet router to
the containment server, we need a way to map/unmap arbitrary
flows to/from the single address and port of the containment server.
We achieve this mapping using a shimming protocol conceptually
similar to SOCKS [15]: upon redirection to the containment server,
the gateway injects into the flow a containment request shim mes-
sage with meta-information. Figure 4 summarizes the message
structure.

The containment server expects this meta-information and uses it
to assign a containment policy to the flow. The containment server
similarly conveys the containment verdict back to gateway using
a containment response shim, which the packet router strips from
the flow before relaying subsequent content back to the endpoint.
For TCP, the shim is sent as a separate TCP packet injected into

VLAN ID

Magic number Length Type Vers.

Resp. IP

Orig. Port Resp. Port

Orig. IP

Nonce Port

0 2 4 6 8
0

24

8

16

(a) Request Shim

Containment Verdict

Magic number Length Type Vers.

Resp. IP

Orig. Port Resp. Port

Orig. IP

0 2 4 6 8
0

24

8

16

56

Policy Name

Textual Annotation

(b) Response Shim

Figure 4: The shim protocol message structure.

the sequence space, so adding and removing shim packets requires
bumping and unbumping of sequence and acknowledgement num-
bers; for UDP it requires padding the datagrams with the respec-
tive shims.3 The request shim occupies 24 bytes and begins with a
preamble of 8 bytes containing a magic number (4 bytes), the mes-
sage length (2 bytes), a message type indicator (1 byte), and a shim
protocol version number (1 byte), followed by the original flow’s
endpoint four-tuple (2 · 4 bytes plus 2 · 2 bytes), the VLAN ID of
the sending/receiving inmate (2 bytes) and a nonce port (2 bytes)
on which the gateway will expect a possible subsequent outbound
connection from the containment server, in case the latter needs to
rewrite the flow continuously. The response shim can vary in length
and requires at least 56 bytes, consisting of a similar preamble (8
bytes), the resulting endpoint four-tuple (12 bytes), the contain-
ment verdict (FORWARD, LIMIT, DROP, REDIRECT, REFLECT,
or REWRITE as per Figure 2, possibly in combination when feasi-
ble) expressed as a numeric opcode (4 bytes), a name tag for the
resulting containment policy (32 bytes), and an optional annota-
tion string to clarify the context in which the containment server
decided the containment verdict.

We show an example of this containment procedure in Figure 5.
An inmate initiates the TCP handshake for an upcoming HTTP re-
quest (Ê), which the gateway redirects to the containment server’s
fixed address and port, synthesizing a full TCP handshake. Upon
completion, the gateway injects into the TCP stream the contain-
ment request shim (Ë). The containment server in turn sends a con-
tainment response shim (Ì) including the containment verdict for
the flow, in this case a REWRITE. To serve as a transparent proxy
rewriting the flow content, it also establishes a second TCP con-
nection to the target via the gateway and the nonce port received
as part of the containment request shim. The gateway forwards
this TCP SYN to the target and relays the handshake between tar-
get and inmate (Í). The inmate completes its connection establish-
ment and sends the HTTP request, which the gateway relays on to
the containment server as part of the same connection that it used
to exchange containment information, bumping the sequence num-

3For large UDP datagrams, this can require fragmentation.

T
im

e

SYN-ACK

ACK

REQ SHIM
10.0.0.23:1234 192.150.187.12:80VLAN 12, Nonce port 42

RSP SHIM

10.0.0.23:1234 192.150.187.12:80

REWRITE, Policy ID, Annotations

ACK

SYN10.0.0.23:1234 192.150.187.12:80 SYN
10.0.0.23:1234 10.3.0.1:6666

GET bot.exe HTTP/1.1

SYN-ACK

10.0.0.23:1234 192.150.187.12:80

GET bot.exe HTTP/1.1

SEQ += |REQ SHIM|10.0.0.23:1234 10.3.0.1:6666

SYN

10.4.0.1:42 10.3.0.1:2345

SYN10.0.0.23:1234 192.150.187.12:80

SYN-ACK

ACK

10.4.0.1:42 10.3.0.1:2345

GET cleanup.exe HTTP/1.1

SEQ -= |RSP SHIM|10.0.0.23:1234

HTTP/1.1 200 OK

SEQ += |REQ SHIM|10.4.0.1:42 10.3.0.1:2345

10.0.0.23:1234 10.3.0.1:6666

HTTP/1.1 404 NOT FOUND
10.0.0.23:1234 192.150.187.12:80

HTTP/1.1 404 NOT FOUND

SEQ -= |RSP SHIM|

Figure 5: TCP packet flow through gateway and containment server in a REWRITE containment. See § 5.4 for details.

ber accordingly (Î). The containment server rewrites the request
as needed (here changing the requested resource to another one)
and forwards it on to the target, via the gateway (Ï). The target’s
response travels in the opposite direction and arrives at the contain-
ment server, which again rewrites it (here to create the illusion of
a non-existing resource) and relays it back to the inmate (Ð). (For
brevity, we do not show the subsequent connection tear-downs in
the figure.)

