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Abstract— In this paper we explore the evolution of both the Inter-
net’s most heavily used transport protocol, TCP, and the current network
environment with respect to how the network’s evolution ultimately im-
pacts end-to-end protocols. The traditional end-to-end assumptions about
the Internet are increasingly challenged by the introduction of intermedi-
ary network elements (middleboxes) that intentionally or unintentionally
prevent or alter the behavior of end-to-end communications. This paper
provides measurement results showing the impact of the current network
environment on a number of traditional and proposed protocol mecha-
nisms (e.g., Path MTU Discovery, Explicit Congestion Notification, etc.).
In addition, we investigate the prevalence and correctnessof implementa-
tions using proposed TCP algorithmic and protocol changes (e.g., selective
acknowledgment-based loss recovery, congestion window growth based on
byte counting, etc.). We present results of measurements taken using an
active measurement framework to study web servers and a passive mea-
surement survey of clients accessing information from our web server. We
analyze our results in the context of gaining further understanding of the
differences between the behavior of the Internet in theory versus the behav-
ior we observed through measurements. In addition, these measurements
can be used to guide the definition of more realistic Internetmodeling sce-
narios.

I. I NTRODUCTION

While the Internet’s architecture, protocols and applications
are constantly evolving, there is oftencompeting evolutionbe-
tween various network entities. This competing evolution can
impact performance and robustness, and even halt communica-
tions in some cases. For instance, [36] shows that when setting
up a TCP connection to a web server, attempting to negotiate
Explicit Congestion Notification (ECN) usage [40] interfered
with connection establishment for over 8% of the web servers
tested in 2000. For such web servers, the client can only estab-
lish a TCP connection by re-attempting the connection without
negotiating ECN usage. The connection failures in the pres-
ence of ECN negotiation were caused by firewalls configured
to interpret the attempt to negotiate ECN as the signature ofa
port-scanning tool [20]. On the one hand, these firewalls can
be seen as incorrectly associating new functionality with one of
the first appearances of that new functionality in an undesirable
application. On the other hand, the firewalls can also be seen
as doing their job of blocking unwanted traffic. This example
shows the fundamental problem of different evolution pathsthat
can become crossed to the detriment of smooth traffic flow on
the Internet.

In this paper, we investigate the evolution of TCP [39], the
Internet’s most heavily used transport protocol, in the context of
ongoing changes to the Internet’s basic architecture. In particu-
lar, we study the ways in which so-called “middleboxes” (fire-
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walls, NATs, proxies, etc.) — which change the Internet’s basic
end-to-end principle[41] — impact TCP. We seek to elucidate
unexpected interactions between layers and ways in which the
Internet differs from its textbook description, includingthe diffi-
culties various real-world “gotchas” impose on the evolution of
TCP (and end-to-end protocols in general). The measurements
presented in this paper also serve as lessons for efforts that wish
to further evolve end-to-end protocols and the Internet architec-
ture.

Internet research is driven by simulations, experiments, anal-
ysis, and deployment studies designed to address particular
problems in the Internet. However, the design of effective and
accurate network models is challenging due to the intrinsiccom-
plexity of the Internet and the dynamic nature of the elements
composing it. Researchers need better models of networks and
protocols to ground their investigations, such that they can pro-
vide practical benefit on the evolving network [24]. Therefore,
a second component of our work assesses the current deploy-
ment status of various proposed TCP algorithmic and protocol
modifications and updates the literature with respect to theca-
pabilities of a “modern” TCP stack. This will aid researchers
in accurately conducting future evaluations of the networkand
proposed changes.

In this paper, we bring both active and passive measurement
techniques to bear to study web traffic in the context of the above
stated issues. We use active measurements to assess the capa-
bilities and algorithms used by web servers (the primary data
senders in web transactions). Data senders are ultimately in
control of TCP’s congestion control and reliability algorithms.
Therefore, our active measurements are focused on studying
which congestion control algorithms, loss recovery schemes and
options are implemented and how they work in the context of to-
day’s Internet architecture. As a second component, we present
passive measurements of the capabilities and limits imposed by
web clients (the primary data receivers). Data receivers donot
directly control the data flow on a TCP connection. However,
clients can optionally provide information to the data sender to
increase performance (e.g., selective acknowledgments).In ad-
dition, limits imposed by receivers (e.g., the advertised window
size) can have a dramatic impact on the performance a connec-
tion obtains [9].

The remainder of this paper is organized as follows. Sec-
tion II describes related work on measurement studies of trans-
port protocols. Section III describes the tools and methodol-
ogy we use in our study. Section IV presents the results of our
measurements of the deployment of various TCP mechanisms
in web servers. Section V explores interactions between mid-
dleboxes and transport protocols. Section VI reports the results
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of our measurements about the deployment of TCP mechanisms
in web clients. Section VII discusses lessons learned in thestudy
that challenged our assumptions and ultimately shaped our mea-
surements and tools. Section VIII presents our conclusions, and
discusses open questions and future work.

II. RELATED WORK

This paper uses and extends the methodology from [36] on the
TCP Behavior Inference Tool (TBIT). Independent and parallel
work on TBIT extensions detailed at [29] includes tests for Lim-
ited Transmit, Early Retransmit, and support for the Window
Scaling option in TCP. TBIT follows an earlier history of active
probing of TCP. For instance, [17] treats TCP implementations
as black boxes, observing how they react to external stimuli, and
studying specific TCP implementations in order to assess thead-
herence to the specification.

