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Abstract

Simulatinghow theglobalInternetbehavesis animmensely
challengingundertakingbecauseof thenetwork’s greathet-
erogeneityandrapidchange.Theheterogeneityrangesfrom
the individual links that carry the network’s traffic, to the
protocolsthatinteroperateoverthelinks, to the“mix” of dif-
ferentapplicationsusedat a site, to the levelsof congestion
seenon different links. We discusstwo key strategies for
developingmeaningfulsimulationsin the faceof thesedif-
ficulties: searchingfor invariants,andjudiciouslyexploring
thesimulationparameterspace.We finish with a brief look
at a collaborative effort within the researchcommunityto
developa commonnetwork simulator.

1 Intr oduction

Due to the network’s complexity, simulationplays a vital
role in attemptingto characterizeboth the behavior of the
currentInternetandthepossibleeffectsof proposedchanges
to its operation. Yet modelingand simulatingthe Internet
is not an easytask. The goal of this paperis to discuss
someof theissuesanddifficultiesin modelingInternettraf-
fic, topologies,andprotocols.Thediscussionis notmeantas
a call to abandonInternetsimulationsasanimpossibletask;
in fact,oneof us(Sally) hascontinuedto usesimulationsas
a key componentof her researchfor many years. Instead,
the purposeis to shareinsightsaboutsomeof the dangers
andpitfalls in modelingandsimulatingthe Internet,in or-
der to strengthenthecontribution of simulationsin network
research.A secondpurposeis to clearly andexplicitly ac-
knowledgethelimitationsaswell asthepotentialof simula-
tionsandof model-basedresearch,sothatwedonotweaken
oursimulationsby claimingtoomuchfor them.
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We begin with the fundamentalrole of simulationin In-
ternetresearch(

�
2), andnext explore the underlyingdiffi-

culties(
�
3–
�
5) rootedin thenetwork’s immenseheterogene-

ity andthegreatdegreeto which it changesover time. We
thendiscusssomestrategiesfor accommodatingthesediffi-
culties (

�
6). We finish with a brief look at a collaborative

effort within theresearchcommunityto developa common
network simulator(

�
7).

2 The RoleOf Simulation

While measurementand experimentationprovide a means
for exploring the “real world”, simulationandanalysisare
restrictedto exploringaconstructed,abstractedmodelof the
world. In somefields the interplaybetweenmeasurement,
experimentation,simulation,andanalysismay be obvious,
but Internetresearchintroducessomeunusualadditionsto
theseroles,in partbecauseof thelargescaleandrapidevo-
lution of thesubjectarea(i.e., theglobalInternet).

Measurementis neededfor a crucial “reality check.” It
oftenservesto challengeour implicit assumptions.Indeed,
of the numerousmeasurementstudieswe have undertaken,
eachhasmanagedto surpriseus in somefundamentalfash-
ion.

Experimentsarefrequentlyvital for dealingwith imple-
mentationissues—whichcanatfirst soundalmosttrivial, but
oftenwind upintroducingunforeseencomplexities—andfor
understandingthebehavior of otherwiseintractablesystems.
Experimentationalsoplaysakey role in exploringnew envi-
ronmentsbeforefinalizinghow theInternetprotocolsshould
operatein thoseenvironments.

However, measurementandexperimentationhave limita-
tions in that they can only be usedto explore the existing
Internet;while they canbeusedto exploreparticularnew en-
vironments, they cannotbeusedto exploredifferentpossible
architecturesfor the future Internet. (Thereis no instantia-
tion of a “future Internet”,on therelevantscaleandwith the
relevantrangeof “future” applications,for ourmeasurement
andexperimentation.)
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OneproblemInternetresearchsuffers,absentfrom most
other fields, is the possibility of a “successdisaster”—
designingsomenew Internetfunctionality that, beforethe
designis fully developedanddebugged,escapesinto thereal
world andmultipliestheredueto thebasicutility of thenew
functionality. Becauseof theextremespeedwith whichsoft-
warecanpropagateto endpointsover the network, it is not
at all implausiblethat thenew functionalitymight spreadto
a million computerswithin a few weeks.Indeed,theHTTP
protocolusedby theWorld WideWebis aperfectexampleof
a successdisaster. Had its designersenvisionedit in useby
theentireInternet—andhadthey exploredthecorresponding
consequenceswith analysisor simulation—they might have
significantlyimproved its design,which in turn could have
led to amoresmoothlyoperatingInternettoday.

Analysisprovidesthepossibilityof exploring a modelof
theInternetoverwhichonehascompletecontrol.Theroleof
analysisis fundamentalbecauseit bringswith it greaterun-
derstandingof thebasicforcesatplay. It carrieswith it, how-
ever, therisk of usinga modelsimplifiedto thepoint where
key facetsof Internetbehavior havebeenlost, in whichcase
any ensuingresultscould be useless(thoughthey may not
appearto beso!). Evenin light of this risk, asscientistswe
needto recognizethefundamentalroleanalysisplaysin pro-
viding the bedrockon which to build our understandingof
the Internet. Furthermore,while the network is immensely
complex anddauntinglydifficult to encompass,we canand
do make progress(often incremental)towardsbuilding this
understanding.Finally, we note that muchof what we ar-
guein this paperaboutdifficultieswith simulationalsoap-
ply to difficultieswith modeling;thecoreproblemof how to
soundlyincorporateimmensediversityinto simulationslike-
wiseappliesto thechallengeof trying to devisemodelswith
truly generalapplicability.

Simulationsarecomplementaryto analysis,not only by
providing a checkon thecorrectnessof theanalysis,but by
allowing explorationof complicatedscenariosthatwouldbe
eitherdifficult or impossibletoanalyze.Simulationscanalso
play a vital role in helpingresearchersto develop intuition.
In particular, thecomplexitiesof Internettopologiesandtraf-
fic, andthecentralroleof adaptivecongestioncontrol,make
simulationthe mostpromisingtool for addressingmany of
thequestionsaboutInternettraffic dynamics.

Becausesimulationsoftenusemorecomplex modelsthan
thosethatunderlyanalyticalresults,simulationscanbeused
tocheckthatsimplifyingassumptionsin theanalyticalmodel
havenot invalidatedtheanalyticalresults.However, simula-
tionsalsogenerallysharesomeof thesamemodelsusedin
theanalysis,for example,of a simpletopologyor of a spe-
cific traffic mix. In thiscase,theagreementbetweenthesim-
ulationsandtheanalysisis notsurprising;theagreementbe-
tweensimulationsandanalysisdoesnotshow thatthemodel
usedby theanalyticalresultsis in any sense“correct”.

In this paperwe develop the argumentthat, due to the
heterogeneityand rapid changein the Internet, theredoes
not exist a singlesuiteof simulationscenariossufficient to

demonstratethataproposedprotocolor systemwill perform
well in thefutureevolving Internet.Instead,simulationsplay
themorelimited roleof examiningparticularaspectsof pro-
posedchangesor of Internetbehavior, andof addingto our
understandingof theunderlyingdynamics.

For sometopics,suchasthedivisionof bandwidthamong
competingTCP connectionswith differentroundtriptimes,
the simplestscenariothat illustratesthe underlyingprinci-
plesis often the best. In this casethe researchercanmake
a consciousdecisionto abstractaway all but the essential
componentsof thescenariounderstudy. At thesametime,
the resultsillustratedin simplescenariosarestrongerif the
researchershowsthattheillustratedprinciplestill appliesaf-
teraddingcomplexity to thesimplescenarioby allowing for
variousformsof variability known to prevail in “real life”.