Policy structure. We codify containment policies in Python
classes, which the containment server instantiates by keying on
VLAN ID ranges and applies on a per-flow basis. We base endpoint
control upon the flow’s four-tuple, and content control depends on
the actual data sent in a given flow. Object-oriented implementa-
tion reuse and specialization lends itself well to the establishment
of a hierarchy of containment policies. From a base class imple-

menting a default-deny policy we derive classes for each endpoint
control verdict, and from these specialize further, for example to
a base class for spambots that reflects all outbound SMTP traffic.
The containment server simply takes the name of the class imple-
menting the applicable containment policy into the response shim
(recall Figure 4(b)) in order to convey it to the gateway.

Configuration. The codified containment policies are customiz-
able through a configuration file. This file serves four purposes. It
specifies: (i) the initial assignment of a policy to a given inmate’s
traffic, (ii) the individual or set of malware binaries with which
we would like to infect a given inmate over the course of its life-
cycles,4 (iii) activity triggers (e.g., revert and reinfect the inmate
once the containment server has observed no outbound activity for

4As indicated earlier, we typically specify precisely which sample
to infect an inmate with. However, GQ equally supports traditional

[VLAN 16-17]
Decider = Rustock
Infection = rustock.100921.*.exe

[VLAN 18-19]
Decider = Grum
Infection = grum.100818.*.exe

[VLAN 16-19]
Trigger = *:25/tcp / 30min < 1 -> revert

[Autoinfect]
Address = 10.9.8.7
Port = 6543

[BannerSmtpSink]
Address = 10.3.1.4
Port = 2526

Figure 6: Example of a containment server configuration file:
GQ will infect the inmates on VLAN IDs 16 and 17 iteratively
with binaries from the rustock.100921.*.exe batch, us-
ing the “Rustock” containment policy. It will apply similar
policies to inmates with VLAN IDs 18 and 19, for Grum. On
all four VLAN IDs a lifecycle trigger reverts inmates to a clean
state whenever the number of flows to TCP port 25 in 30 min-
utes hits zero. The last two sections specify the location in the
subfarm of an auto-infection server and of an SMTP sink, re-
spectively.

30 minutes) and (iv) IP addresses and port numbers of infrastruc-
ture services in a subfarm (e.g., where to find a particular SMTP
sink or HTTP proxy). Figure 6 shows a sample configuration snip-
pet.

6.3 Inmate controller & sinks
We structure the inmate controller as a simple message receiver

that interprets the life-cycle control instructions coming in from the
containment servers. We use a simple text-based message format to
convey the instructions. At startup, the controller scans the VMMs
deployed on the management network to assemble an inventory of
inmates and their VLAN IDs. We implement the controller in 470
lines of Python. The support scripts for managing inmate VMs and
raw iron machines abstract concrete virtualization platforms (such
as VMware’s ESX control scripts), in 2,000 lines of script code.
We likewise implement GQ’s sink servers in Python. Our simplest
catch-all server accepts arbitrary input and requires a mere 100
lines of code, while our most complex sink constitutes a fidelity-
adjustable SMTP server that can grab greeting banners from the
actual target and randomly drop a configurable fraction of connec-
tions. It needs 800 lines, using the same pre-forked multithreaded
back-end as the containment server.

6.4 Raw iron management
Researchers have long known of the use of VM-detecting anti-

forensics capabilities in malware toolkits [8]. Using a variety of
techniques, the malware attempts to identify virtualized execution,
which it perceives as a tell-tale sign of attempted forensic analy-
sis. Rather than attempt to develop specific countermeasures (such
as renaming interfaces or hiding other VM artifacts), GQ bypasses
this problem by providing a group of identically configured small
form-factor x86 systems running on a network-controlled power

honeypot constellations in which dynamic circumstances (such as
a web drive-by) determine the nature of the infection.

sequencer to enable remote, OS-independent reboots. Like our
virtualized inmates, each raw iron system uses its own exclusive
VLAN. From the gateway’s viewpoint, the only difference in the
inmate hosting platform is the presence of an additional DHCP ser-
vice and a separate reimaging process, executed by a dedicated Raw
Iron Controller.

The raw iron systems’ boot configuration alternates between
booting over the network (leading to a subsequent OS image trans-
fer and installation) and booting from local disk when network
booting fails (leading to normal inmate execution). The Raw Iron
Controller has a network interface on a VLAN trunk which includes
all raw iron VLAN IDs. The controller runs a separate Click con-
figuration which creates a virtual network interface that multiplexes
and demultiplexes traffic across the VLAN trunk, enabling unmod-
ified Linux servers, including DHCP, TFTP, and NFS, to access the
raw iron VLANs transparently.