There is also a considerable body of work on passive tests of
TCP based on the analysis of packet traces. [37] outlinestcp-
analy, a tool for analyzing a TCP implementation’s behavior by
inspecting sender and receiver packet traces of TCP connections
run between pairs of hosts, while [38] outlines observed packet
dynamics based ontcpanaly’s analysis. Finally, [9] assesses the
properties of web clients using packet traces of TCP connections
to a particular web server.

In addition, there is some research in the literature on the ef-
fect of middleboxes on transport protocols (e.g., [10]). We, how-
ever, do not discuss the body of research on general architectural
evaluations of middleboxes, or on the effect of middleboxeson
DNS, BGP, and the like. Rather, the study presented in this pa-
per focuses on interactions between middleboxes and transport
protocols.

Finally, there is a large body of literature on active and pas-
sive approaches for estimating end-to-end network path proper-
ties using TCP [37], [11], [21]. In this paper we do not discuss
TCP-based tests for estimating path properties such as lossrates,
available or bottleneck bandwidth and durations of congestion
episodes. Also prevalent in the literature, yet out of scopefor
the current effort, is the body of work based on passive mea-
surements of traffic on a particular link to determine the break-
down of the traffic in terms of round-trip times, applicationlayer
protocols, transfer sizes, etc.

III. M EASUREMENTS: TOOLS AND DATA

As discussed above, we employ both active and passive mea-
surements in our study into the characteristics of web clients
and servers. Web servers act as data senders and web clients
as data receivers in web transactions. Therefore, we use active
measurements to probe web servers for congestion control and
loss recovery capabilities, while using passive measurements to
assess the options and resource limits enforced by web clients.
Our motivation, approach and methodology is presented in the
following two subsections.

A. Active Tests

We use TBIT [36] to conduct active measurements that probe
web servers for their characteristics. A few of the active TBIT
tests we present, such as the test that determines the size of
the initial window, could just as easily be performed by passive

packet trace analysis. However, many of the TBIT tests are not
amenable to straightforward post-facto analysis of packettraces.
For example, consider a test to determine if a TCP data senderis
responding correctly to SACK information. To evaluate the data
sender, a certain pattern of loss events is required (e.g., multi-
ple packets lost per window of data). An active tool like TBIT
can easily induce such a specific loss pattern and evaluate the
behavior of the data sender in comparison to the expected be-
havior. Meanwhile, passive analysis would require a tool that
possessed a very general understanding of a range of loss pat-
terns and the expected responses — which would be quite tricky
to get right. Inducing a specific loss pattern does run the risk of
tripping pathological behavior that is not indicative of the over-
all behavior of the TCP implementation under study. We believe
the risk for biasing our overall results in this way is small given
our large sample of web servers (discussed below).

Another class of tests that involve actively attempting alter-
native schemes in connection initiation cannot be performed
by passive trace analysis alone. For instance, consider a
test for middleboxes that block TCP SYN segments when the
SYNs carry advertisements for ECN. Packet traces can indi-
cate whether connections attempting to use ECN succeed or fail.
However, determining the reason a connection attempting tone-
gotiate ECN failed is due to a middlebox blocking ECN-capable
SYNs takes active insertion of SYNs with and without ECN ad-
vertisements.

TBIT provides a set of tests, each of which is designed to
examine a specific aspect of the behavior of the remote web
servers, or of the path to and from the web server. Most of these
tests examine the characteristics of the TCP implementations on
the web servers. However, the tests are not restricted to TCP
(e.g., the Path MTU Discovery [34] tests). TBIT establishesa
TCP connection with the remote host at the user level. TBIT
composes TCP segments (or segments from another protocol),
and uses raw IP sockets to send them to the remote host. TBIT
also sets up a host firewall to prevent incoming packets from
reaching the kernel of the local machine; a BSD packet filter is
used to deliver incoming packets to the TBIT process. TBIT’s
user-level connection is used to control the sending of carefully
constructed packets (control, data, acknowledgment, etc.) as de-
sired from the local host. Note that all the TBIT tests are sus-
ceptible to network conditions to some degree. For instance, if
an ACK sent by TBIT is lost in transit to the web server the re-
sult of the test could be inconclusive or even wrongly reported.
We have taken test-specific measures to make each of our tests
as robust as possible. In addition, our large set of web servers
(described below) helps to minimize any biases that bogus tests
introduce into our results.

The list of target web servers used in our study was gathered
from IRcaches, the NLANR Web Caching project [1]. We used
web cache logs gathered from nine different locations around the
United Stated. Table I shows the cache logs used from Febru-
ary 2004, along with the log sizes, expressed as the number of
unique IP server addresses from each cache. Since the caches
are located within the continental US, most of the cached URLs
correspond to domain names within the US. However, the cache
logs also contain a sizable set of web servers located in the other
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Server name Location Cache size

pb.us.ircache.net Pittsburgh, PA 12867
uc.us.ircache.net Urbana-Champain, IL 18711
bo.us.ircache.net Boulder, CO 42120
sv.us.ircache.net Silicon Valley, CA 28800
sd.us.ircache.net San Diego, CA 19429
pa.us.ircache.net Palo Alto, CA 5511
sj.us.ircache.net MAE-West, San Jose, CA 14447
rtp.us.ircache.net Research Triangle Park, NC 33009
ny.us.ircache.net New York, NY 22846

TABLE I

IRCACHE SERVERS AND LOCATIONS

continents. Of the 84,394 unique IP addresses1 found in the
cache logs: 82.6% are from North America, 10.2% are from
Europe, 4.9% are from Asia, 1.1% are from Oceania, 1.0% are
from South America and 0.2% are from Africa.