As theresearchcommunitybeginsto addressquestionsof
scale, small,simplesimulationscenariosbecomelessuseful.
It becomesmorecritical for researchersto addressquestions
of topology, traffic generation,andmultiple layersof proto-
cols,andto paymoreattentionto thechoicesmadein pick-
ing the underlyingmodelsto be explored. It alsobecomes
morecritical, in thiscase,to havesimulatorscapableof gen-
eratingscenarioswith large topologiesandcomplex traffic
patterns,andsimulatingthetraffic in thesescenarios.

Along with its strengths,simulationasa tool of network
researchhasits shareof dangersandpitfalls. In additionto
the problemsdescribedin the restof this paperof defining
the relevant model, therecan be considerabledifficulty in
verifying that your simulatorin fact accuratelyimplements
the intendedmodel. It is generallyeasierto verify the cor-
rectnessof a mathematicalanalysisthan it is to verify the
correctnessof the softwareimplementationof an extensive
andcomplex underlyingmodel.

For thesereasons,Internetsimulationsaremostusefulas
atool for building understandingof dynamics,or to illustrate
apoint,or to explorefor unexpectedbehavior. Internetsimu-
lationsaremoretreacherous,in ouropinion,whenusedsim-
ply to producenumbersthataretakenatfacevalue(e.g.,that
protocolA performed23%betterthanprotocolB). Not only
aretherequestionsof whethera small changein themodel
couldhave resultedin a largechangein theresults;thereis,
in addition,the questionof whetherthe resultswould have
beenaffectedby a changein a detailof thesimulator’s soft-
wareimplementationof theunderlyingmodel.

Thatsaid,wenotethatdifferentcommunitiesarelikely to
havedifferentrequirementsof network simulators.For more
immediatedevelopmentwork, wherethereis a reasonably
well-definedquestionof whetherAlternative A or Alterna-
tiveB performsbestin EnvironmentX, it couldbefeasibleto
carefullydefinethe underlyingmodel,verify the simulator,
andindeedto usesimulationresultsto show thatAlternative
A performs23%betterthanAlternativeB.

For longer-term research,wherethe questionis whether
Alternative A or AlternativeB is likely to bea betterchoice
for theInternetarchitecturefive yearsin thefuture,a differ-
entapproachis required,andpossiblya differentsimulator.

2



Themostusefulsimulatorfor thispurposewouldbeonethat
not only incorporatedone’s own proposedprotocolsfor the
future Internetarchitecture,but alsotheproposedprotocols
fromotherresearchersaswell. Thiswouldallow someinves-
tigation of the potentialinteractionsbetweenthesevarious
proposals(which might be implementedat differentplaces
in thenetwork or atdifferentlayersof theprotocolstack).

Whethersimulationsare usedto obtain quantitative re-
sults,or to exploremoregeneralrelationshipsbetweennet-
work parametersand network dynamics,simulationsare
mostuseful(andtakenmostseriouslyby otherresearchers)
if other researcherscan confirm for themselves that slight
changesin thenetwork scenariodo not significantlychange
the results,and that the simulationresultsarenot actually
dueto errorsin theimplementationof thesimulator. Oneof
thebestwaysto addresstheseissuesof validatingsimulation
is for researchersto make their simulatorandscriptspub-
licly available,sothatotherresearcherscaneasilycheckfor
themselvestheeffectof changingunderlyingassumptionsof
thenetwork scenario.Oneof therecommendationsfrom the
1999DARPA/NIST Network SimulationValidationWork-
shop[NSVW99] is that researchersmake their simulation
scriptspublicly available,for exactly this reason.

3 An ImmenseMoving Target

TheInternethasseveralkey propertiesthatmake it exceed-
ingly hard to characterize,and thus to simulate. First, its
greatsuccesshascomein largepartbecausethemainfunc-
tion of the InternetProtocol(IP) architectureis to unify di-
versenetworking technologiesandadministrative domains.
IP allows vastly different networks administeredby vastly
differentpolicies to seamlesslyinteroperate.However, the
factthatIP masksthesedifferencesfrom auser’sperspective
doesnot make themgo away! IP buysuniform connectivity
in thefaceof diversity, butnotuniformbehavior. Indeed,the
greaterIP’s successat unifying diversenetworks,theharder
the problemof understandinghow a large IP network be-
haves.

A secondkey propertyis that the Internetis big. It in-
cludedan estimated99.8 million computersat the end of
2000[Tel00]. Its sizebringswith it two difficulties.Thefirst
is that the rangeof heterogeneitymentionedabove is very
large: if only a small fractionof thecomputersbehave in an
atypicalfashion,theInternetstill might includethousandsof
suchcomputers,oftentoomany to dismissasnegligible.

Size also brings with it the crucial problemof scaling:
many networking protocolsandmechanismswork fine for
small networks of tensor hundredsof computers,or even
perhaps“large” networksof tensof thousandsof computers,
yet becomeimpracticalwhenthenetwork is againthreeor-
dersof magnitudelarger (today’s Internet),much lessfive
ordersof magnitude(the comingdecade’s Internet). Large
scalemeansthatrareeventswill routinelyoccurin somepart
of thenetwork, and,furthermore,thatrelianceonhumanin-
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Figure1: Bytesperday sentthroughtheUSENETbulletin
boardsystem,averagedovertwo-weekintervals(takenfrom
[Pax94a]). The growth ratecorrespondsto exponentialin-
creaseof 80%/year. Datacourtesyof Rick Adams.

terventionto maintaincritical networkpropertiessuchassta-
bility becomesa recipefor disaster.

A third key propertyis that the Internetchangesin dras-
tic waysover time. For example,we mentionedabove that
in Dec.2000,thenetwork included100million computers.
But in Jan.1997,fouryearsearlier, it comprisedonly 16mil-
lion computers[Lot97], reflectinggrowthof about60%/year.
Thisgrowth thenbegsthequestion:how big will it bein two
moreyears?5 years?Onemight be temptedto dismissthe
explosive growth between1997and2000assurelya one-
timephenomenon,reflectingthesuddenpublicawarenessof
theWeb. But Figure1 beliesthisconclusion.It plotstimeon
the X-axis andthe volumeof traffic throughUSENET(the
Internet’s main bulletin boardsystem)in bytes/dayon the
Y-axis,which is logarithmicallyscaled.

The excellent (for real data) straight-line fit to the
USENETtraffic’sgrowth overtimecorrespondsto exponen-
tial growth of 80%/year. But the dataplotted go back to
1984! Clearly, theInternethassustainedmajor exponential
growthfor well overadecade,with nosignof slowingdown.
Accordingly, we cannotassumethat the network’s current,
fairly immensesizeindicatesthatits growth mustsurelybe-
gin to slow.

Figure2 shows a considerablydifferentgrowth statistic.
Herewehaveplottedthenumberof connectionsmadeby the
LawrenceBerkeley NationalLaboratory(LBNL) eachday
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Figure 2: Internet connectionsper day at the Lawrence
Berkeley NationalLaboratory. Thegrowth ratecorresponds
to exponentialincreaseof 52%/year.

from Jan. 1, 1997,to Dec.31, 2000,with the Y-axis again
log-scaled.Thus,weareno longerviewing anaggregateIn-
ternetgrowth statisticbut onespecificto aparticularsite;but
weagainseesustainedexponentialgrowth, thistimeatarate
of about52%/year. (Thesetof pointsbelow themaingroup,
alsogrowing at a similar rate,primarily correspondsto di-
minishedInternetuseon weekends.)See[Pax94a] for more
discussionof thisparticularsite’s growth characteristics.