To reimage a system, we configure the controller’s DHCP server
to send PXE boot information in reply to DHCP requests from the
inmate. The power sequencer then reboots the inmate and the sub-
sequent network boot installs a small Linux boot image (we use
Trinity Rescue Kit [14]). This image, once booted, downloads
a compressed Windows image and writes it to disk using NTFS-
aware imaging tools. Next, the controller disables network-booting
in the DHCP server and again power-cycles the raw iron inmate.
The subsequent reboot yields a local booting of the locally installed
OS image. This process takes around 6 minutes per reimaging cy-
cle, which we find sufficiently fast for hosting bots or other mal-
code. An alternate version restores the image from a hidden second
Linux partition on the system’s main disk. This version is slightly
slower (around 10 minutes) but supports efficient reimaging of all
raw-iron systems simultaneously. We use a similar mechanism to
capture disk images from a suitably configured OS image.

6.5 Reporting
We implemented the reporting component using Bro [24]. We

developed an analyzer for the shimming protocol to keep track of
all containment activity on the inmate network, and track specific
additional classes of traffic as needed (for example, we leverage
Bro’s SMTP analyzer to track attempted and succeeding message
delivery for our spambots). Bro’s log-rotation functionality then
initiates activity reports on an hourly and daily basis. The reports
break down activity by subfarm, inmate, and containment deci-
sion, allowing us to verify that the gateway enforces these deci-
sions as expected (for example, an unusual number of FORWARD
verdicts might indicate a bug in the policy, and absence of any
C&C REWRITEs would indicate lack of botnet activity). We also
pull in external information to help us verify containment (for ex-
ample, we check all global IP addresses currently used by inmates
against relevant IP blacklists). Figure 7 shows part of a report. The
reporting setup extracts all of the per-inmate textual information
from network activity.

6.6 Auto-infection & batch processing
Automating the infection (and re-infection, after a revert to clean

state) of inmates is a key ingredient for saving us time operating
GQ. We have implemented an auto-infection routine as follows.
We configured auto-infection inmate master images to run a custom
infection script at first boot (subsequent reboots should not trigger
reinfection, as some malware intentionally triggers reboots itself).
This script then contacts an HTTP server at a preconfigured address
and port, requests the malware sample, and executes it, thus com-
pleting the infection. Note that we can realize the HTTP server as
a REWRITE containment, simplifying the implementation substan-

Inmate Activity
===============

Active subfarms: Botfarm, Clickbots

Subfarm ’Botfarm’ [Containment server VLAN 11]
--

Grum [xxx.yyy.0.170/10.3.9.241, VLAN 18]
--
FORWARD
- C&C port target port #flows

50.8.207.91.SteepHost.Net http 682

REFLECT
- full SMTP containment target port #flows

..*.* smtp 144997

REWRITE
- autoinfection 6f007d640b3d5786a84dedf026c1507c

target port #flows
10.9.8.7 6543 6

SMTP sessions 93340
SMTP DATA transfers 93112

Rustock [xxx.yyy.0.164/10.3.9.247, VLAN 7]
--
FORWARD
- C&C port target port #flows

..*.* https 287

REFLECT
- simple SMTP containment target port #flows

..*.* smtp 280620

REWRITE
- C&C filtering target port #flows

..*.* http 788

- autoinfection 0740eb0e408ea0b6cfa95981273f89bb
target port #flows

10.9.8.7 6543 21

SMTP sessions 182653
SMTP DATA transfers 284765

Figure 7: Section of actual report generated by the monitor-
ing setup, for the “Botfarm” subfarm, for inmates contained
using the “Grum” and “Rustock” policies, respectively. The
REWRITEs show that the containment server employs auto-
infection (§ 6.6), along with the MD5 hashes of the actual exe-
cutables. The number of SMTP flows REFLECTed differs from
the total number of SMTP sessions because we configured the
SMTP sink to drop connections probabilistically. (Global in-
mate IP addresses anonymized.)

tially: the containment server observes the attempted HTTP con-
nection anyway, and can thus proceed to impersonate the simple
HTTP server needed to serve the infection. We implement this as
a separate containment class that serves as a base class for all poli-
cies that operate using auto-infection. Again, VLAN IDs drive the
selection of a malware sample, as the configuration in Figure 6 il-
lustrates. Processing batches of malware samples follows as a sim-
ple generalization: instead of serving the same sample repeatedly,
we maintain the batch as a list of files and serve them sequentially.