All the TBIT tests outlined in this paper were conducted be-
tween February and May 2004. The TBIT client was always run
from a machine on the local network at our research laboratory.
There is no local firewall between the machine running TBIT
and our Internet connection.

Given that data senders (web servers in our study) implement
most of TCP’s “smarts” (congestion control, loss recovery,etc.),
most of the remainder of this paper outlines active TBIT tests to
determine various characteristics of TCP implementationsand
networks and where the evolutionary paths collide.

B. Passive Tests

When characterizing web clients, passive packet trace analy-
sis is more amenable than active probing for two main reasons.
First, initiating a connection to a web client to probe its capabil-
ities is difficult because often web clients are user machines that
do not run publicly available servers. In addition, data receivers
(web clients) do not implement subtle algorithms whose impact
is not readily observable in packet headers (as is the case with
data senders). Rather, data receivers expose their state, limits
and capabilities to the data sender in packet headers and op-
tions (e.g., SACK information, advertised window limits, etc.).
Therefore, by tracing packets near a web server, client TCP im-
plementations can be well characterized with respect to client
impact on web traffic. Section VI outlines our observations of
web clients.

IV. D EPLOYMENT OFTRANSPORTMECHANISMS

This section describes TBIT tests to assess the deployment
status of various TCP mechanisms in web servers. Such tests
are useful from a number of angles. First, it is useful for proto-
col designers to understand the deployment cycle for proposed
changes. In addition, as discussed previously, it is usefulto
test the actual behavior of proposed mechanisms in the Internet,
keeping an eye out for unexpected behaviors and interactions.
Another goal of this section is to guide researchers in construct-
ing models for the design and evaluation of transport protocols.
For example, if TCP deployments are dominated by NewReno
and SACK TCP, then it is odd for researchers to evaluate con-
gestion control performance with simulations, experiments, or

1We note that the list of servers could be biased by a single machine having
multiple unique IP addresses – which would tend to skew the results. However,
due to the size of the server list, we believe that such artifacts, while surely
present, do not highly skew the overall results.

TCP Stack Servers (%) Servers (%)
May 2001 February 2004

Total Number of Servers 4550 84394
I. Classified Servers 3728 (72%) 27914 (33%)
I.A. NewReno 1571 (35%) 21266 (25%)
I.B. Reno 667 (15%) 3925 (5%)
I.C. Reno, Aggressive-FR 279 (6%) 190 (0.2%)
I.D. Tahoe 201 (4%) 983 (1.2%)
I.E. Tahoe, No FR 1010 (22%) 1181 (1.4%)
I.F. Aggressive Tahoe-NoFR 0 7 (0%)
I.G. Uncategorized 362 (0.4%)
II. Classified but ignored – 11529 (14%)
(due to unwanted drops)
III. Errors 822 (18%) 44950 (53%)
III.A. No Connection 2183 (2.6%)
III.B. Not Enough Packets 22767 (27%)
III.C. No Data Received 3352 (4%)
III.D. HTTP Error 13903 (16%)
III.E. Request Failed 839 (1%)
III.F. MSS Error 266 (0.3%)
III.G. Other 2035 (2.4%)

TABLE II

RENO/NEWRENO DEPLOYMENT IN WEB SERVERS.

analysis based on Reno TCP.

A. Reno/NewReno Test

The Reno/NewReno test, adapted from the original TBIT
[36], determines whether a web server uses Tahoe, Reno, or
NewReno loss recovery and congestion control mechanisms for
a TCP connection that is not SACK-capable. It is well-known
that Reno’s congestion control mechanisms perform poorly
when multiple packets are dropped from a window of data [19].
Tracking the deployment of NewReno can guide researchers in
their choices of models for simulations, experiments, or anal-
ysis of congestion control in the Internet. Another reason for
these tests is to look for unanticipated behaviors; for example,
the Reno/NewReno tests in [36] discovered a variant of TCP
without Fast Retransmit that resulted from a vendor’s buggyim-
plementation.

The Reno/NewReno test determines the sender’s congestion
control mechanism by artificially creating packet drops that
elicit the congestion control algorithm of the server. In order
to enable the server to have enough packets to send, TBIT ne-
gotiates a small MSS (256 bytes in our tests). However, us-
ing a small MSS increases the chances of observing reordering
packets (see Section VII), and this reordering can change the
behavior elicited from the server. Therefore, the current test has
evolved from the original TBIT test to make it more robust to
packet reordering, and consequently to be able to classify be-
havior the original TBIT was not able to understand. The frame-
work of the Reno/NewReno test is as described in [36], with the
receiver dropping the13th and16th data packets.

Table II shows the results of the Reno/NewReno test.
The Tahoe, Tahoe without Fast Retransmit (FR), Reno, and
NewReno variants are shown in [36]. Reno with Aggressive Fast
Retransmit, called RenoPlus in [36], is also shown in [36]; Reno
with Aggressive Fast Retransmit has some response to a partial
acknowledgment during Fast Recovery, but does not take the
NewReno step of retransmitting a packet in response to such a
partial acknowledgment. For each TCP variant, the table shows
the number and percentage of web servers using that variant.We
note that the results from May 2001 and February 2004 are not
directly comparable; they use different lists of web servers, and
the February 2004 list is considerably larger than the May 2001
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SACK Type Servers (%) Servers (%)
May 2001 February 2004