Unfortunately, growth over time is not the only way in
which theInternetis a moving target. Evenwhatwe would
assumemustcertainlybesolid, unchangingstatisticalprop-
ertiescanchangein a brief amountof time. For example,
in Oct. 1992themediansizeof an InternetFTP(file trans-
fer) connectionobservedatLBNL was4,500bytes[Pax94b].
The medianis considereda highly robust statistic,oneim-
muneto outliers(unlike themean,for example),andin this
casewascomputedover60,000samples.Surelythisstatistic
shouldgivesomesolidpredictivepowerin forecastingfuture
FTP connectioncharacteristics!Yet only five monthslater,
the samestatistic computedover 80,000samplesyielded
2,100bytes,lessthanhalf whatwasobservedbefore.

Again,it mightbetemptingto view thisvariationasaone-
timefluke. But repeatingthesameanalysissevenyearslater,
wefind thatin March,1998,themedianconnectionsizewas
10,900bytes,while ninemonthslater, it fell againby afactor
of two, this time to 5,600bytes. A year later it wasback
to 10,900bytes,andsix monthsafter that it roseto 62 KB,
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Figure3: World Wide Web(HTTP) connectionspermonth
at the LawrenceBerkeley NationalLaboratory(taken from
[Pax94a]). The growth ratecorrespondsto doublingevery
7–8weeks.

beforefalling backto 10KB againfivemonthslater.
Thus,wemustexercisegreatcautionin assumingthatob-

servationsmadeat a particularpoint in time tell us much
aboutpropertiesatotherpointsin time.

For Internet engineering,however, the growth in size
andchangein connectioncharacteristicsin somesensepale
when comparedto anotherway in which the Internetis a
moving target: it is subjectto major changesin how it is
used,with new applicationssometimesvirtually exploding
on thesceneandrapidlyalteringthelay of theland.

Figure3 plotsthenumberof HTTPconnectionsmadeper
day for 8 datasetsrecordedat LBNL, with a log-scaledY-
axis.WeseethattheWebwasessentiallyunknownuntil late
1992(andothertraffic dominated).Then,a stunningpattern
of growth setin: thesite’s Webtraffic beganto doubleevery
7–8weeks, andcontinuedto dosofor twofull years. Clearly,
any predictionsof the shapeof future traffic madebefore
1993werehopelesslyoff themarkby1994,whenWebtraffic
wholly dominatedthesite’sactivities.

Furthermore,suchexplosive growth was not a one-time
eventassociatedwith theparadigm-shiftin Internetuseintro-
ducedby theWeb. For example,in Jan.1992theMBone—a
“multicastbackbone”for transmittingaudioandvideoover
theInternet[Eri94]—did notexist. Threeyearslater, it made
up 20%of all of theInternetdatabytesat Digital’s Western
ResearchLab; 40%at LBNL; andmorethan50%at a Bell-
core. It too, like theWeb,hadexploded. In this case,how-
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ever, theexplosionabated,andtodayMBonetraffic is over-
shadowedby Webtraffic (it madeup 12%of LBNL’s wide-
areatraffic in December, 1997,andremainsanappreciable
fraction today). How this will look tomorrow, however, is
anyone’sguess.

New applicationson the radarscreensincemid-1999in-
clude Napsterand Gnutella,which allow Internetusersto
sharefiles amongeachother(particularlyMP3 musicfiles).
The explosive growth of Napstertraffic since1999hasal-
ready resultedin several universitiesimposingbandwidth
limitations on Napstertraffic. It is not clear whetherthe
bandwidthshareusedby distributed file-sharingapplica-
tions suchas Napsterand Gnutellawill continueto grow,
or whethersomeotherapplicationwill emergeto challenge
emailandthewebasthe“killer apps”of theInternet[C01].

In summary: the Internet’s technicaland administrative
diversity, sustainedgrowth over time, and immensevaria-
tionsover time regardingwhichapplicationsareusedandin
whatfashion,all presentimmensedifficultiesfor attemptsto
simulateit with a goal of obtaining“general” results. The
next threesectionsdiscussin moredetail the difficulties to
modelingtheInternetinherentin its heterogeneity, size,and
unanticipatedchange.

4 HeterogeneityAny Which Way You
Look

Heterogeneityis a key property that madesit difficult to
modelandsimulatetheInternet.Evenif we fix our interest
to asinglepointof time,theInternetremainsimmenselyhet-
erogeneous.In theprevioussectionwe discussedthis prob-
lem in high-level terms;here,we discusstwo specificareas
in which ignoringheterogeneitycanunderminethestrength
of simulationresults.

4.1 Topologyand link properties

A basicquestionfor a network simulationis what topology
to usefor thenetwork beingsimulated—thespecificsof how
the computersin thenetwork areconnected(directly or in-
directly)with eachother, andthepropertiesof thelinks that
fostertheinterconnection.

Unfortunately, the topologyof the Internetis difficult to
characterize.First, it is constantlychanging. Second,the
topologyis engineeredby a numberof competingentities,
not all of whomarewilling to provide topologicalinforma-
tion. Becausethereis no suchthing asa “typical” Internet
topology, simulationsexploring protocolsthat aresensitive
to topologicalstructurecanatbesthopeto characterizehow
theprotocolperformsovera rangeof topologies.

On the plus side,the researchcommunityhasmadesig-
nificantadvancesin developingtopology-generatorsfor In-
ternetsimulations[CDZ97]. Severalof thetopologygenera-
torscancreatenetworkswith locality andhierarchyloosely
basedonthestructureof thecurrentInternet.Onthenegative

side,however, muchof ourunderstandingof network behav-
ior is basedonsimulationsandanalysis(includingourown)
that have not yet tackledthe large-scalenatureof network
topologyandprotocols.

Thenext problemis thatwhile thepropertiesof thediffer-
ent typesof links usedin thenetwork aregenerallyknown,
they spana very large range. Someareslow modems,ca-
pableof moving only hundredsof bytesper second,while
othersarestate-of-the-artfiber optic links with bandwidths
millions of timesfaster. Sometraversecopperor glasswires,
while others,increasingly, areradio- or infrared-basedand
hencewireless,with muchdifferentlosscharacteristicsand
sometimescomplex link layers. Someare point-to-point
links directly connectingtwo routers(this form of link is
widely assumedin simulation studies); othersare broad-
castlinks that directly connecta large numberof comput-
ers(fairly commonin practice,thoughdiminishingfor wired
networks). Thesetwo typeshave quitedifferentproperties:
broadcastlinks have contentionin which multiple transmit-
ting computersmustresolve which of themgetsto usethe
link when(so traffic on broadcastlinks becomescorrelated
in a fashionthat is differentfrom whenusingpoint-to-point
links). However, broadcastlinks canalsomake somepro-
tocols muchmore efficient, by directly facilitating one-to-
many communication. An additionalconsiderationis that
somelinks aremultiaccesswithoutbeingtruebroadcast.For
example,awirelessradiolink might includelocationswhere
someof theusersof thelink canhearsomebut notall of the
otherusersof thelink.

Another type of link is that provided by connectionsto
satellites.If a satelliteis in geosynchronousorbit, thenthe
latency up to and back down from the satellitewill be on
theorderof hundredsof milliseconds,muchhigherthanfor
mostland-basedlinks. Ontheotherhand,if thesatelliteis in
low-earthorbit, thelatency is quiteabit smaller, but changes
with timeasthesatellitecrossesthefaceof theearth.

