-- extracted from rfc4113.txt -- at Thu Jun 9 06:32:51 2005 UDP-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, Integer32, Counter32, Counter64, Unsigned32, IpAddress, mib-2 FROM SNMPv2-SMI MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF InetAddress, InetAddressType, InetPortNumber FROM INET-ADDRESS-MIB; udpMIB MODULE-IDENTITY LAST-UPDATED "200505200000Z" -- May 20, 2005 ORGANIZATION "IETF IPv6 Working Group http://www.ietf.org/html.charters/ipv6-charter.html" CONTACT-INFO "Bill Fenner (editor) AT&T Labs -- Research 75 Willow Rd. Menlo Park, CA 94025 Phone: +1 650 330-7893 Email: John Flick (editor) Hewlett-Packard Company 8000 Foothills Blvd. M/S 5557 Roseville, CA 95747 Phone: +1 916 785 4018 Email: Send comments to " DESCRIPTION "The MIB module for managing UDP implementations. Copyright (C) The Internet Society (2005). This version of this MIB module is part of RFC 4113; see the RFC itself for full legal notices." REVISION "200505200000Z" -- May 20, 2005 DESCRIPTION "IP version neutral revision, incorporating the following revisions: - Added udpHCInDatagrams and udpHCOutDatagrams in order to provide high-capacity counters for fast networks. - Added text to the descriptions of all counter objects to indicate how discontinuities are detected. - Deprecated the IPv4-specific udpTable and replaced it with the version neutral udpEndpointTable. This table includes support for connected UDP endpoints and support for identification of the operating system process associated with a UDP endpoint. - Deprecated the udpGroup and replaced it with object groups representing the current set of objects. - Deprecated udpMIBCompliance and replaced it with udpMIBCompliance2, which includes the compliance information for the new object groups. This version published as RFC 4113." REVISION "199411010000Z" -- November 1, 1994 DESCRIPTION "Initial SMIv2 version, published as RFC 2013." REVISION "199103310000Z" -- March 31, 1991 DESCRIPTION "The initial revision of this MIB module was part of MIB-II, published as RFC 1213." ::= { mib-2 50 } -- the UDP group udp OBJECT IDENTIFIER ::= { mib-2 7 } udpInDatagrams OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of UDP datagrams delivered to UDP users. Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by discontinuities in the value of sysUpTime." ::= { udp 1 } udpNoPorts OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of received UDP datagrams for which there was no application at the destination port. Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by discontinuities in the value of sysUpTime." ::= { udp 2 } udpInErrors OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of received UDP datagrams that could not be delivered for reasons other than the lack of an application at the destination port. Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by discontinuities in the value of sysUpTime." ::= { udp 3 } udpOutDatagrams OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of UDP datagrams sent from this entity. Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by discontinuities in the value of sysUpTime." ::= { udp 4 } udpHCInDatagrams OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of UDP datagrams delivered to UDP users, for devices that can receive more than 1 million UDP datagrams per second. Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by discontinuities in the value of sysUpTime." ::= { udp 8 } udpHCOutDatagrams OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of UDP datagrams sent from this entity, for devices that can transmit more than 1 million UDP datagrams per second. Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by discontinuities in the value of sysUpTime." ::= { udp 9 } -- -- { udp 6 } was defined as the ipv6UdpTable in RFC2454's -- IPV6-UDP-MIB. This RFC obsoletes RFC 2454, so { udp 6 } is -- obsoleted. -- -- The UDP "Endpoint" table. udpEndpointTable OBJECT-TYPE SYNTAX SEQUENCE OF UdpEndpointEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing information about this entity's UDP endpoints on which a local application is currently accepting or sending datagrams. The address type in this table represents the address type used for the communication, irrespective of the higher-layer abstraction. For example, an application using IPv6 'sockets' to communicate via IPv4 between ::ffff:10.0.0.1 and ::ffff:10.0.0.2 would use InetAddressType ipv4(1). Unlike the udpTable in RFC 2013, this table also allows the representation of an application that completely specifies both local and remote addresses and ports. A listening application is represented in three possible ways: 1) An application that is willing to accept both IPv4 and IPv6 datagrams is represented by a udpEndpointLocalAddressType of unknown(0) and a udpEndpointLocalAddress of ''h (a zero-length octet-string). 