Total Number of Servers 4550 84394
I. Not SACK-Capable 2696 (59%) 24607 (29%)
II. SACK-Capable 1854 (41%) 57216 (68%)
II.A. Uses SACK Info: 550 (12%) 23124 (27%)
II.A.1. Proper SACK – 15172 (18%)
II.A.2. Semi-Sack – 7952 (9%)
II.B. Doesn’t use SACK Info: 759 (17%) 2722 (3%)
II.B.1. NewReno – 1920 (2%)
II.B.2. TahoeNoFR – 802 (1%)
II.C. Inconsistent Results 545 (12%) 173 (0.2%)
II.D. Not enough Packets 20740 (24.5%)
II.E. No Data Received 549 (0.5%)
II.F. HTTP Errors 9853 (12%)
II.G. Request Failed 2 (0%)
II.H. MSS Error 55 (0%)
III. Errors 2569 (3%)
III.A. No Connection 1770 (2%)
III.B. Other 799 (1%)

TABLE III

SACK DEPLOYMENT IN WEB SERVERS

list. However, Table II implies that the deployment of NewReno
TCP has increased significantly in the last few years; NewReno
is now deployed in 77% of the web servers on our list for which
we could classify the loss recovery strategy. In addition, the
deployment of TCP without Fast Retransmit has decreased sig-
nificantly; this poorly-behaving variant was discovered in[36],
where it was reported to be due to a vendor’s failed attempt to
optimize TCP performance for web pages that are small enough
to fit in the socket buffer of the sender.

B. Web Server SACK Usage

The SACK Behavior test reports the fraction of servers that
are SACK-capable, and categorizes the variant of SACK con-
gestion control behavior for a TCP connection with a SACK-
capable client. TCP’s Selective Acknowledgment (SACK) op-
tion [32] enables the transmission of extended acknowledgment
information to augment TCP’s standard cumulative acknowl-
edgment. SACK blocks are sent by the data receiver to inform
the data transmitter of non-contiguous blocks of data that have
been received and queued. The SACK information can be used
by the sender to retransmit only the data needed by the receiver.

The SACK Behavior test builds on the original TBIT test,
with added robustness against packet reordering. TBIT firstde-
termines if the server is SACK-capable by attempting the negoti-
ation of the SACKPERMITTED option during the connection
establishment phase. For a SACK-capable server, the test de-
termines if the server uses the information in the SACK blocks
sent by the receiver. TBIT achieves this by dropping packets15,
17 and19, and sending appropriate SACK blocks indicating the
blocks of received data. Once the SACK blocks are sent, TBIT
observes the retransmission behavior of the server.

Table III shows the results for the SACK test. The servers
reported as “Not SACK-Capable” are those that did not agree
to the SACKPERMITTED option negotiated by TBIT. The
servers listed as “Proper SACK” are those that responded prop-
erly by re-sending only the data not acknowledged in the re-
ceived SACK blocks. The servers listed as “Semi-SACK” make
some use of the information in the SACK blocks. In contrast,
the servers listed as “NewReno” and “Tahoe-NO-FR” make no
use of the information in the SACK blocks, even though they
claim to be SACK-capable. The four types of SACK behaviors

Type of Server Servers (%)

Total Number of Servers 84394
I. Not SACK-Capable 24361 (28.8%)
II. SACK Blocks OK 54650 (64.7%)
III. Shifted SACK Blocks 346 (0.5%)
IV. Errors 5037 (6%)
IV.A. No Connection 4493 (5.3%)
IV.B. Early Reset 376 (0.4%)
IV.C. Other 160 (0.2%)

TABLE IV

GENERATING SACK INFORMATION AT WEB SERVERS

are shown in Figure 4 in [36].
While the 2001 and 2004 results are not directly compara-

ble, the results in Table III indicate that the fraction of web-
servers that report themselves as SACK-capable has increased
somewhat since 2001, and that most of the SACK-capable web
servers now, in fact, make use of the information in SACK
blocks. As suggested by the results in the next section, someof
the results in Table III that are not “Proper SACK” could be in-
fluenced by middleboxes that translate the TCP sequence space,
but do not properly translate SACK blocks.

C. Web Server SACK Generation

In the previous section we evaluated the web server’s behavior
in response to incoming SACK information from the web client.
The web server’s use of SACK information is the primary per-
formance enhancement SACK provides to web traffic. In this
section, however, we focus on whether web servers generate ac-
curate SACK information. In the normal course of web trans-
actions this matters little because little data flows from the web
client to the web server. However, while not highly applicable
to web performance, this test serves to illustrate potential prob-
lems in passing SACK information over some networks. This
test calls for the client to split an HTTP GET request into sev-
eral segments. Some of these segments are not actually sent,to
appear to the server as having been lost. These data losses seen
by the server should trigger SACK blocks (with known sequence
numbers) to be appended to the ACKs sent by the server.

Table IV shows the results of the server SACK generation test.
The row “Not SACK-Capable” shows the number of servers that
did not agree to the SACKPERMITTED option during connec-
tion setup. The row listed “SACK OK” shows the number of
web servers that generated SACK blocks correctly. As Table IV
shows, most of the servers show proper SACK behavior.

A relatively small number of servers, however, return im-
proper SACK blocks. The row listed as “Shifted SACK Blocks”
indicates cases where the SACK blocks received contained se-
quence numbers that did not correspond to the sequence space
used by connection. Instead, the sequence space in the SACK
blocks wasshifted. This shifting could have been caused by a
buggy TCP implementation, or by incorrect behavior from mid-
dleboxes on the path from the server to the client.

