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Introduction

� Mapping human-usable and meaningful names to objects in
computer systems is crucial to usability

� Name to object mapping systems also allow for late binding

� The DNS provides this usability and agility with respect to Internet
addresses, and is a crucial component of today’s Internet

� Many actors influence the mappings provided by the DNS, with
many different versions and design objectives
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Introduction

� Mapping human-usable and meaningful names to objects in
computer systems is crucial to usability

� Name to object mapping systems also allow for late binding

� The DNS provides this usability and agility with respect to Internet
addresses, and is a crucial component of today’s Internet

� Many actors influence the mappings provided by the DNS, with
many different versions and design objectives

� We must analyze the DNS using both active and passive
measurement techniques to examine its behavior and build
reliable systems
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Introduction (cont’d)

� The simplicity of the DNS protocol and its unique place in the
workflow of Internet usage has encouraged complex
implementations

� This simplicity has also enabled other applications to be built
wholly on top of the DNS
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Introduction (cont’d)

� The simplicity of the DNS protocol and its unique place in the
workflow of Internet usage has encouraged complex
implementations

� This simplicity has also enabled other applications to be built
wholly on top of the DNS

� The DNS is only sufficient for some types of name ⇒ object
mappings, and the Internet is ripe for new, user-centric naming
systems
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Areas of Work

� Active Measurement of DNS resolvers on the Internet
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Areas of Work

� Active Measurement of DNS resolvers on the Internet

� Analysis of Passive DNS measurements for two user populations

� A unique, globally distributed key-value store implemented on top
of the DNS

� A new foundational system for storing and sharing user-specific
meta-information
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DNS Introduction

� DNS is responsible for converting names to IP addresses
� www.case.edu ⇒ 129.22.104.136

� Responsible for identifying well-known services
� case.edu mail exchange (MX) ⇒ smtp.case.edu

� UDP-based protocol with two major actors
� Recursive DNS Resolvers (RDNS)

� Do the work of looking up names

� Authoritative DNS Servers (ADNS)
� Responsible for handing out answers
� “Own” a portion of the namespace
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DNS Namespace
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DNS Resolution Process
ADNS
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Active DNS Measurement
Joint work with Kyle Schomp
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Active Measurement - Problem & Aims

� The 15M open resolvers on the Internet have often been
enumerated and sometimes used for measurements, but are not
well understood
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Active Measurement - Problem & Aims

� The 15M open resolvers on the Internet have often been
enumerated and sometimes used for measurements, but are not
well understood

� Probe a portion of the millions of systems providing open recursive
DNS service

� Characterize the use and misuse of the DNS protocol

� Evaluate the security and topology of DNS resolution paths
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Methodology

� Use PlanetLab to scan IPV4 for open resolvers by sending a query
falling under a domain we control

� When a resolver is found, send a variety of queries to evaluate
aspects of resolver behavior

� By controlling both the initial query and the authoritative
response, we get a more complete view of behavior than studies
only examining a single aspect
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Resolver Structure

ODNS

RDNSd

FDNS HDNS

RDNSi

ADNS
Client-side

RDNS

Figure : General structure of the client-side DNS infrastruture1

1This figure shamelessly stolen from Kyle Schomp
11 / 49



High-level Findings

� Measured nearly 1.1M IP addresses providing open recursive DNS
service (ODNS)

� Observed 69K IP addresses visiting our Authoritative DNS (ADNS)
server on behalf of these ODNS

� 1.37% (about 16K) of ODNS actually visited our ADNS directly
(we define these as RDNSd)

� Of the RDNSi (≈44K), only 38% would successfully resolve a
query sent to it directly
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High-level Findings

� Measured nearly 1.1M IP addresses providing open recursive DNS
service (ODNS)

� Observed 69K IP addresses visiting our Authoritative DNS (ADNS)
server on behalf of these ODNS

� 1.37% (about 16K) of ODNS actually visited our ADNS directly
(we define these as RDNSd)

� Of the RDNSi (≈44K), only 38% would successfully resolve a
query sent to it directly

� Measuring RDNS through their ODNS allows evaluation of
firewalled/otherwise prohibited resolvers