2) An application that is willing to accept only IPv4 or only IPv6 datagrams is represented by a udpEndpointLocalAddressType of the appropriate address type and a udpEndpointLocalAddress of '0.0.0.0' or '::' respectively. 3) An application that is listening for datagrams only for a specific IP address but from any remote system is represented by a udpEndpointLocalAddressType of the appropriate address type, with udpEndpointLocalAddress specifying the local address. In all cases where the remote is a wildcard, the udpEndpointRemoteAddressType is unknown(0), the udpEndpointRemoteAddress is ''h (a zero-length octet-string), and the udpEndpointRemotePort is 0. If the operating system is demultiplexing UDP packets by remote address and port, or if the application has 'connected' the socket specifying a default remote address and port, the udpEndpointRemote* values should be used to reflect this." ::= { udp 7 } udpEndpointEntry OBJECT-TYPE SYNTAX UdpEndpointEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information about a particular current UDP endpoint. Implementers need to be aware that if the total number of elements (octets or sub-identifiers) in udpEndpointLocalAddress and udpEndpointRemoteAddress exceeds 111, then OIDs of column instances in this table will have more than 128 sub-identifiers and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3." INDEX { udpEndpointLocalAddressType, udpEndpointLocalAddress, udpEndpointLocalPort, udpEndpointRemoteAddressType, udpEndpointRemoteAddress, udpEndpointRemotePort, udpEndpointInstance } ::= { udpEndpointTable 1 } UdpEndpointEntry ::= SEQUENCE { udpEndpointLocalAddressType InetAddressType, udpEndpointLocalAddress InetAddress, udpEndpointLocalPort InetPortNumber, udpEndpointRemoteAddressType InetAddressType, udpEndpointRemoteAddress InetAddress, udpEndpointRemotePort InetPortNumber, udpEndpointInstance Unsigned32, udpEndpointProcess Unsigned32 } udpEndpointLocalAddressType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The address type of udpEndpointLocalAddress. Only IPv4, IPv4z, IPv6, and IPv6z addresses are expected, or unknown(0) if datagrams for all local IP addresses are accepted." ::= { udpEndpointEntry 1 } udpEndpointLocalAddress OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The local IP address for this UDP endpoint. The value of this object can be represented in three possible ways, depending on the characteristics of the listening application: 1. For an application that is willing to accept both IPv4 and IPv6 datagrams, the value of this object must be ''h (a zero-length octet-string), with the value of the corresponding instance of the udpEndpointLocalAddressType object being unknown(0). 2. For an application that is willing to accept only IPv4 or only IPv6 datagrams, the value of this object must be '0.0.0.0' or '::', respectively, while the corresponding instance of the udpEndpointLocalAddressType object represents the appropriate address type. 3. For an application that is listening for data destined only to a specific IP address, the value of this object is the specific IP address for which this node is receiving packets, with the corresponding instance of the udpEndpointLocalAddressType object representing the appropriate address type. As this object is used in the index for the udpEndpointTable, implementors of this table should be careful not to create entries that would result in OIDs with more than 128 subidentifiers; else the information cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3." ::= { udpEndpointEntry 2 } udpEndpointLocalPort OBJECT-TYPE SYNTAX InetPortNumber MAX-ACCESS not-accessible STATUS current DESCRIPTION "The local port number for this UDP endpoint." ::= { udpEndpointEntry 3 } udpEndpointRemoteAddressType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The address type of udpEndpointRemoteAddress. Only IPv4, IPv4z, IPv6, and IPv6z addresses are expected, or unknown(0) if datagrams for all remote IP addresses are accepted. Also, note that some combinations of udpEndpointLocalAdressType and udpEndpointRemoteAddressType are not supported. In particular, if the value of this object is not unknown(0), it is expected to always refer to the same IP version as udpEndpointLocalAddressType." ::= { udpEndpointEntry 4 } udpEndpointRemoteAddress OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The remote IP address for this UDP endpoint. If datagrams from any remote system are to be accepted, this value is ''h (a zero-length octet-string). Otherwise, it has the type described by udpEndpointRemoteAddressType and is the address of the remote system from which datagrams are to be accepted (or to which all datagrams will be sent). As this object is used in the index for the udpEndpointTable, implementors of this table should be careful not to create entries that would result in OIDs with more than 128 subidentifiers; else the information cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3." ::= { udpEndpointEntry 5 } udpEndpointRemotePort OBJECT-TYPE SYNTAX InetPortNumber MAX-ACCESS not-accessible STATUS current DESCRIPTION "The remote port number for this UDP endpoint. If datagrams from any remote system are to be accepted, this value is zero." ::= { udpEndpointEntry 6 } udpEndpointInstance OBJECT-TYPE SYNTAX Unsigned32 (1..'ffffffff'h) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The instance of this tuple. This object is used to distinguish among multiple processes 'connected' to the same UDP endpoint. For example, on a system implementing the BSD sockets interface, this would be used to support the SO_REUSEADDR and SO_REUSEPORT socket options." ::= { udpEndpointEntry 7 } udpEndpointProcess OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "The system's process ID for the process associated with this endpoint, or zero if there is no such process. This value is expected to be the same as HOST-RESOURCES-MIB::hrSWRunIndex or SYSAPPL-MIB:: sysApplElmtRunIndex for some row in the appropriate tables." ::= { udpEndpointEntry 8 } -- The deprecated UDP Listener table -- The deprecated UDP listener table only contains information -- about this entity's IPv4 UDP end-points on which a local -- application is currently accepting datagrams. It does not -- provide more detailed connection information, or information -- about IPv6 endpoints. udpTable OBJECT-TYPE SYNTAX SEQUENCE OF UdpEntry MAX-ACCESS not-accessible STATUS deprecated DESCRIPTION "A table containing IPv4-specific UDP listener information. It contains information about all local IPv4 UDP end-points on which an application is currently accepting datagrams. This table has been deprecated in favor of the version neutral udpEndpointTable." ::= { udp 5 } udpEntry OBJECT-TYPE SYNTAX UdpEntry MAX-ACCESS not-accessible STATUS deprecated DESCRIPTION "Information about a particular current UDP listener." INDEX { udpLocalAddress, udpLocalPort } ::= { udpTable 1 } UdpEntry ::= SEQUENCE { udpLocalAddress IpAddress, udpLocalPort Integer32 } udpLocalAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS read-only STATUS deprecated DESCRIPTION "The local IP address for this UDP listener. In the case of a UDP listener that is willing to accept datagrams for any IP interface associated with the node, the value 0.0.0.0 is used." ::= { udpEntry 1 } udpLocalPort OBJECT-TYPE SYNTAX Integer32 (0..65535) MAX-ACCESS read-only STATUS deprecated DESCRIPTION "The local port number for this UDP listener." ::= { udpEntry 2 } -- conformance information udpMIBConformance OBJECT IDENTIFIER ::= { udpMIB 2 } udpMIBCompliances OBJECT IDENTIFIER ::= { udpMIBConformance 1 } udpMIBGroups OBJECT IDENTIFIER ::= { udpMIBConformance 2 } -- compliance statements udpMIBCompliance2 MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for systems that implement UDP. There are a number of INDEX objects that cannot be represented in the form of OBJECT clauses in SMIv2, but for which we have the following compliance requirements, expressed in OBJECT clause form in this description clause: -- OBJECT