Two plausible scenarios whereby middleboxes may cause in-
correct SACK blocks to be returned to the web client are:
• Shifting of TCP sequence numbers can be done by a NAT box
that modifies the URL in a request, and as a consequence has to
shift the TCP sequence numbers in the subsequent data packets.
In addition, the cumulative acknowledgment number and SACK
blocks should be altered accordingly in the ACKs transmitted
to the clients. However, due to ignorance or a bug, the SACK
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blocks may not be properly translated, which could explain the
results of our tests.
• The shifting of TCP sequence numbers also occurs with
TCP/IP fingerprint scrubbers [43] designed to modify sequence
numbers in order to make it hard for attackers to predict TCP
sequence numbers during an attack. One way that TCP/IP fin-
gerprint scrubbers modify sequence numbers is by choosing a
random number for each connection,Xi. Then, the sequence
number in each TCP segment for the connection traveling from
the untrustednetwork is incremented byXi. Likewise, each
segment traveling in the opposite direction has its acknowledg-
ment number decremented byXi. However, if the sequence
numbers in the SACK blocks are not modified as well, then the
SACK blocks could be useless to the data sender.

In some cases these bogus SACK blocks will simply be
thrown away as useless by the data sender. In cases when the
SACK blocks are merely offset a little from the natural seg-
ment boundaries, but otherwise are within the connection’sse-
quence space, these incorrect SACK blocks can cause perfor-
mance problems by inducing TCP to retransmit data that does
not need retransmitted and by forcing reliance on the (often
lengthy) retransmission timeout to repair actual loss.

While the topic of web server SACK generation is not impor-
tant in terms of the performance of web transactions, the inter-
actions illustrated are germane to all TCP connections, andare
possible explanations for some of the results in the previous sec-
tion when web servers negotiated SACK but did not use “Proper
SACK” recovery.

D. Congestion Window Halving

A conformant TCP implementation is expected to halve its
congestion window after a packet loss [12]. This congestion
control behavior is critical for avoiding congestion collapse in
the network [23]. The Congestion Window Halving test, from
the original TBIT, verifies that servers effectively halve their
congestion window upon a loss event. The test works by ini-
tiating a transfer from the web server, waiting until the server
has built up to a congestion window of eight segments, and then
dropping a packet. After the loss, the server should reduce the
congestion window to four segments. We classify the result as
“Window Halved” if the congestion window is reduced to at
most five packets after the loss, and we classify the result as
“Window Not Halved” otherwise. TBIT is only able to deter-
mine a result for those servers that have enough data to send
to build up a congestion window of eight segments. A detailed
description of the test is available in [36]. TBIT maintainsa
receive window of8 segments, to limit the congestion window
used by the sender.

Table V shows the results for the Congestion Window Halv-
ing test. Table V shows that, as in 2001, most of the servers ex-
hibited correct window halving behavior. For the servers that did
not halve the congestion window, a look at the packet traces sug-
gests that these are servers limited by the receive window, whose
congestion windows at the time of loss would otherwise have
been greater than eight segments. One possibility is that these
servers maintain the congestion window independently fromthe
receive window, and do not properly halve the effective window
when the congestion window is greater than the receive window.

Window Halving Behavior Servers (%) Servers (%)
May 2001 April 2004

Total Number of Servers 4550 84394
I. Classified Servers 3461 (76%) 30690 (36%)
I.A. Window Halved 3330 (73%) 29063 (34%)
I.B. Window Not Halved 131 (2.8%) 1627 (2%)
II. Errors 1089 (24%) 53704 (64%)
II.A. No Connection 5097 (6%)
II.B. Not Enough Packets 22362 (26%)
II.C. No Data Received 4966 (6%)
II.D. HTTP Error 13478 (16%)
II.E. Request Failed 976 (1.7%)
II.F. MSS Error 354 (0.4%)
II.G. Unwanted Reordering 4622 (5.5%)
II.H. Unwanted drops 732 (0.9%)
II.I. Other 1117 (1.3%)

TABLE V

WINDOW HALVING TEST RESULTS

We note that RFC 2581 specifies that after a loss, the sender
should determine the amount of outstanding data in the network,
and set the congestion window to half that value in response to
a loss.

E. Byte Counting

As described in RFC 2581 [12], TCP increases the conges-
tion window (cwnd) by one MSS for each ACK that arrives
during slow start (so-called “packet counting”, or “PC”). De-
layed ACKs, described in [13], [12], allow a TCP receiver to
ACK up to two segments in a single ACK. This reduction in the
number of ACKs transmitted effectively leads to a reductionin
the rate with which the congestion window opens. In order to
compensate for this retarded growth, [5], [6] propose increas-
ing cwndbased on the number of bytes acknowledged by each
incoming ACK, instead of basing the increase on the number
of ACKs received. Furthermore, [6] argues that anAppropriate
Byte Counting (ABC)algorithm should only be used in the ini-
tial slow start period, not during slow start-based loss recovery.
Also note that ABC closes a security hole by which receivers
may induce senders to increase the sending rate inappropriately
by sending ACK packets that each ACK a fraction of the se-
quence space in a data packet [42].