� Full details will appear in thesis
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Topology
� Most ODNS access the DNS through a pool of RDNS
� Many ODNS are close to their RDNS – 50% of all ODNS:RDNS
pairs have a GeoIP distance of < 100 miles

� Some ODNS are quite far from their RDNS – 10% of pairs have a
distance of > 6000 miles (subject to GeoIP accuracy)
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Figure : # RDNS seen on behalf of each ODNS
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ODNS Properties

� Previous work [2] has found that ≈2/3 of ODNS are transient on
the order of weeks

� We find 41% of ODNS are transient on the order of days

� We often find little competition for cache space – the median
duration a record stayed in an ODNS cache is 4.5 hours.

% of Servers Measured Time Observed Alive
0.6% <= 10 min
2.2% (10min, 60min]
11.1% (60min, 9hr]
15% (9hr, 1day]
12.1% (1day, 3day]
58.1% Alive throughout study

Table : Time Spent Alive
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RDNS Properties

� We find that 12.9% of RDNS and 8.3% of RDNSi remain
vulnerable to the Kaminsky attack

� Only 0.3% of RDNS encountered use 0x20 encoding to incorporate
additional entropy
� This may be an underestimate, as some RDNS providers (Google) are

known to use 0x20 with only whitelisted ADNS

� NXDOMAIN rewriting is widespread – 25% of ODNS experience
this
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TTL Modification

Expected (sec) % Liars Most Common Lie % of Liars
0 11.43% 10,000 27.19%
10 11.1% 10,000 28.7%
100 2.96% 300 26.85%
1Ks 1.76% 80 30.07%
10K 2.85% 3,600 26.14%
100K 21.82% 86,400 52.6%
1M 89.35% 604,800 74.43%
10M 89.57% 604,800 74.16%
100M 89.58% 604,800 74.11%
1B 89.57% 604,800 74.12%

Table : Summary of TTL Deviations
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Passive DNS Observations
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Passive Measurements - Aims

� DNS traffic is often a prelude to inter-host communication

� DNS is increasingly used not simply for lookup, but for traffic
engineering (replica selection)

� We must re-appraise the state of DNS traffic on the Internet in
order to understand how it is changing
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Methods and Data

� We examine DNS traffic logs from the border routers of two edge
networks
� Case Connection Zone in Cleveland, OH

� Fourteen months of daily logs with visibility into Client⇒RDNS traffic

� 200M DNS queries of which 162M returned an IPV4 answer

� International Computer Science Institute in Berkeley, CA
� Over 6 years of logs (one week a month) with visibility into

RDNS⇒ADNS traffic

� 526M DNS queries of which 139M returned an IPV4 answer
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TTL Treatment

� We find a year-by-year downward shift in administrator-assigned
TTL values
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Figure : Max. Observed TTL for each answer record
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TTL Treatment (cont’d)
� TTLs of commonly requested DNS records and DNS records
corresponding to large data transfers are lower than average
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Record Usage
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Performance

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1  1  10  100  1000  10000 100000 1e+06  1e+07  1e+08

C
D

F

Seconds

(a) Time from DNS response to first
connection

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01  0.1  1

C
D

F

Uncached DNS Transaction Duration (Seconds)

All DNS Transactions
Min. per SLD

(b) Duration of uncached transactions

Figure : Performance

23 / 49



Other observations

� Akamai and Google dominate in the set of DNS answers. 23.5% of
successful DNS responses include a mapping to an Akamai server
and 13.4% of responses include a mapping to a Google server.

� We generally find a lower cache hit rate than previous work [1].
While others have observed a 90% cache hit ratio, CCZ users
fulfull 2/3 of requests from the cache.