6.7 External network address space
In practice we operate GQ using a set of five /24 networks. We

use one network only to make externally available our experiments’
control infrastructure (at least each subfarm’s containment servers,

potentially also sink servers and other machinery), leaving four net-
works for our inmate population. The size of these allocations
forms an upper bound on the number of inmates we can accom-
modate at any given time, but so far has proved sufficient: we ex-
perience no blacklisting of our inmates’ global IP addresses, and
thus no need to move inmates around in our address range to pre-
serve their functionality. This general absence (with rare excep-
tions, which we cover in the next section) of blacklisting speaks for
the quality of our containment policies.

7. OPERATIONAL EXPERIENCES
We now report on experiences gained over the course of our work

on GQ. In particular, we focus on practical lessons learned while
developing containment policies, and on insights on the general
scalability of the system.

7.1 Containment-derived insights
While containment policy development can easily feel like a

chore, we have found that developing tight containment often forms
a key step for understanding the behavior of a sample under study.
Examples of such insights learned during containment develop-
ment include:

Absence of activity. During our operation of GQ as a worm-
capturing honeyfarm at the beginning of 2006, we captured 66 dis-
tinct worms belonging to 14 different malware families (according
to classification by Symantec’s anti-virus products at the time). Ta-
ble 1 summarizes the captures. Note the high variation in incuba-
tion times: nine infection classes required more than three minutes
on average for a propagation. This illustrates the importance of
long-duration execution to observe the desired behavior, even in
infections that supposedly act quickly.

Unexpected visitors. During our infiltration of the Storm bot-
net in 2008 [13, 18, 19] we developed sufficiently complete under-
standing of this particular malware family that a containment pol-
icy seemed to follow naturally. For the C&C-relaying proxy bots
in the middle of the Storm hierarchy, we preserved outside reacha-
bility of the bots (the requirement for their becoming relay agents
as opposed to spam-sourcing drones) and redirected all outgoing
activity other than the HTTP-borne C&C protocol to our standard
sink server. In June, however, we noticed apparent FTP connection
attempts arriving at our sink server. Closer investigation revealed
the attempted use of our Storm bots for iframe injection. An up-
stream botmaster attempted to use the bots’ ability to receive and
process SOCKS [15] message headers to initiate FTP connections
to specific hosts, authenticate and log in with known credentials,
download a specific HTML file and re-upload it with a malicious
iframe tag inserted. At the time, articles on Storm frequently stated
that its proxy bots did not themselves engage in malicious activ-
ity, and a correspondingly loose containment policy would have
allowed these attacks to proceed unhindered.

Mysterious blacklisting. While deploying spambots of the
Waledac family [27] in June 2009, we noticed to our surprise
that the Composite Blocking List (CBL) [6] listed our inmates—
a strong indication of a possible containment failure. However, the
only outside interaction we had permitted was a single test SMTP
message, sent to a GMail server, because redirection to our default
SMTP sink caused the bots to cease further activity due to the lack
of their receiving the Google SMTP banner in response to their
attempts. Subsequent independent testing revealed that the bots
themselves used a recognizable HELO greeting string (wergvan),
that Google detected its presence, and that they informed black-
list providers of the IP addresses of SMTP speakers employing the