udpEndpointLocalAddressType -- SYNTAX InetAddressType { unknown(0), ipv4(1), -- ipv6(2), ipv4z(3), -- ipv6z(4) } -- DESCRIPTION -- Support for dns(5) is not required. -- OBJECT udpEndpointLocalAddress -- SYNTAX InetAddress (SIZE(0|4|8|16|20)) -- DESCRIPTION -- Support is only required for zero-length -- octet-strings, and for scoped and unscoped -- IPv4 and IPv6 addresses. -- OBJECT udpEndpointRemoteAddressType -- SYNTAX InetAddressType { unknown(0), ipv4(1), -- ipv6(2), ipv4z(3), -- ipv6z(4) } -- DESCRIPTION -- Support for dns(5) is not required. -- OBJECT udpEndpointRemoteAddress -- SYNTAX InetAddress (SIZE(0|4|8|16|20)) -- DESCRIPTION -- Support is only required for zero-length -- octet-strings, and for scoped and unscoped -- IPv4 and IPv6 addresses. " MODULE -- this module MANDATORY-GROUPS { udpBaseGroup, udpEndpointGroup } GROUP udpHCGroup DESCRIPTION "This group is mandatory for systems that are capable of receiving or transmitting more than 1 million UDP datagrams per second. 1 million datagrams per second will cause a Counter32 to wrap in just over an hour." ::= { udpMIBCompliances 2 } udpMIBCompliance MODULE-COMPLIANCE STATUS deprecated DESCRIPTION "The compliance statement for IPv4-only systems that implement UDP. For IP version independence, this compliance statement is deprecated in favor of udpMIBCompliance2. However, agents are still encouraged to implement these objects in order to interoperate with the deployed base of managers." MODULE -- this module MANDATORY-GROUPS { udpGroup } ::= { udpMIBCompliances 1 } -- units of conformance udpGroup OBJECT-GROUP OBJECTS { udpInDatagrams, udpNoPorts, udpInErrors, udpOutDatagrams, udpLocalAddress, udpLocalPort } STATUS deprecated DESCRIPTION "The deprecated group of objects providing for management of UDP over IPv4." ::= { udpMIBGroups 1 } udpBaseGroup OBJECT-GROUP OBJECTS { udpInDatagrams, udpNoPorts, udpInErrors, udpOutDatagrams } STATUS current DESCRIPTION "The group of objects providing for counters of UDP statistics." ::= { udpMIBGroups 2 } udpHCGroup OBJECT-GROUP OBJECTS { udpHCInDatagrams, udpHCOutDatagrams } STATUS current DESCRIPTION "The group of objects providing for counters of high speed UDP implementations." ::= { udpMIBGroups 3 } udpEndpointGroup OBJECT-GROUP OBJECTS { udpEndpointProcess } STATUS current DESCRIPTION "The group of objects providing for the IP version independent management of UDP 'endpoints'." ::= { udpMIBGroups 4 } END -- -- Copyright (C) The Internet Society (2005). -- -- This document is subject to the rights, licenses and restrictions -- contained in BCP 78, and except as set forth therein, the authors -- retain all their rights. -- -- This document and the information contained herein are provided on an -- "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS -- OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET -- ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, -- INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE -- INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED -- WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. -- -- Intellectual Property -- -- The IETF takes no position regarding the validity or scope of any -- Intellectual Property Rights or other rights that might be claimed to -- pertain to the implementation or use of the technology described in -- this document or the extent to which any license under such rights -- might or might not be available; nor does it represent that it has -- made any independent effort to identify any such rights. Information -- on the procedures with respect to rights in RFC documents can be -- found in BCP 78 and BCP 79. -- -- Copies of IPR disclosures made to the IETF Secretariat and any -- assurances of licenses to be made available, or the result of an -- attempt made to obtain a general license or permission for the use of -- such proprietary rights by implementers or users of this -- specification can be obtained from the IETF on-line IPR repository at -- http://www.ietf.org/ipr. -- -- The IETF invites any interested party to bring to its attention any -- copyrights, patents or patent applications, or other proprietary -- rights that may cover technology that may be required to implement -- this standard. Please address the information to the IETF at ietf- -- ipr@ietf.org. --