Anotherfacetof topologyeasyto overlook is that of dy-
namicrouting. In the Internet,routesthroughthe network
can changeon time scalesranging from secondsto days
[Pax97a], and hencethe topology is not fixed. If route
changesoccur on fine enoughtime scales,then one must
refine the notion of “topology” to include multi-pathing.
Multi-pathing immediatelybringsothercomplications:the
latency, bandwidthand load of the differentpathsthrough
thenetwork mightdiffer considerably.

Finally, routesarequiteoftenasymmetric, with theroute
from computer� to computer� throughthenetwork differ-
ing in thehopsit visits from thereverseroutefrom � to � .
Routingasymmetrycanleadto asymmetryin pathproperties
suchas latency andbandwidth(which canalso arisefrom
othermechanisms).An interestingfacetof routingasymme-
try is thatit oftenonly arisesin largetopologies:it providesa
goodexampleof how scalingcanleadto unanticipatedprob-
lems.
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4.2 Protocoldifferences

Onceall of thesetopologyandlink propertyheadacheshave
beensortedout,theresearcherconductingasimulationstudy
must then tackle the specificsof the protocolsusedin the
study. For somestudies,simplifiedversionsof the relevant
Internetprotocolsmaywork fine. But for otherstudiesthat
aresensitive to thedetailsof theprotocols(it cansometimes
be hardto tell thesefrom the former!), researchersanden-
gineersfacesomehardchoices.While conceptuallytheIn-
ternetusesaunifiedsetof protocols,in realityeachprotocol
hasbeenimplementedby many differentcommunities,often
with significantlydifferentfeatures(andof coursebugs).

For example,thewidely usedTransmissionControlPro-
tocol (TCP)hasundergonemajorevolutionarychanges(see
[Ste96] for a “f amily tree” showing the lineagesassociated
with one evolutionary branch). A study of eleven differ-
ent TCP implementationsfound distinguishingdifferences
amongnearlyall of them[Pax97b], andmajorproblemswith
several [PADR99]. More recently, techniquesfor “finger-
printing” differentTCP implementations(basedon analyz-
ing their distinctbehavior in responseto a wide rangeof in-
puts) have beenusedto identify (at last count) more than
400 different implementationsandversions,basedon their
idiosyncracies[Fyo01]. The TBIT tool for TCP Behavior
Inference[TBIT] wascreated,in part, to documentthe fact
thatTCPTahoeandRenoimplementationsareno longerthe
dominantfamilies of TCP congestioncontrol in the Inter-
net,andhavebeenreplacedby NewRenoandSACK [FF96].
As a consequence,asdiscussedlater in the paper, research
proposalsof routerschedulingor queuemanagementmech-
anismsdesignedto accomodatethe performanceproblems
of RenoTCPshouldbeof limited interest.

Thus,researchersmustdecidewhich real-world features
andpeculiaritiesto includein their study, andwhich canbe
safely ignored. For somesimulationscenarios,the choice
betweentheseis clear; for others,determiningwhatcanbe
ignoredcan presentconsiderabledifficulties. After decid-
ing which specificInternetprotocolsto use,they mustthen
decidewhich applications to simulateusing thoseproto-
cols. Unfortunately, differentapplicationshave major dif-
ferencesin their characteristics;worse, thesecharacteris-
tics can vary considerablyfrom site to site, as does the
“mix” of whichapplicationsarepredominantlyusedatasite
[DJCME92, Pax94a]. Again,researchersarefacedwith hard
decisionsabouthow to keeptheirsimulationstractablewith-
out oversimplifyingtheir resultsto thepoint of uselessness.
Simulationtoolsthathelpto createatraffic mix with a range
of applicationsusinga rangeof transportprotocolsubfami-
lieswouldbeabig helpin this regard.

4.3 Traffic Generation

Traffic generationis oneof thekey challengesin modeling
andsimulatingthe Internet. For a small simulationwith a
singlecongestedlink, simulationsareoftenrunwith a small

numberof competingtraffic sources.However, for a larger
simulationwith a morerealistictraffic mix, a basicproblem
is how to introducedifferenttraffic sourcesinto thesimula-
tion, while retainingthe role of end-to-endcongestioncon-
trol.

Significantprogresshasbeenmadein the last few years
in tools for realistictraffic generation,for both simulations
andanalysis.For simulations,theneedsfor Webtraffic gen-
erationare addressedin part by tools suchas the SURGE
traffic generator[BC97] and modulesin the NS simulator
[FGHW99]. Some(but not all) of thesalientcharacteristics
of suchtraffic have beendescribedin abstractterms,a point
we returnto in

�
6.1.

Trace-driven simulationmight appearat first to provide
a cure-all for the heterogeneityand “real-world warts and
all” problemsthatundermineabstractdescriptionsof Inter-
net traffic. If only onecould collect enoughdiversetraces,
onecould in principle capturethe full diversity. This hope
fails for a basic,often unappreciatedreason. One crucial
propertyof muchof the traffic in the Internetis that it uses
adaptive congestioncontrol. Eachsourcetransmittingdata
over the network reactsto the progressof the datatransfer
so far. If it detectssignsthat thenetwork is understress,it
cuts the rateat which it sendsdata,in order to do its part
in diminishingthe stress[Jac88]. Consequently, the timing
of a connection’s packetsas recordedin a traceintimately
reflectstheconditionsin thenetwork at thetimetheconnec-
tion occurred.Furthermore,theseconditionsarenot readily
determinedby inspectingthe trace. Connectionsadaptto
network congestionanywherealongtheend-to-endpathbe-
tweenthesenderandthereceiver. Soa connectionobserved
on a high-speed,unloadedlink might still sendits packets
at a ratemuch lower thanwhat the link could sustain,be-
causesomewhereelsealongthe pathinsufficient resources
areavailablefor allowing theconnectionto proceedfaster.

Wereferto thisphenomenonasresultingin tracesthatare
shaped. Shapingleadsto a dangerouspitfall whensimulat-
ing the Internet,namelythe temptationto usetrace-driven
simulationto incorporatethediversereal-world effectsseen
in the network. The key point is that, due to rate adapta-
tion from end-to-endcongestioncontrol, we cannotsafely
reuseatraceof aconnection’spacketsin anothercontext, be-
causetheconnectionwould not have behavedthesameway
in thenew context! This problemis insidiousbecausethere
areoftenno overt indicationsthattheconnection’sbehavior
in thenew context (differenttopology, level of cross-traffic,
link capacities)is incorrect;thesimulationsimply produces
plausiblebut inaccurateresults.

Traffic shapingdoesnot meanthat, from a simulation
perspective, measuringtraffic is fruitless. Insteadof trace-
driven packet-level simulation,the focus is on trace-driven
source-level simulation. That is, for most applications,
the volumesof data sentby the endpoints,and often the
application-level patternin which datais sent(request/reply
patterns,for example), are not shapedby the network’s
currentproperties;only the lower-level specificsof exactly
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which packets are sent when are shaped. Thus, if we
take careto usetraffic tracesto characterizesource behav-
ior, ratherthanpacket-level behavior, we can thenusethe
source-leveldescriptionsin simulationsto synthesizeplausi-
ble traffic. See[DJCME92, Pax94b, CBC95,M97, BC97,
FGHW99] for examplesof source-level descriptions,and
[ITA, MOAT] for someon-linerepositoriesof traffic traces.