EVENTS/ INCUBATION
EXECUTABLE WORM NAME # CONNS PERIOD (S)
a####.exe W32.Zotob.E 4 / 3 29.0
a####.exe W32.Zotob.H 9 / 3 25.2
a####.exe — 1 / 3 223.2
cpufanctrl.exe Backdoor.Sdbot 1 / 4 111.2
chkdisk32.exe — 1 / 4 134.7
dllhost.exe W32.Welchia.Worm 297 / 4 or 6 24.5
enbiei.exe W32.Blaster.F.Worm 1 / 3 28.9
msblast.exe W32.Balster.Worm 1 / 3 43.8
lsd W32.Poxdar 11 / 8 32.4
NeroFil.EXE W32.Spybot.Worm 1 / 5 237.5
sysmsn.exe W32.Spybot.Worm 3 / 3 79.6
MsUpdaters.exe W32.Spybot.Worm 1 / 5 57.0
ReaIPlayer.exe W32.Spybot.Worm 2 / 5 95.4
WinTemp.exe W32.Spybot.Worm 1 / 5 178.4
wins.exe W32.Spybot.Worm 1 / 5 118.2
msnet.exe W32.Spybot.Worm 1 / 7 189.4
msgupdates.exe W32.Spybot.Worm 2 / 5 125.3
ntsf.exe — 1 / 5 459.4
scardsvr32.exe W32.Femot.Worm 4 / 3 46.2
scardsvr32.exe W32.Femot.Worm 1 / 3 66.5
scardsvr32.exe W32.Femot.Worm 55 / 3 96.6
scardsvr32.exe W32.Femot.Worm 2 / 3 179.6
scardsvr32.exe W32.Femot.Worm 1 / 5 49.3
scardsvr32.exe W32.Femot.Worm 4 / 3 41.4
scardsvr32.exe W32.Femot.Worm 1 / 3 41.1
scardsvr32.exe W32.Valla.2048 1 / 5 32.2
scardsvr32.exe — 1 / 7 54.8
scardsvr32.exe W32.Pinfi 1 / 3 180.8
x.exe W32.Korgo.Q 17 / 2 6.6
x.exe W32.Korgo.T 7 / 2 9.5
x.exe W32.Korgo.V 102 / 2 6.0
x.exe W32.Korgo.W 31 / 2 5.9
x.exe W32.Korgo.Z 20 / 2 6.6
x.exe W32.Korgo.S 169 / 2 6.6
x.exe W32.Korgo.S 15 / 2 8.6
x.exe W32.Korgo.V 2 / 2 24.4
x.exe W32.Licum 2 / 2 7.9
x.exe W32.Korgo.S 3 / 2 10.4
x.exe W32.Pinfi 1 / 2 329.7
x.exe W32.Korgo.V 6 / 2 11.3
x.exe W32.Pinfi 5 / 2 20.1
x.exe W32.Pinfi 5 / 2 24.9
x.exe W32.Pinfi 2 / 2 27.5
x.exe W32.Korgo.V 1 / 2 27.5
x.exe W32.Pinfi 1 / 2 63.1
x.exe W32.Korgo.W 1 / 2 76.1
x.exe W32.Korgo.S 1 / 2 18.0
x.exe W32.Pinfi 1 / 2 58.2
x.exe W32.Korgo.S 1 / 2 210.9
xxxx...x Backdoor.Berbew.N 844 / 2 9.4
xxxx...x W32.Info.A 34 / 2 7.2
xxxx...x Trojan.Dropper 685 / 3 10.0
xxxx...x W32.Pinfi 1 / 3 32.5
xxxx...x W32.Pinfi 3 / 2 34.2
n/a W32.Korgo.C 3 / 2 4.8
n/a W32.Korgo.L 1 / 2 7.0
n/a W32.Korgo.G 8 / 2 4.1
n/a W32.Korgo.N 2 / 2 5.3
n/a W32.Korgo.G 3 / 2 5.4
n/a W32.Korgo.E 1 / 2 5.6
n/a W32.Korgo.gen 1 / 2 5.0
n/a W32.Korgo.I 15 / 2 4.3
n/a W32.Korgo.I 1 / 2 5.4
multiple W32.Muma.A 2 / 7 186.7
multiple W32.Muma.B 2 / 7 208.9
multiple BAT.Boohoo.Worm 1 / 72 384.9

Table 1: Self-propagating worms caught by GQ in early 2006.
Events correspond to total infections during the course of the
experiment with the same executable. Next come the numbers
of connections needed per infection to complete the propaga-
tion, and incubation times (the delay from initial infection in
our farm to subsequent infection of the next inmate). We show
delays of over 3 minutes in bold.

string. This caused us to stop the policy of allowing even seemingly
innocuous non-spam test SMTP exchanges.

Satisfying fidelity. It soon turned out that Waledac was not the
only spambot family whose members paid close attention to the
greeting banners returned by the SMTP servers. As a consequence,
we upgraded our SMTP sink to support banner grabbing for se-
lect connections: SMTP requests to a hitherto unseen host now
caused the sink to actually connect out to the target SMTP server
and obtain the greeting message, relaying it back to the spambot.
The more closely malware tracks whether the responding entity be-
haves as expected, the more likely we are to get drawn into an arms
race of emulating and testing fidelity.

Protocol violations. On several occasions during our ongoing
extraction of spam from spambots [18], our spam harvest account-
ing looked healthy at the connection level (since many connections
ensued), but, upon closer inspection, meager at the content level
(since for some bot families no actual message body transmission
occurred). Closer investigation revealed that our SMTP sink proto-
col engine followed the SMTP specification [26] too closely, pre-
venting the protocol state machine from ever reaching the DATA
stage. The protocol discrepancies included such seemingly mun-
dane details as repeated HELO/EHLO greetings or the format of
email addresses in MAIL FROM and RCPT TO stanzas (with or
without colons, with or without angle brackets).

Exploratory containment. Containment policy development
need not always try to facilitate continuous malware operation. To
better understand a sample, we frequently find it equally important
to create specific environmental conditions under which the sample
will exhibit new behavior. In preparing for our infiltration of Storm,
we tried to understand the meaning of the error codes returned in
Storm’s delivery reports [18] using a dual approach of live experi-
mentation, in which we exposed the samples to specific error condi-
tions during SMTP transactions, and binary analysis. Interestingly,
neither approach could individually explain all behavior, but by
iterating alternation of the two—live experimentation confirming
conjectures developed during binary analysis, and vice versa—we
eventually identified the error codes’ meanings. We used this ap-
proach again during our infiltration of the MegaD botnet [4]. Here,
live experimentation allowed us to confirm the correct functional-
ity of the extracted C&C protocol engine. During a recent inves-
tigation of clickbots [21] we used the approach to understand the
precise HTTP context of some of the bots’ C&C requests.