The Byte Counting test is sensitive to the specific slow start
behavior exhibited by the server. We have observed a large num-
ber of possible slow start congestion window growth patterns in
servers which do not correspond to standard behavior. For this
reason, we were forced to implement an elaborate test for an al-
gorithm as simple as Byte Counting. The test works as follows
(for an initial congestion window of one segment).
1. Receive and acknowledge the first data packet. After this
ACK is received by the server, the congestion window should
be incremented to two packets (using either PC or ABC).
2. ACK the second and third data packets with separate ACK
packets. After these two ACKs are received, the server should
increment its congestion window by two packets (using either
PC or ABC).
3. ACK the next four packets with a single cumulative ACK
(e.g., with an acknowledgment of the seventh data packet).
4. Continue receiving packets without ACKing any of them un-
til the server times out and retransmits a packet.
5. Count the number of new packets,N , that arrived at least
three quarters of a round-trip time after sending the last ACK.
6. Count the number of earlier ACKs,R, (out of the three earlier
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Slow-Start Behavior Number (%)

Total Number of Servers: 44579
I. Classified Servers 23170 (52%)
I.A. Packet Counting 15331 (51.9%)
I.B. Appropriate Byte Counting 65 (0.1%)
II. Unknown Behvaior 288 (0.6%)
III. Errors 21121 (47.4%)
II.A. No Connection 528 (1.2%)
II.B. Not enough packets 13112 (29.4%)
II.C. No data received 386 (0.9%)
II.D. HTTP Error 215 (0.5%)
II.E. Request Failed 181 (0.4%)
II.F. Packet Size Changed 5762 (13%)
II.G. Unwanted Reordering 827 (2%)
II.H. Other 7 (0%)

TABLE VI

BYTE COUNTING TEST RESULTS

ACKs) which were sent within an RTT of the first of theN
packets above. These are ACKs that were sent shortly before
the last ACK. For servers with the standard expected behavior,
R should be 0.
7. Compute the increase,L, in the server congestion window
triggered by the last ACK as follows:

L = N − 4 − 2 ∗ R (1)

• If L = 1, then PC was used.
• If L > 1, then the server increased its congestion window

by L segments in response to this ACK. We classify this as the
server performing Byte Counting with a limit of at leastL.

The observation behind the design of this test is thatN is the
number of packets that the server sent after receiving the ACK
packets in the preceding RTT. TheseN packets are assumed to
include two packets for each ACK received that ACKed only
one packet. TheseN packets are also assumed to include four
packets due to the advance in the cumulative acknowledgment
field when the last ACK was received. Any extra packets sent
should be due to the increase in the congestion window due to
the receipt of the last ACK. We note that the complexity of this
test is an example in which the difference between theory and
practice in protocol behavior significantly complicates the sce-
narios that need to be considered. Table VI shows the resultsof
the Byte Counting test. We observe that Byte Counting is not
largely deployed in the Internet.

F. Limited Transmit

TCP’s Limited Transmit algorithm, standardized in [7], al-
lows a TCP sender to transmit a previously unsent data segment
upon the receipt of each of the first two duplicate ACKs, without
inferring a loss or entering a loss recovery phase. The goal of
Limited Transmit is to increase the chances for low-bandwidth
connections to receive the three duplicate ACKs required totrig-
ger a fast retransmission and avoid a costly retransmissiontime-
out. The Limited Transmit test assesses deployment in web
servers. Like the Byte Counting test, this test is sensitiveto the
size of the initial window employed by the server. The strategy
of the test in all cases is the same but the presence or absenceof
Limited Transmit must be determined in the context of a specific
ICW. For an ICW of four packets, the test works as follows:
1. Acknowledge the first data segment in the initial window of
four segments. Upon receiving this ACK, the server should open
its window from four to five segments, and send two more pack-
ets, the 5th and 6th segments.

Limited Transmit (LT) Behavior Number (%)

Total Number of Servers 38652
I. Classified Servers 29023 (75%)
I.A. LT Implemented 8924 (23%)
I.B. LT Not Implemented 20099 (52%)
II. Errors 9629 (25%)
II.A. No Connection 420 (1.1%)
II.B. Not enough packets 3564 (9.2%)
II.C. No Data Received 257 (0.7%)
II.D. HTTP Errors 224 (0.6%)
II.E. Request Failed 163 (0.4%)
II.F. Packet Size Changed 4900 (12.7%)
II.G. Other 101 (0.3%)

TABLE VII

DEPLOYMENT OFL IMITED TRANSMIT

2. Drop the second segment.
3. TBIT sends two duplicate ACKs triggered by the reception
of segments4 and5. TBIT does not send ACKs when segments
3 and4 arrive, to provide for increased robustness against un-
expected server congestion window growth. Only one duplicate
ACK would suffice to trigger the Limited Transmit mechanism
at the server but TBIT sends two to account for the possibility
of ACK losses.
4. If the server does not implement Limited Transmit, then it
will do nothing when it receives the duplicate ACK. If the server
does implement Limited Transmit, then it will send another seg-
ment when it receives the duplicate ACK.

We note that if the duplicate ACKs sent by TBIT are dropped
in the network, then TBIT will see no response from the web
server, and will interpret this as a case where Limited Transmit
is not deployed. Greater accuracy could be gained by running
the test several times for each web server, as was done with the
TBIT tests in [36].
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Fig. 1. Limited Transmit Test: Example for ICW = 4

Figure 1 shows a time-sequence plot of the test described
above for a server with an initial window of four packets. Ta-
ble VII shows the results from our tests. The table shows that
Limited Transmit is deployed in at least a fifth of the web servers
in our dataset. The Limited Transmit test is sensitive to the
size of the initial window and therefore care needs to be exer-
cised with respect to the size of packets being received fromthe
server. Note that if there is a change in the packet size for pack-
ets in the middle of the connection, TBIT flags the result “Packet
Size Changed”, and does not classify that server. As shown in
the table, this happened with some frequency and renders that
test inconclusive. Furthermore, a certain minimum number of
packets need to be transferred for TBIT to be able to classifya
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server, therefore servers with small web pages are classified as
not having enough packets.