Finally, we notethatnot all sourcescanbereliably char-
acterizedby traffic traces.For example,remotelogin users
facedwith heavy congestionmay terminatetheir sessions
earlierthanthey otherwisewould, or only issuecommands
that generatemodestoutput. A more generalclassof ex-
ceptionscomefrom applicationsthat are inherentlyadap-
tive, suchas someforms of Internetvideo (see[MJV96],
for example).Theseapplicationsnotonly havetheirpacket-
level characteristicsshapedby currenttraffic, but alsotheir
application-level behavior. For example,insteadof thecur-
rent congestionlevel simply determiningthe rateof trans-
missionfor a fixed amountof video data,it might instead
determinethe contentor level of detail for the transmitted
video. One might still be able to determinefrom a traf-
fic trace a higher-level descriptionof the original source
characteristics—whatpropertiesit must have had prior to
adapting—andthenusethisdescriptionplustheapplication-
level adaptationalgorithmsin a simulation.But thiswill not
be easy; the transformationis considerablymore complex
than reconstructingsimple sourcepropertiessuch as data
volumes.

A final dimensionto traffic generationis the following:
to what level shouldthe traffic congestthe network links?
Virtually all degreesof congestion,including noneat all,
areobservedwith non-negligible probability in the Internet
[Pax99]. Perhapsthemostimportantissuein modelingand
simulationsis notto focusonaparticularscenariowith apar-
ticular level of congestion(asrepresentedby thepacketdrop
ratesat thecongestedqueues),but to explorescenarioswith
a rangeof congestionlevels. In particular, simulationsthat
only focuson heavily-congestedscenarios,saywith packet
drop ratesof 10% or more, are probablyof limited inter-
estwithout equalattentionto scenarioswith moremoderate
congestion.While thereisnosuchthingasa“typical” packet
lossratefor a routeror for anend-to-endconnection,there
areseveralsiteswith regionalandglobalpacket-lossindices
for theInternet[ITR, IWR]. TheInternetTraffic Report,for
example,reportsa Global Packet Loss index; for October
2000, the global packet loss index averagedaround2-3%,
and the North AmericanPacket Loss Index was generally
lessthan1%. However, the day that this is beingwritten,
thepathto oneof theNorthAmericanrouterswasshowing a
33%packetdroprate,while theotherNorthAmericanpaths
showeda 0% packet drop rate. Thus,the issueof a typical
level of congestionis fairly elusive.

Predictingthefutureevolution of congestionin theInter-
netis evenharderthancharacterizingthelevel of congestion
in theglobalInternetataparticularpointin time.While most
InternetServiceProvidersin NorthAmericareportthatthey

have little or no congestionat routersin the interior of their
networks,congestiononend-to-endpathsseemslikely to re-
mainwith us for a while, at leastat sometimesandplaces,
evenwith thegrowingrangeof optionsfor thelastlink to the
home.

However, while it is impossibleto definea“typical” Inter-
nettraffic mix or a “typical” level of congestion,wecanstill
usesimulationsto explorenetwork behavior asa functionof
the traffic, topology, link properties,andsoon. Thecrucial
point is to keepin mind that we mustconsidera spectrum
of scenarios,ratherthan oneparticularscenario. Unfortu-
nately, this also increasesthe burdenof work requiredfor
soundsimulation.

Similarly, usingsourcemodelsof individual connections
to generateaggregatedcross-traffic for simulationscanalso
presentscaling issues. If the intent is to simulatehighly
aggregatedcross-traffic, then doing so by simulatingeach
individual sourcecan be prohibitively expensive in terms
of processingtime, for many current simulators,because
a highly-aggregatedInternetlink consists(today) of many
thousandsof simultaneousconnections[TMW97]. Solid,
high-level descriptionsof aggregatetraffic, and simulation
modelsof aggregatetraffic that faithfully reproducethe re-
sponseof the aggregate to individual packet drops (or to
other indicationsof congestion),would be a greathelp to
researchersin exploring large-scalesimulations.But, sofar,
suchabstractionsarebeyondthestateof theart.

5 Today’sNetwork Is Not
Tomorrow’s

Rapid and unpredictablechangeis a third property that
madesit difficult to modelandsimulatethe Internet.Rapid
but predictablechangealonga singledimensionwould not
besuchaproblem;theproblemcomesfrom rapidandunpre-
dictablechangesalongmany dimensions.Thisunpredictable
changecanthreatento makeourresearchobsoletebeforewe
have evenfinishedit. In somecasesour researchlies in un-
derstandingfundamentalprinciplesof network behavior that
arevalid acrossawiderangeof changesin theInternetitself.
In theotherextreme,however, our researchmight proposea
modificationto Internetprotocolsor to theInternetarchitec-
ture that is profoundlyaffectedby specificassumptionsof
traffic types,topologies,or protocols.In this case,it is nec-
essaryto beasclearaspossibleaboutwhichassumptionsof
ourmodelarecritical for thevalidity of our results.

As an example,considerthe changesin end-to-endcon-
gestioncontrol. TCP is the dominanttransportprotocol in
the Internet. Variantsof TCP congestioncontrol include
Tahoe,Reno,NewReno,andSACK TCP;thelast threedif-
fer only in their responseto multiple packetsdroppedfrom
a window of data. While in the secondhalf of the 1990’s
mostof the traffic in the Internetusedthe congestioncon-
trol mechanismsof RenoTCP, end hostsare increasingly
deploying the more recentcongestioncontrol mechanisms
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of NewRenoand SACK TCP [PF00]. Thereare unfortu-
natelya numberof researchpapersproposingroutermecha-
nismsto compensatefor thepoorperformanceof RenoTCP
whenmultiple packetsaredroppedfrom a window of data;
by the time thatany of thesemechanismscouldactuallybe
deployed, RenoTCP will no longer be the relevant issue.
While usinga tool like TBIT we cantrack the deployment
rateof existing variantsof TCP in web servers,we areun-
abletopredictfuturevariantsof TCPandof otherend-to-end
congestioncontrolmechanisms,andtheirdeploymentrates.

The difficulty is that if, as an example,we are propos-
ing routermechanisms(e.g.,queuemanagement,scheduling
mechanisms)that interactwith end-to-endcongestioncon-
trol, theseroutermechanismswill have to work in the In-
ternet � yearsdown theline, aswell asin the Internetasit
waswhenwewerefirst investigatingourdesign.Thismeans
two things. First, our researchshouldnot be heavily bi-
asedby network detailsthatarelikely to change,suchasthe
poor performanceof RenoTCP whenmultiple packetsare
droppedfrom awindow of data.Second,ourresearchshould
not be invalidatedby major architecturalchanges(suchas
Explicit CongestionNotification[RF99]), differentiatedser-
vices,or new transportprotocolswith new mechanismsfor
end-to-endcongestioncontrol)thatmightor mightnotcome
to dominatetheInternetarchitectureseveralyearsdown the
road. Researchbasedon fundamentalprinciplesof network
behavior hasthebestchanceof retainingits relevanceasthe
Internetundergoesinevitableshifts in traffic andchangesin
architecture.

Examplesof unpredictableareasof changeincludethefol-
lowing:
� Pricing structur es: New pricing structuresareset in

place,leadinguserstoalterthetypeandquantityof traf-
fic they sendandreceive.

� Scheduling:TheInternetroutersswitchfrom thecom-
monFIFO schedulingfor servicingpacketsto methods
thatattempttomoreequablyshareresourcesamongdif-
ferentconnections(suchasFair Queueing,discussedby
[DKS90]).

� Wir eless:A network link technologynot widely used
in the Internet in the pastcatcheson and becomesa
much more commonmethodfor how millions of In-
ternetusersaccessthe network. An examplecomes
from wirelesstechniquessuchascellular radio or in-
frared.Thesetechnologieshave somesignificantlydif-
ferentcharacteristicsthanthoseof links widely usedto-
day, suchasbeingmuchmoreproneto packet damage
during transmission,andhaving considerablydifferent
broadcastproperties.