Unclear phylogenies. When we take specimens supposedly be-
longing to malware family X and subject them to a corresponding
containment policy, we implicitly assume that this family member-
ship is in fact correct and that other samples belonging to family
X will exhibit behavioral similarity. We find this assumption in-
creasingly violated in practice. We have repeatedly observed third
parties labeling samples inconsistently, including cases of split per-
sonalities in malware: in February 2010 we encountered a spec-
imen that at times showed MegaD’s C&C behavior, and at other
times behaved like a member of the Grum family. While tight con-
tainment ensures that our operation causes no harm when contain-
ment policy and observed behavior mismatch, it casts doubt on the
appealing idea of developing a library of containment policies from
which we can easily pick the appropriate one. A batch-processing
setup that enables some extent of automated family classification is
thus an important tool to have. To this end, we reflect all outgoing
network activity to our catch-all sink and apply network-level fin-
gerprinting on the samples’ initial activity trace. We have success-
fully used this approach to classify approximately 10,000 unique
malware samples that we harvested from pay-per-install distribu-
tion servers [3].

7.2 System scalability
Traditional honeyfarms such as Potemkin [29] place a strong

emphasis on scalability of the inmate population: these systems
quickly “flash-clone” new inmates to provide additional infectees
as needed. For the worm model this made sense—it requires in-
fectee chains to reliably identify infections, and the assumption that
any incoming flow may constitute a potential worm infection im-
plies the need to set aside resources potentially for each sender of
traffic received in the honeyfarm’s IP address range. Today’s re-
quirements for malware execution have shifted. Self-propagating
malware infections are not extinct, but play less of a role in today’s
landscape, and typically use entirely different vectors (such as the
user’s activity on specific websites, as in the case of Koobface [28]).
Correspondingly, careful filtering and resource management related
to unsolicited, inbound traffic has become less pressing, particu-
larly when considering the typical scenario of home-user machines
deployed behind network address translators. We find it more im-
portant to achieve scalability in terms of providing independent ex-
periments at varying stages of “production-readiness” (including
development of the farm architecture itself) with moderate require-
ments of inmate population size, and convenient mechanisms for
intentional, controlled infection of the inmate population. GQ’s ar-
chitecture reflects these considerations.

The architecture we outlined in § 5 constrains scalability as fol-
lows. First, VLAN IDs are a limited resource. The IEEE 802.1Q
standard limits the VLAN ID to twelve bits, allowing up to 4,096
inmates. However, physical switches frequently support less. Nat-
urally, we can avoid this limitation by moving to multiple inmate
networks and prepending a gateway-internal network identifier to
VLAN IDs for purposes of identifying inmates. Second, with a
large number of inmates in a single subfarm, a single containment
server becomes a bottleneck, as it has to interpose on all flows in the
subfarm. We can address this situation in a straightforward manner
by moving to a cluster of containment servers, managed by the sub-
farm’s packet router. We would simply need to extend the router’s
flow state table entries to include an identifier of the containment
server responsible for the flow. Several containment server selec-
tion policies come to mind, such as random selection under the con-
straint that the same containment server always handles the same
inmate. Third, similarly to the containment server, the central gate-
way itself becomes a bottleneck as the number of inmates and sub-
farms grows. To date, we have not found this problematic: the
same 3Ghz quad-core Xeon machine with 5GB of memory that
we deployed six years ago still serves us well today, running 5-6
subfarms in parallel with populations ranging from a handful to a
dozen of inmates. Fourth, our globally routable IP address space is
of limited size, creating an incentive to avoid blacklisting and leak-
ing of our actively used addresses to reduce the rate at which we
“burn through” this address space. Currently we find our address
allocations sufficient. Should this change, we may opt to use GRE
tunnels in order to connect additional routable address space avail-
able in other networks (provided by colleagues or interested third
parties) to the system.

8. CONCLUSION
The GQ malware farm introduces containment as a first-order

component in support of malware analysis. In building and operat-
ing GQ for six years, we have come to treat containment itself as
a tool that can improve our understanding of monitored malware.
While modern malware increasingly resists longitudinal analysis
in completely contained environments, GQ not only allows but en-
courages flexible and precise containment policies while maintain-

ing acceptable safety. With ongoing development, we anticipate
it continuing to provide core functionality for monitoring malware
and botnet operation well into the future.

