TCP for Large Congestion Windows

Sally Floyd May 13-14, 2002 End-to-End Research Group

Joint work with Deb Agarwal, Sylvia Ratnasamy, Scott Shenker, Evandro de Souza, and others.

The problem:

- TCP's average congestion window is roughly $1.2/\sqrt{p}$ packets.
- Maintaining an average cwnd of at least $1.2 * 10^k$ packets requires a packet loss/corruption rate of at most 10^{-2k} .

- E.g., a *bit* coorruption rate of at most $1.5 * 10^{-2k-3}$.

• Given 1500-byte packets and a 100 ms RTT, filling a 10 Gbps pipe would correspond to a congestion window of W = 83,333 packets.

– At least 1.6 hours between packet drops.

• How much better can we do, given only the current feedback from routers?

Is this a pressing problem?

- Nope. In practice, users do one of the following:
 - Open up N parallel TCP connections; or
 - Use MulTCP (roughly like an aggregate of N virtual TCP connections).
- However, we think it is possible to do much better, with:
 - Better flexibility (no N to configure);
 - Better scaling;
 - Better slow-start behavior;
 - Competing more fairly with current TCP

(for environments where TCP is able to use the available bandwidth).

The approach: use a modified response function.

Simulations in NS:

- ./test-all-tcpHighspeed in tcl/test.
- The parameters specifying the response function:
 - Agent/TCP set low_window_ 31
 - Agent/TCP set high_window_ 83000
 - Agent/TCP set high_p_ 0.0000001
- The parameter specifying the decrease function at high_p_:
 Agent/TCP set high_decrease_ 0.1

Relative fairness:

Another issue: modifying slow-start:

• Slow-starting up to a window of 83,000 packets doesn't work well.

- Tens of thousands of packets dropped from one window of data.
- Slow recovery for the TCP connection.
- The answer:
 - Agent/TCP set max_ssthresh_ N

- During the initial slow-start, increase the congestion window by at most N packets in one RTT.