� Impoverisheddevices: As network nodesdiminish in
size,suchaswith handheldportabledevices,they also
oftendiminishin processingcapacity, whichcouldlead
to alternativeapproachesto cachingandencodingin at-
temptsto avoid overburdeningthedevices.

� Nativemulticast: Nativemulticastbecomeswidelyde-
ployed,enablinganexplosionin the level of multicast
audioandvideotraffic. Presently, Internetmulticastis
not widely deployed,andthe links traversedby multi-
casttraffic dependon thenatureof multicastsupportin
thevariousdomainsof thenetwork.

� Differ entiated service: Mechanismsfor supporting
different classesand qualities of service[ZDESZ93,
BBCDWW98] becomewidely deployedin theInternet.
Thesemechanismswouldthenleadto differentconnec-
tions attainingpotentiallymuchdifferentperformance
than they presentlydo, with little interactionbetween
traffic from differentclasses.

� Ubiquitous web-caching: For many purposes,Inter-
nettraffic todayis dominatedby World WideWebcon-
nections. (This is one of the relatively few epochs
in the Internet’s history for which a singleapplication
clearly dominatesuseof the network.) Although the
useof theglobalweb-cachinginfrastructureis growing
[BBMRS97],webtraffic is probablystill dominatedby
wide-areaconnectionsthattraversegeographicallyand
topologicallylargepathsthroughthenetwork.

As the web-cachinginfrastructurematures, and as
clientsandserversbothbecomemorecaching-friendly
asawayof reducingaccesstimesseenby theendusers,
thiscouldincreaseboththefractionof webcontentthat
is cacheable,andthefractionof cacheablewebcontent
that is in fact accessedfrom cachesrather than from
an origin or replicatedserver. Similarly, as the de-
ploymentof ContentDistributionNetworks(CDNs)in-
creases,thetraffic patternsin thenetwork alter. A shift
to a traffic patternthatmakesmoreuseof web caches
andCDNscouldentaila correspondingshift from traf-
fic dominatedby wide-areaconnectionsto traffic pat-
ternswith locality and lessstressof the wide-areain-
frastructure.

� A new“killer app”: A new “killer application”comes
along. While Web traffic dominatestoday, it is vital
not to thenmake the easyassumptionthat it will con-
tinueto do sotomorrow. Therearemany possiblenew
applicationsthat could take its place(andsurelysome
unforeseenones,aswastheWebsomeyearsago),and
thesecould greatlyalter how the network tendsto be
used. The recentemergenceof NapsterandGnutella
is suggestive of possiblepeer-to-peerkiller appsin the
future. Real-timeapplicationssuchas telephony and
video are anotherpossibility. Yet anotherexample
sometimesoverlookedby serious-mindedresearchersis
thatof multi-playergaming:applicationsin which per-
hapsthousandsor millions of peopleusethenetwork to
jointly entertainthemselvesby enteringinto elaborate
(andbandwidth-hungry)virtual realities.

Someof thesechangesmight neveroccur, andothersthat
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do occur might have little effect on a researcher’s simula-
tion scenarios.However, a fundamentaldifficulty in mod-
eling the swiftly-evolving Internetis that the protocolsand
mechanismsthat we aredesigningnow will becalledupon
to performnot in thecurrentInternet,but in the Internetof
the future (i.e., next month,or next year, or � yearsfrom
now). This is unlike a simulationin particlephysics,where
theunderlyingstructureof physicalrealitythatis beingmod-
eledcanbepresumednot to undergoradicalchangesduring
thecourseof our research.

Accordingly, it is of high value to attemptto direct our
simulationstowardsunderstandingthe fundamentalunder-
lying dynamicsin packet networks, rather than exploring
specificperformancein particularenvironments. Suchan
understandingcan serve as the bedrockto build upon as
thespecificsof the Internetinfrastructureevolve. However,
someof our simulationresearchmustof coursebedirected
towardsevaluatingspecificprotocolsor proposednew mech-
anisms;this evaluationrequiressomeconsiderationof how
theInternetinfrastructureis evolving,andhow thisevolution
is likely toaffectourproposedprotocolor mechanism.Strik-
ing the right balancebetweentheseis fundamentallydiffi-
cult, asthereareno easyanswersfor how to anticipatethe
evolutionarypathof thearchitecture.

6 Coping Strategies

So far we have focusedour attentionon the variousfactors
thatmake Internetsimulationa demandinganddifficult en-
deavor. In thissectionwediscusssomestrategiesfor coping
with thesedifficulties.

6.1 The search for invariants

The first observation we make is that, when facedwith a
world in which seeminglyeverythingchangesbeneathus,
any invariant we candiscover thenbecomesa rarepoint of
stability uponwhich we canthenattemptto build. By the
term“invariant”we meansomefacetof behavior which has
beenempiricallyshown to hold in a very wide rangeof en-
vironments.Thedesignof telecommunicationssystemshas
beenbuilt uponthe identificationof invariantpropertiesre-
gardingtraffic characterictics,call arrival processes,session
durations,andsoon. Findingusefulandreliableinvariantsof
Internettraffic andtopologyhasbeenmoredifficult, in part
dueto thechangingandheterogeneousnatureof theInternet
itself. However, this sectiondiscussessomeof the invariant
propertiesthathaveprovedusefulin modelingtheInternet.

We first notethat we shouldnot allow ourselvesto trust
alleged invariantspositedon theoreticalgrounds—Internet
measurementhasall toooftenwholly underminedthese,jet-
tisoningthemisleadingtheoryin theprocess—hencetheem-
phasisonderiving invariantsfrom empiricalobservations.

Fromamodelingperspective,thesearchfor invariantsbe-
comesthesearchfor parsimoniousmodels.Justasthegreat

heterogeneityof the Internetmakes it difficult to construct
realisticsimulations,for wantof knowing how to setall the
parameters,sotoodo traditional,analyticmodelsof Internet
behavior often founderfor lack of utility, becausethey re-
quiremoreparametersthana practitionerhashopeof being
ableto setin someplausiblefashion.Thus,for ananalytic
modelto provesuccessful,it is vital thatit not requiremany
parameters.

Thinking about Internet propertiesin terms of invari-
antshasreceivedconsiderableinformal attention,but to our
knowledgehasnot beenaddressedsystematically(though
see[WP98] for arelateddiscussion).Wethereforeundertake
hereto catalogwhatwebelievearepromisingcandidates:

� Diur nal patterns of activity: It hasbeenrecognized
for more than thirty yearsthat network activity pat-
ternsfollow daily patterns,with human-relatedactiv-
ity beginning to rise around8-9AM local time, peak-
ing around11AM, showing a lunch-relatednoontime
dip,pickingbackupagainaround1PM,peakingaround
3-4PM, and then declining as the businessday ends
around5PM(see,for example,[JS69, Kle76, Pax94a]).
The patternoften shows renewed activity in the early
eveninghours,rising aroundsay8PM andpeakingat
10-11PM,diminishingsharplyafter midnight. Origi-
nally, thissecondrisein activity waspresumablydueto
the “late night hacker” effect, in which userstook ad-
vantageof betterresponsetimesduringperiodsof oth-
erwiselight load. Now, the effect is presumedlargely
due to network accessfrom users’homesratherthan
theiroffices.

A relatedinvariantis thepresenceof diminishedtraffic
on weekendsandholidays.Indeed,in Figure1 we can
discernactivity dips12 monthsapart,correspondingto
theend-of-yearholidays.