We fully acknowledge the manual and—depending on the spec-
imen at hand—time-consuming nature of this process. But, cru-
cially, GQ makes this process both explicit and feasible. While re-
cent work on automated C&C protocol extraction from binaries [4,
17] could aid in understanding the significance of individual flows,
these automated approaches currently cannot provide the under-
standing that human-driven analysis of an inmate’s traffic produces.
The language in which we express containment policies in the con-
tainment server forms another area of future work. The primary
reason for our current use of Python is experience and convenience,
but the general-purpose nature of the language complicates the cre-
ation of a tool-chain for processing policies. For example, a traf-
fic generation tool that can automatically produce test cases for a
given concrete containment policy would strengthen confidence in
the policy’s correctness significantly. A more domain-specific, ab-
stract language (like in Bro [24]) could simplify this.

It behooves us to contemplate the consequences of a containment
arms race, in which malware authors explicitly try to defeat our ap-
proach to containment. It is easy to see—as mentioned by John
et al. [12]—that botmasters can construct circumstances in which
malware will cease to function as desired, despite our best efforts.
For example, spam campaigners could scatter control groups of
email addresses among the spam target lists and require success-
ful delivery of messages to these addresses to keep a bot spam-
ming. However, we remain optimistic about the feasibility of pro-
viding safe containment for new malware types. First, in practice
the majority of specimens we encounter still possesses readily dis-
tinguishable C&C protocols. Second, we note the conceptual dif-
ference between achieving the desired goal of executing malware
(say, longitudinal harvesting of spam messages) and tight contain-
ment preventing harm to others. While the former may fail, in our
experience we can guarantee the latter, given tight containment. We
thus believe that we can operate malware safely to the point of at-
tack and control traffic becoming so blended that we can no longer
meaningfully distinguish them.

Acknowledgements
This work has spanned many years, and would not have been pos-
sible without the support of many parties. We wish to thank the
U.S. Department of Energy’s ESnet, Hewlett/Packard, Microsoft,
and VMware for their generous in-kind donations used to construct
and operate GQ. We particularly wish to thank Randy Bush, Eli
Dart, Chris Grier, Craig Leres, Stefan Savage, Helen Wang, and
our colleagues at the Lawrence Berkeley National Laboratory and
the University of California, San Diego, for assistance and feed-
back during GQ’s five years of operation. This work was supported
in part by National Science Foundation grants NSF-0433702, CNS-
0831535, and CNS-0905631, and by the Office of Naval Research
MURI grant N000140911081. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the funders.

9. REFERENCES
[1] P. Barford and M. Blodgett. Toward botnet mesocosms. In

Proceedings of the First Workshop on Hot Topics in
Understanding Botnets, Berkeley, CA, USA, 2007. USENIX
Association.

[2] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A tool for
analyzing malware. In 15th Annual Conference of the

European Institute for Computer Antivirus Research
(EICAR), 2006.

[3] J. Caballero, C. Grier, C. Kreibich, and V. Paxson.
Measuring Pay-per-Install: The Commoditization of
Malware Distribution. In Proceedings of the 20th USENIX
Security Symposium, San Francisco, CA, USA, August 2011.

[4] J. Caballero, P. Poosankam, C. Kreibich, and D. Song.
Dispatcher: Enabling active botnet infiltration using
automatic protocol reverse-engineering. In Proceedings of
the 16th ACM CCS, pages 621–634, Chicago, IL, USA,
November 2009.

[5] J. Calvet, C. R. Davis, J. M. Fernandez, J.-Y. Marion, P.-L.
St-Onge, W. Guizani, P.-M. Bureau, and A. Somayaji. The
case for in-the-lab botnet experimentation: creating and
taking down a 3000-node botnet. In Proceedings of the 26th
ACSAC Conference, pages 141–150, New York, NY, USA,
2010. ACM.

[6] CBL. Composite Blocking List.
http://cbl.abuseat.org, 2003.

[7] J. Chen, J. McCullough, and A. C. Snoeren. Universal
Honeyfarm Containment. Technical Report CS2007-0902,
UCSD, September 2007.

[8] X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario.
Towards an understanding of anti-virtualization and
anti-debugging behavior in modern malware. In Proceedings
of the 38th Conference on Dependable Systems and
Networks (DSN), pages 177–186. IEEE, 2008.

[9] W. Cui, V. Paxson, and N. Weaver. GQ: Realizing a System
to Catch Worms in a Quarter Million Places. Technical
Report TR-06-004, International Computer Science Institute,
September 2006.

[10] A. W. Jackson, D. Lapsley, C. Jones, M. Zatko,
C. Golubitsky, and W. T. Strayer. SLINGbot: A System for
Live Investigation of Next Generation Botnets. In
Proceedings of the 2009 Cybersecurity Applications &
Technology Conference for Homeland Security, pages
313–318, Washington, DC, USA, 2009. IEEE Computer
Society.