G. Congestion Window Appropriateness

When the TCP sender does not have data to send from the
application, or is unable to send more data because of limita-
tions of the TCP receive window, its congestion window should
reflect the data that the sender has actually been able to send.
A congestion window that doesn’t reflect current information
about the state of the network is considered invalid [25]. TBIT’s
Congestion Window Appropriateness test examines the conges-
tion window used by web servers following a period of restric-
tions imposed by the receive window.

In this test, TBIT uses a TCP receive window of one segment
to limit the web server’s sending rate to one packet per RTT. Af-
ter five RTTs, TBIT increases the receive window significantly,
and waits to see how many packets the web server sends in re-
sponse. Consider a web server using standard slow-start from
an initial window ofK segments, increasing its congestion win-
dow without regard to whether that window has actually been
used. Such a web server will have built up a congestion win-
dow of K + 5 segments after five round-trip times of sending
one packet per round-trip time, because each ACK increases the
congestion window by one segment. The web server could sud-
denly sendK + 5 packets back-to-back when the receive win-
dow limitation is removed. In contrast, a web server using the
Congestion Window Validation procedure from [25] will havea
congestion window of two or three segments, depending on the
initial window.
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Fig. 2. The congestion window after a receive-window-limited period

Figure 2 shows the number of segments that each server
sends in response to the increased receive window at the end
of the Congestion Window Appropriateness test. The majority
of servers respond with an window of two to four packets, show-
ing moderate behavior. A smaller fraction of the servers respond
with a large window of eight or nine packets, suggesting thatthe
server increases its congestion window without regard for the
actual number of segments sent.

In some cases the number of segments transmitted shows that
the server is violating the standard rules for opening the con-
gestion window during slow-start, even aside from the issueof
the appropriateness of a congestion window that has never been
used. Because a conformant web server can have an initial win-
dow of at most four segments, a conformant web server can have
a congestion window of at most nine segments after five single-
packet acknowledgments have been received.

H. Initial Congestion Window

The Initial Congestion Window (ICW) test from [36] deter-
mines the initial congestion windows used by web servers. Tra-
ditionally, TCP started data transmission with a single segment
and using slow start to increase the congestion window [13].
However, [12] allows an initial window of two segments, and
[8] allows an initial window of three or four segments, depend-
ing on the segment size. As a result, there is interest in tracking
the changes in the ICW.

The test starts with TBIT establishing a TCP connection to a
given web server using a256 byte MSS. The small MSS in-
creases the chances that the server will have enough packets
to exercise its ICW. TBIT then requests the corresponding web
page, and receives all packets initially sent by the server,with-
out ACKing any of the incoming segments. The lack of ACKs
forces the server to retransmit the first segment in the ICW. TBIT
then counts the number of segments received, reports the ICW
value computed and terminates the test.

Despite the small MSS, there still may be some servers with-
out enough data to fill their ICW. TBIT detects such cases by
watching for the FIN bit set in one of the data segments. Such
tests are inconclusive; the corresponding servers have an ICW
equal to or larger than the number of packets received. We re-
port only those servers that had enough data to send their entire
ICW without setting the FIN bit.
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Fig. 3. Initial Window Test, for an MSS of 256 bytes.

Figure 3 shows the distribution of ICWs used by the measured
web servers. The figure shows that most web servers use an
initial window of one or two segments, and a smaller number
of servers use an initial window of three or four segments. In
addition, there are a few servers using ICW values of more than
four segments – including some servers using ICWs larger than
10 segments. These results are similar to those from 2001 [36],
which show 2% of the web servers had an initial window of three
or four segments, and 3% had initial windows larger than four
segments. Thus, TCP initial windows of three or four segments
are seeing very slow deployment in web servers.

We note that the ICWs shown in Figure 3 could
change with different values for the MSS. For example,
www.spaceimaging.com has an ICW of 64 segments when the
MSS is restricted to 256 bytes, but an ICW ofonly14 segments
with an MSS of 1460 bytes.

Figure 4 shows the fraction of packets dropped and the frac-
tion of packets reordered as a function of the ICW value used by
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the server hosting the associated connections. The web servers
with larger initial windows of three or four packets do not ex-
perience higher packet drop rates overall. Even the occasional
TCP connections with ICWs greater than four segments do not
experience increased packet drop rates. In addition, reordering
rates are similar for ICWs of 1–3 segments and then the percent-
age of servers experiencing reordering drops off.

V. M IDDLEBOXES AND TRANSPORTPROTOCOLS

The increased prevalence of middleboxes puts into question
the general applicability of the end-to-end principle. Middle-
boxes introduce dependencies and hidden points of failure,and
can affect the performance of transport protocols and applica-
tions in the Internet in unexpected ways. Middleboxes that di-
vert an IP packet from its intended destination, or modify its
contents, are generally considered fundamentally different from
those that correctly terminate a transport connection and carry
out their manipulations at the application layer. Such diversions
or modifications violate the basic architectural assumption that
packets flow from source to destination essentially unchanged
(except for TTL and QoS-related fields). The effects of such
changes on transport and application protocols is unpredictable
in the general case. In this section we explore the ways that
middleboxes might interfere in unexpected ways with end-to-
end communications.