Therearesignificantvariationsin diurnalpatterns,such
as: differentpatternsfor differentprotocols,especially
thosethatarenothuman-initiatedsuchasNNTPtraffic
betweenNetwork Newspeers[PF95]; differentpatterns
for thesameprotocol,suchaswork-relatedWebsurfing
during the work day versusleisure-relatedsurfingoff-
hours; and geographiceffects due to communication
acrosstime zones. But often for a particularsubclass
of traffic, onecandevisea plausiblediurnalpattern,so
weconsidersuchpatternsascollectively comprisingan
invariant.

� Self-Similarity: Longer-termcorrelationsin thepacket
arrivalsseenin aggregatedInternettraffic arewell de-
scribedin terms of “self-similar” (fractal) processes.
To thoseversedin traditionalnetwork theory, this in-
variantappearshighly counter-intuitive.Thetraditional
modeling framework (termed Poissonor Markovian
modeling)predictsthatlonger-termcorrelationsshould
rapidly die out, andconsequentlythat traffic observed
on largetime scalesshouldappearquitesmooth.Nev-
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ertheless,awidebodyof empiricaldataarguesstrongly
that thesecorrelationsremain non-negligible over a
largerangeof timescales[LTWW94, PF95,CB97].

“Longer-term” heremeans,roughly, time scalesfrom
hundredsof millisecondsto tensof minutes.On longer
time scales,non-stationaryeffectssuchasdiurnal traf-
fic loadpatterns(seepreviousitem)becomesignificant.
Onshortertimescales,effectsdueto thenetwork trans-
port protocols—whichimparta greatdealof structure
on the timing of consecutive packets—appearto dom-
inatetraffic correlations[FGHW99]. Still, time scales
from many msecto many minutesareoftenhighly rel-
evantfor simulationscenarios.

In principle, self-similar traffic correlationscan lead
to drasticreductionsin the effectivenessof deploying
buffers in Internetroutersin order to absorbtransient
increasesin traffic load [ENW96]. However, we must
note that it remainsan openquestionwhetherin very
highly aggregatedsituations,suchason Internetback-
bonelinks, the correlationshave significantactualef-
fect, becausethe varianceof the packet arrival pro-
cessis quite small. In addition, in the Internettran-
sientincreasesin traffic loadareheavily affectedby the
presence(or absence)of end-to-endcongestioncontrol,
which basicself-similarmodelsdo not include. That
self-similarity is still finding its final placein network
modelingmeansthat a diligent researcherconducting
Internetsimulationsshouldnot a priori assumethat its
effects can be ignored, but must insteadincorporate
self-similarity into the traffic modelsusedin a simu-
lation.

� Poissonsessionarri vals: Network user“session”ar-
rivals are well-describedusing Poissonprocesses.A
usersessionarrival correspondsto thetime whena hu-
mandecidesto usethenetwork for a specifictask.Ex-
amplesareremotelogins, the initiation of a file trans-
fer (FTP) dialog, and the beginning of Web-surfing
sessions.Unlike the packet arrivals discussedabove,
whichconcernwhenindividualpacketsappear, session
arrivalsaremuchhigherlevel events;eachsessionwill
typically result in the exchangeof hundredsof pack-
ets. [PF95, FGWK98] examineddifferentnetwork ar-
rival processesandfoundsolidevidencesupportingthe
useof Poissonprocessesfor usersessionarrivals,pro-
viding thattherateof thePoissonprocessis allowedto
vary on an hourly basis. (The hourly rateadjustment
relatesto thediurnalpatterninvariantdiscussedabove.)
That work alsofound that slightly finer-scalearrivals,
namelythemultiplenetwork connectionsthatcomprise
eachsession,arenot well describedasPoisson,so for
thesewe still lack a goodinvarianton which to build.
This in turn points up a subtlerequirementin source
modeling:asourcemodelat thelevel of individualcon-
nectionswouldmissthePoissonnatureof thearrival of
individualsessions.

� Log-normal connectionsizes: A goodrule of thumb
for a distributional family for describingconnection
sizesor durationsis log-normal, i.e., the distribution
of the logarithm of the sizes or durations is well-
approximatedwith a Gaussiandistribution. [Pax94b]
examinedrandomvariablesassociatedwith measured
connectionsizesand durationsand found that, for a
numberof different applications,using a log-normal
with meanandvariancefittedto themeasurementsgen-
erally describesthe body of the distribution as well
aspreviouslyrecordedempiricaldistributions(likewise
fitted to the meanandvarianceof the measurements).
Thisfindingis beneficialbecauseit meansthatby using
an analyticdescription,we do not sacrificesignificant
accuracy over usingan empiricaldescription;but, on
the other hand, the finding is lessthan satisfyingbe-
cause[Pax94b] also found that in a numberof cases,
neithermodel(analyticor empirical)fit well, dueto the
largevariationsin connectioncharacteristicsfrom site-
to-siteandover time.

� Heavy-tailed distributions: Whencharacterizingdis-
tributions associatedwith network activity, expect to
find heavy tails. By a heavy tail, wemeana Paretodis-
tribution with shapeparameter�
	�� . Thesetails are
surprisingbecausefor �	�� theParetodistributionhas
infinite variance.(Somestatisticiansarguethat infinite
varianceis aninherentlyslipperyproperty—how canit
ever beverified? But then,independencecannever be
provenin thephysicalworld, either, andfew havediffi-
culty acceptingits usein modeling.)

The evidence for heavy tails is widespread,includ-
ing CPU time consumedby Unix processes[LO86,
H-BD96]; sizesof Unix files [Irl93], compressedvideo
frames[GW94], andWorld Wide Web items[CB97];
andburstsof Ethernet[WTSW95] andFTP[PF95] ac-
tivity.

Note that the log-normaldistribution discussedin the
previous item is not a heavy-tailed distribution, yet
thesetwo invariantsarenot in conflict,becausethelog-
normalinvariantrefersto thebodyof thesizedistribu-
tion, while this invariant refersonly to the upper tail
(i.e., thedistributionof extremevalues).

� Invariant distribution for Telnet packet generation:
Danzigandcolleaguesfoundthatthepatternof network
packetsgeneratedby a usertyping at a keyboard(e.g.,
using a Telnet application)has an invariant distribu-
tion [DJCME92]. Subsequently, [PF95] confirmedthis
finding andidentifiedthedistribution ashaving botha
Paretouppertail anda Paretobody, in sharpcontrast
to thecommonassumptionthatkeystrokescanbemod-
eledusingthemuchtamerexponentialdistribution.

� Invariant characteristicsof the global topology: We
describedin

�
4.1how propertiesof theunderlyingnet-

work topologysuchaslink bandwidthandpropagation
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delaycanchangeover time. While many of the prop-
ertiesof the global topologyare likely to changedra-
maticallyover time,therearea few invariantcharacter-
istics of the global topology, namelythat the Earth is
dividedinto continents,andthatthespeedof light does
not change.In otherwords,it will alwaysbe5,850km
from New York to Paris,1 andit will alwaystake a sig-
nal at least20 ms to travel betweenthesetwo points.
This gives a lower boundof 40 ms for the roundtrip
time for a connectionfrom New York to Paris. The
Earth’s geographyin termsof continentsandhow the
humanpopulationis spreadamongthemchangesonly
extremelyslowly, and the logisticsof intercontinental
communication(and, in general,the fact that “f arther
costsmore”) will remainan importantinvariant,from
whichwecaninfer thattherewill alwaysbesignificant
structureto the global Internettopology. Earth-based
Internethostswill remaindistributedmostlyonthecon-
tinents,with significantcommunicationdelaysbetween
continentpairs.