[11] X. Jiang and D. Xu. Collapsar: A VM-based architecture for
network attack detention center. In Proceedings of the 13th
USENIX Security Symposium, page 2. USENIX Association,
2004.

[12] J. John, A. Moshchuk, S. Gribble, and A. Krishnamurthy.
Studying spamming botnets using Botlab. In Proceedings of
the 6th USENIX Symposium on Networked Systems Design
and Implementation, pages 291–306. USENIX Association,
2009.

[13] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. Spamalytics: An
empirical analysis of spam marketing conversion. In
Proceedings of the 15th ACM Conference on Computer and
Communications Security, pages 3–14, Alexandria, Virginia,
USA, October 2008.

[14] T. Kerremans and B. Verstricht. Trinity Rescue Kit.
http://trinityhome.org.

[15] D. Koblas. SOCKS. In Proceedings of the 3rd USENIX
Security Symposium. USENIX Association, September 1992.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek.
The Click modular router. ACM Transactions on Computer
Systems (TOCS), 18(3):263–297, 2000.

[17] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector
Gadget: Automated extraction of proprietary gadgets from

malware binaries. In 2010 IEEE Symposium on Security and
Privacy, pages 29–44. IEEE, 2010.

[18] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. On the Spam Campaign
Trail. In Proceedings of the First USENIX Workshop on
Large-scale Exploits and Emergent Threats (LEET), San
Francisco, USA, April 2008.

[19] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. Spamcraft: An inside
look at spam campaign orchestration. In Proceedings of the
Second USENIX Workshop on Large-scale Exploits and
Emergent Threats (LEET), Boston, USA, April 2009.

[20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation In Campus Networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[21] B. Miller, P. Pearce, C. Grier, C. Kreibich, and V. Paxson.
What’s Clicking What? Techniques and Inovations of
Today’s Clickbots. In Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA).
Springer, July 2011.

[22] J. Mirkovic, T. V. Benzel, T. Faber, R. Braden, J. T.
Wroclawski, and S. Schwab. The DETER project:
Advancing the science of cyber security experimentation and
test. In IEEE Intl. Conference on Technologies for Homeland
Security (HST), page 7, November 2010.

[23] Norman ASA. Norman SandBox. http://www.norman.
com/security_center/security_tools/.

[24] V. Paxson. Bro: A System for Detecting Network Intruders
in Real-Time. Proceedings of the 7th USENIX Security
Symposium, pages 31–51, 1998.

[25] A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich,
G. Voelker, V. Paxson, N. Weaver, and S. Savage. Botnet
Judo: Fighting Spam with Itself . In Proceedings of the 17th
Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, USA, March 2010.

[26] J. Postel. Simple Mail Transfer Protocol. RFC 821, August
1982.

[27] G. Tenebro. W32.Waledac Threat Analysis.
http://www.symantec.com/content/en/us/
enterprise/media/security_response/
whitepapers/W32_Waledac.pdf, 2009.

[28] N. Villeneuve. Koobface: Inside a Crimeware Network.
http://www.infowar-monitor.net/reports/
iwm-koobface.pdf, November 2010.

[29] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. Snoeren, G. Voelker, and S. Savage. Scalability, fidelity,
and containment in the potemkin virtual honeyfarm. ACM
SIGOPS Operating Systems Review, 39(5):148–162, 2005.

[30] Y. Wang, D. Beck, X. Jiang, and R. Roussev. Automated
Web Patrol with Strider Honeymonkeys: Finding Web Sites
that Exploit Browser Vulnerabilities. In Proceedings of the
13th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, USA, March 2006.

[31] C. Willems, T. Holz, and F. Freiling. Toward automated
dynamic malware analysis using CWSandbox. IEEE Security
& Privacy, pages 32–39, 2007.

http://cbl.abuseat.org
http://trinityhome.org
http://www.norman.com/security_center/security_tools/
http://www.norman.com/security_center/security_tools/
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/W32_Waledac.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/W32_Waledac.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/W32_Waledac.pdf
http://www.infowar-monitor.net/reports/iwm-koobface.pdf
http://www.infowar-monitor.net/reports/iwm-koobface.pdf

	1 Introduction
	2 Related Work
	3 Addressing the Problem of Containment
	4 Initial & Eventual Design Goals
	5 GQ's Architecture
	5.1 Overall layout
	5.2 Inmate hosting & isolation
	5.3 Network layout
	5.4 Containment servers
	5.5 Inmate control
	5.6 Monitoring and packet trace archival

	6 Implementation
	6.1 Packet routing
	6.2 Containment server
	6.3 Inmate controller & sinks
	6.4 Raw iron management
	6.5 Reporting
	6.6 Auto-infection & batch processing
	6.7 External network address space

	7 Operational Experiences
	7.1 Containment-derived insights
	7.2 System scalability

	8 Conclusion
	9 References