� Our performance observations indicate generally faster DNS
performance for CCZ users than in the literature. However, when
we examine response time on a per-SLD basis, we find behavior
much closer to the literature.
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DNS Bootstrapping
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Bootstrapping Problem

� Peer-to-peer technology has eliminated the need for centralized
infrastructure for many applications
� Notable exception: finding an initial set of peers (bootstrapping)

� Many times policy-based blocking of P2P services is based upon
blocking these “rendezvous servers”
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Bootstrapping Problem

� Peer-to-peer technology has eliminated the need for centralized
infrastructure for many applications
� Notable exception: finding an initial set of peers (bootstrapping)

� Many times policy-based blocking of P2P services is based upon
blocking these “rendezvous servers”

� We aim to design a distributed infrastructure for peer
bootstrapping without relying on any fixed infrastructure
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Components

� Utilize the 15M [2] ODNS on the Internet as rendezvous points for
P2P applications
� One out of every 300 IP addresses is suitable

� Leverage the caching and aging properties of DNS records to
encode arbitrary information in FDNS/RDNS caches
� Without using a domain we control
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Finding the same server

� Assume both clients share some secret “secret”
� Both clients do the following:

� First IP to scan: sha1(“secret”+“IPNumber1”)[Last4Bytes]
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Finding the same server

� Assume both clients share some secret “secret”
� Both clients do the following:

� First IP to scan: sha1(“secret”+“IPNumber1”)[Last4Bytes]
� “secret” and “IPNumberX” are only strings

� Second IP to scan: sha1(“secret”+“IPNumber2”)[Last4Bytes]
� Scan until X DNS servers found

� This discovery process is independent of the IPs of the clients.
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Scanning

� At full speed, hundreds or thousands of packets can be sent per
second on a home Internet connection

� Median # of probes sent between detected recursive DNS server
IPs is 194, mean 281.

� 99th percentile is 1,284 probes

� Even at slow scanning rates, this is tractable
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Storing Data

An RDNS Server certainly won’t accept arbitrary data, but we can
insert nearly any valid record into the cache.

anomaly@paragon ˜ $ dig eecs.case.edu
eecs.case.edu. 86400 IN A 129.22.104.78
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eecs.case.edu. 86400 IN A 129.22.104.78
eecs.case.edu. 86397 IN A 129.22.104.78

We just stored a piece of data in our RDNS Server!
eecs.case.edu. 86392 IN A 129.22.104.78
eecs.case.edu. 86388 IN A 129.22.104.78

30 / 49



Storing Data

An RDNS Server certainly won’t accept arbitrary data, but we can
insert nearly any valid record into the cache.

anomaly@paragon ˜ $ dig eecs.case.edu
eecs.case.edu. 86400 IN A 129.22.104.78
eecs.case.edu. 86397 IN A 129.22.104.78

We just stored a piece of data in our RDNS Server!
eecs.case.edu. 86392 IN A 129.22.104.78
eecs.case.edu. 86388 IN A 129.22.104.78

From the TTL we can determine how long a record has been in
the cache
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Storing Data (cont’d)

� Method One: test for a record’s presence in the cache
� We may make a request to the DNS server asking it NOT to perform

a recursive lookup (“Recursion Desired”=0)
� If the record is in the cache, it will be returned. Otherwise, it will not

� Method Two: compare the TTLs of multiple records
� Publisher may request eecs.case.edu and art.case.edu in any order
� If the received TTL for eecs.case.edu < TTL for art.case.edu, call this

a “1” bit
� Else, consider this a “0” bit
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Obtaining DNS Names

� We leverage DNS wildcarding
� Many domains constructed such that *.domain.com ⇒ 1.2.3.4
� We can therefore leverage the cache hits of bit1.domain.com,

bit2.domain.com, etc
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Obtaining DNS Names

� We leverage DNS wildcarding
� Many domains constructed such that *.domain.com ⇒ 1.2.3.4
� We can therefore leverage the cache hits of bit1.domain.com,

bit2.domain.com, etc

� Several TLDs are themselves wildcarded
� including .ws and .tk
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Recursion Desired Success Rate (Publication)

Attempted Publications 72400 100 %

Success 58808 81 %

No Data Found 3356 5 %

Corrupt data 5446 8 %

Packet loss 4790 7 %
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Recursion Desired Success Rate (Lookup)
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Extending

� Generic bit-pipe, so we can implement:
� Forward Error Correction
� CRC Checking
� Encryption
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Metadata Information Storage System
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Metadata Problem

� Inter-application sharing of data is ad-hoc at best and nonexistent
at worst
� Facebook can use contacts to populate friends list, but the reverse

direction doesn’t work

� Users’ social graphs are poorly utilized in desktop applications
� My email client already knows who Mark is, why doesn’t my IM app?