Finally, wenotethatthereis activeresearchonidentify-
ing otherpotentialinvariantcharacteristicsof theglobal
topology, includingdescribingthedistributionsof node
outdegreeusingpower laws[FFF99].

Someof theseinvariantsmake network analysiseasier,
becausethey nail down the specificsof behavior that oth-
erwisemight beopento speculation.Othersmake analysis
difficult—for example,mathematicalmodelsof self-similar
processes,while concise,areoftenverydifficult to solveex-
actly. For simulation,however, thekey is thatthe invariants
helpreducetheparameterspacethatmustbeexplored. Us-
ing theinvariantsthenservesasa steptowardsensuringthat
theresultshavewidespreadapplicability.

6.2 Carefully exploring the parameter space

A secondstrategy for coping with the greatheterogeneity
andchangein theInternetarchitectureis to explorenetwork
behavior as a function of changingparameters.Exploring
network behavior for a fixedsetof parametervaluescanbe
usefulfor illustratingapoint,or for determiningwhetherthe
simulatedscenarioexhibits a show-stoppingproblem, but
not for generalizingto thewider space.As oneInternetre-
searcherhasput it, “If you run a singlesimulation,andpro-
ducea singlesetof numbers(e.g.,throughput,delay, loss),
andthink thatthatsinglesetof numbersshows thatyour al-
gorithmis agoodone,thenyouhaven’t aclue.” Instead,one
mustanalyzethe resultsof simulationsfor a wide rangeof
parameters.

Obviously, it is rarelyfeasibleto exploretheentireparam-
eterspace.Thechallengeis to figureout which parameters
to modify, andin whatcombinations.A usefulapproachis to
hold all parametersfixedexceptfor oneelement,in orderto

1Well, until communicationthroughtheEarth’s interior is possible,and
great-circledistancesno longerapply!

gaugethesensitivity of thesimulationscenarioto thesingle
changedvariable. As we discussedearlier, it is particularly
importantto explorebehaviors acrossa wide rangeof con-
gestionlevels(asrepresentedby thepacket lossratesat the
congestedlinks). Otherrelevantchangedvariablescouldre-
latetoprotocolspecifics,routerqueuemanagementorpacket
scheduling,network topologiesandlink properties,or traffic
mixes. Onerule of thumbis to considerordersof magni-
tudein parameterranges(sincemany Internetpropertiesare
observedto spanseveralordersof magnitude).

In addition,becausetheInternetincludesnon-linearfeed-
backmechanisms,with subtlecouplingbetweenthe differ-
entelements,sometimesevena slightchangein aparameter
can completelychangenumericalresults(see[FJ92] for a
discussionof oneform of traffic phaseeffects).Notethough
that[FJ92] alsowarnsagainstbeingmisledby sharpanddra-
maticpatternsthatcaninsteadbedueto simulationartefacts
notpresentin therealworld.

In its simplestform, exploring theparameterspaceserves
to identify elementsto which a simulationscenariois sensi-
tive. Findingthatthesimulationresultsdonot changeasthe
parameteris varieddoesnotprovideadefinitiveresult,since
it couldbethatwith alteredvaluesfor theother, fixedparam-
eters,the resultswould indeedchange.On the otherhand,
carefulexaminationof why we observe the changeswe do
mayleadto insightsinto fundamentalcouplingsbetweendif-
ferentparametersandthenetwork’sbehavior. Theseinsights
in turn cangive rise to new invariants,or perhaps“simula-
tion scenarioinvariants,” namelypropertiesthat, while not
invariantoverInternettraffic in general,areinvariantoveran
interestingsubsetof Internettraffic.

7 The NSsimulator

Thedifficultieswith Internetsimulationdiscussedin thispa-
perarecertainlydaunting.In this sectionwe discussanon-
going collaborative effort that hasprovided a sharedsim-
ulation resource,the NS simulator, for the networking re-
searchcommunity. Therearearangeof simulationplatforms
usedin network research,for a rangeof purposes;we re-
strict our discussionto the NS simulatorsimply becauseit
is the simulator that we know about,as one of us (Sally)
hasbeendirectly involvedin its development.Otherpopular
network simulatorsinclude the commercialsimulatorOP-
NET, andSSFNET, a ScalableSimulationFramework with
paralleldiscrete-eventsimulatorsintendedfor modelingthe
Internetat largescale[CNO99].

NS is a multi-protocolsimulatorthat implementsunicast
andmulticastroutingalgorithms,transportandsessionpro-
tocols(includingbothreliableandunreliablemulticastpro-
tocols),reservationsandintegratedservices,andapplication-
levelprotocolssuchasHTTP[NS,BEF+00]. In addition,NS
incorporatesa rangeof link-layer topologiesand schedul-
ing andqueuemanagementalgorithms.This level of multi-
protocolsimulationis fosteredby contributionsfrom many
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different researchersincorporatedinto a single simulation
framework. Taken together, thesecontributionsenablere-
searchon the interactionsbetweenthe protocolsand the
mechanismsatvariousnetwork layers.

The NS project also incorporateslibraries of network
topologygenerators[CDZ97] andtraffic generators,thenet-
workanimatorNAM [NAM], anemulationinterfacetoallow
theNSsimulatorto interactwith real-world traffic [F99], and
a wide rangeof contributedcodefrom theusercommunity.
Thesimulatorhasbeenusedby a wide rangeof researchers
to shareresearchandsimulationresultsandto build oneach
other’swork. While this ability of researchersto build upon
thework of othersin sharingacommonsimulatoris asignif-
icantasset,thereis alsoanaccompanying dangerthatmany
researchersusingthesamesimulatorwill all beaffectedby
thesamebugsor thesamemodelingassumptionsthatsubtly
skew theresults.

Thus,weemphasizethatthereis a role for many different
simulatorsin the network researchcommunity, andthat no
simulatoreliminatesthedifficultiesinherentin Internetsim-
ulation. Additional trendsin network simulation,including
parallelanddistributedsimulators,arediscussedbriefly in
[BEF+00]. In particular, fasterdistributedsimulators,cou-
pled with tools for making use of the data generatedby
thesesimulations,could significantlyopenup the potential
of simulationin network research,by allowing simulations
of largertopologiesandmorecomplex traffic.

Researchersstill have to take careto usethe tool of sim-
ulation properly, understandthe abstractionsthey aremak-
ing, andrecognizethe limitations of their findings. Shared
andpublicly-availablenetwork simulatorsin thenetwork re-
searchcommunitymake it easierfor researchersto create
simulations,but theresearchersthemselvesremainresponsi-
blefor makingtheiruseof simulationrelevantandinsightful,
ratherthanirrelevantor misleading.

8 Final Note

Wehopewith thisdiscussionto spur, ratherthandiscourage,
further work on Internetsimulation. We would also hope
to aid in the critical evaluationof the useof simulationsin
network research.

In many respects,simulatingtheInternetis fundamentally
harderthan simulation in other domains. In the Internet,
due to scale,heterogeneityand dynamics,it can be diffi-
cult to evaluatethe resultsfrom a singlesimulationor set
of simulations. Researchersneedsto take greatcarein in-
terpretingsimulationresultsanddrawing conclusionsfrom
them.A researcherusingsimulationmustalsorely on other
tools,which includemeasurements,experimentsandanaly-
sis,whenpossible,aswell asintuition andgoodjudgement.

Thechallenge,asalways,is to reapsoundinsightandun-
derstandingfrom simulations,while never mistakingsimu-
lation for therealworld.
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