� Users now create much of the content on the Internet, but sharing
that content often requires an arbitrary third party service
� Furthermore, these third-party services end up dictating the name of

the content
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Proposed System: MISS

� MISS - Metadata Information Storage System

� Provide a user-controlled naming layer tasked with storing and
serving meta-information

� Make meta-information available across hosts and applications in a
secure manner

� Allow users to define a name for pieces of content untangled from
specific providers or protocols

� Enable new functionality based on wide-spread access to
meta-information
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Requirements

� Extensibility: MISS must be agnostic to the to the types of data
stored and able to handle future applications

� Accessibility: MISS must allow users to expose records at their
discretion and on a per record-basis to user-defined groups

� Integrity: Records must be modifiable only by their owner and
verifiable by others

� Portability: Users’ MISS collections must not be permanently
entagled with a particular service provider

� Usability: The compexity of MISS must be abstracted away by
applications so that general users find it usable
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Collection

� A container for all of a user’s meta-information records

� Represented by the fingerprint of a user’s public key

� Naming collections by keys ensures that collections may be
generated by users without any external help or control

� MISS itself maps these collection identifier’s to human-readable,
context-sensitive names
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Record
� Each record is identified by the collection it is in as well as a name
and type (arbitrary strings)

� Names may be provided by users or by applications, types will
usually be application-based

� Much like transport port numbers, MISS types and names may be
well-known or ad-hoc

� Each MISS record is encoded in XML, and MISS is agnostic to the
content of the data portion of the record

<miss_record>
  <name>foo</name>
  <type>frob</type>
  <expires>1278597127</expires>
  <signature> [...] </signature>
  <frob>
    <ex1>foo.example.com</ex1>
    <ex2>userA</ex2>
  </frob>
</miss_record>

Figure : Example MISS record.
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Local Interface - Missd

� Runs on the same device as applications
� Provides a general interface into the global database without
application-specific configuration
� Insofar as its lookup capabilities, this is similar to a DNS resolver

� Provides applications with get() and put() primitives for accessing
data repository

� Constructs records using application data, user’s encryption keys
and privacy settings, and uploads
� Keeps items in the global repository up-to-date w.r.t. TTL

� Performs lookups on other collections and verifies data received
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Global Access - MISS Server/DHT

� Hold and provide access to collections on behalf of users
� Participate in the MISS DHT, a global DHT holding only MISS
master records
� MISS master records identify the MISS server responsible for hosting a

given collection ID
� MISS master records are self-certifying, as they will be self-signed
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MISS System Overview

MISS
Server

MISS
Server

MISS
Server

MISS
Server

MISS
Server

MISS
Server

missd

App1
App2

App3

Figure : Conceptual diagram of MISS system.
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Bootstrapping

� In order to associate a collection ID with a human-readable name,
collection ID’s could be shared:
� Via NFC using smartphones
� Using X- headers in emails
� By embedding meta tags in HTML pages
� Using vCards
� Via standard directory services (e.g. LDAP, Active Directory)
� etc...
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Use Cases

� Email Clients - “mark:email” or “mark” in lieu of mallman@icir.org

� Furthermore, email could be automatically encrypted in this case

� Web Bookmarks - “misha:webpage” or “misha” in lieu “of
http://engr.case.edu/rabinovich michael/”

� Application State - Keep tabs open cross-device and cross-browser

� Composable Services - publish desired spam settings to be
implemented by all of a user’s email servers
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Experiments

� Built a prototype MISS system

� MISS Server (Apache) could sustain up to 27K requests/second

� MISSD imposed parse/validation overhead of 26ms in the 95th
percentile

� Built MISS DHT on 100 Planetlab nodes
� Median record fetch time of 500ms
� Likely a high overestimate due to lack of locality in PL experiment
� Fetches mitigated by caching and prefetching

� Undergraduate students were able to build user-facing apps on top
of this structure
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That’s all, folks!

Questions?
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