A. ECN-capable Connections

Explicit Congestion Notification (ECN) [40] is a mechanism
that allows routers to mark packets to indicate congestion,in-
stead of dropping them. After the initial deployment of ECN-
capable TCP implementations, there were reports of middle-
boxes (in particular, firewalls and load-balancers) that blocked
TCP SYN packets attempting to negotiate ECN-capability, ei-
ther by dropping the TCP SYN packet, or by responding with a
TCP Reset [20]. [36] includes test results showing the fraction
of web servers that were ECN-capable and the fraction of paths
to web servers that included middleboxes blocking TCP SYN
segments attempting to negotiate ECN-capability. The TBIT
test for ECN is described in [36].

Table VIII shows the results of the ECN test for 84,394 web
servers. Only a small fraction of servers are ECN-Capable – this
percentage has increased from1.1% in 2000 to2.1% in 2004.
After a web server has successfully negotiated ECN we send
a segment marked “Congestion Experienced (CE)” and record
whether the mark is reflected back to the TBIT client. The re-
sults are given on lines II.B.1 and II.B.2 on the table. In roughly

Number (%) Number (%)
ECN Status Sep 2000 Feb 2004

Total Number of Servers 24030 84394
I. Classified Servers 21879 (91%) 80498 (95.4%)
I.A. Not ECN-capable 21602 (90%) 78733 (93%)
I.B. ECN-Capable 277 (1.1%) 1765 (2.1%)
I.B.1 no ECNECHO in ACK 255 (1.1%) 1302 (1.5%)
I.B.2 ECN ECHO in ACK 22 (0.1%) 463 (0.5%)
I.C. Malformed SYN/ACK 0 183 (0.2%)
II. Errors 2151 (9%) 3896 (4.6%)
II.A. No Connection 2151 (9%) 3194 (3.8%)
II.A.1. only with ECN 2151 (9%) 814 (1%)
II.A.2. also without ECN 0 2380 (2.8%)
II.B. HTTP Error – 336 (0.4%)
II.C. No Data Received – 54 (0%)
II.D. Others – 312 (0.4%)

TABLE VIII

ECN TEST RESULTS

ECN fields in data packets Number (%)

ECN-capable servers 1765
Received data packets w/ ECT 00 (Not-ECT) 758 (42%)
Received data packets w/ ECT 01 (ECT(1)) 0 ( 0%)
Received data packets w/ ECT 10 (ECT(0)) 1167 (66%)
Received data packets w/ ECT 11 (CE) 0 ( 0%)
Received data packets w/ ECT 00 and w/ ECT 10 174 (10%)

TABLE IX

CODEPOINTS IN PACKETS FROMECN-CAPABLE SERVERS

three-quarters of cases when ECN is negotiated a congestionin-
dication is not returned to the client. This could be caused by
a bug in the web server’s TCP implementation or a middlebox
that is clearing the congestion mark as the segment traverses
the network. Finally, we also observe a small number of web
servers send a malformed SYN/ACK packet, with both the ECN
ECHO and Congestion Window Reduced (CWR) bits set in the
SYN/ACK packet.

For 3194 of the web servers, no TCP connection was estab-
lished. For our TBIT test, if the initial SYN packet is dropped,
TBIT resends the same SYN packet – TBIT does not follow the
advice in RFC 3168 of sending a new SYN packet that does
not attempt to negotiate ECN. Similarly, if TBIT receives a TCP
Reset in response to a SYN packet, TBIT drops the connection,
instead of sending a subsequent SYN packet that does not at-
tempt to negotiate ECN-capability.

In order to assess how many of these connection failures are
caused by the attempt of ECN negotiation, we run two back-to-
back TBIT tests to each server. The first test does not attemptto
negotiate ECN. After a two-second idle period, another connec-
tion is attempted using ECN. We observe that 814 connections
(1% of the web servers, or25% of the connection failures) are
apparently refused because of trying to negotiate ECN, since the
connection was established successfully when no ECN negotia-
tion was attempted. Table VIII indicates that the fraction of web
servers with ECN-blocking middleboxes on their path has de-
creased substantially since September 2000 – from 9% in 2000
to 1% in 2004.

We further explored the behavior of ECN-capable servers by
recording the ECT codepoints in the data packets received by
TBIT. Table IX shows the number of servers from which the
different codepoints were observed. TBIT received data packets
with the ECT 00 codepoint from about 42% of the ECN-capable
servers. The ECN specification defines two ECT code points
that may be used by a sender to indicate its ECN capabilities
in IP packets. The specification further indicates that protocols
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that require only one such a codepointshoulduseECT (1) =
10. We observe that ECN-capable servers do use ECT(1) and
found no server made use of theECT (0) = 01 codepoint. We
further observe that no router between our TBIT client and the
ECN-capable servers reported Congestion Experienced (CE)in
any segment. Finally, TBIT received both data segments with
ECT = 00 andECT = 10 in the same connection from about
10% of the ECN-capable servers. This behavior may indicate
that the ECT code point is being erased by a network element
(e.g. router or middlebox) along the path between the ECN-
capable server and the client.

B. Path MTU Discovery

[35] shows that TCP performance is directly proportional to
the segment size employed. However, [27] argues that packet
fragmentation can cause poor performance. As a compromise,
TCP can use Path MTU Discovery (PMTUD) [34], [33] to de-
termine the largest segment that can be transmitted across a
given network path without being fragmented. Initially, the data
sender transmits a segment with the IP “Don’t Fragment” (DF)
bit set and whose size is based on the MTU of the local net-
work. Routers along the path that cannot forward the segment
without first fragmenting it (which is not allowed because DFis
set) will return an ICMP message to the sender noting that the
segment cannot be forwarded because it is too large. The sender
then reduces its segment size and retransmits. Problems with
PMTUD are documented in [30], which notes that many routers
fail to send ICMP messages and many firewalls and other mid-
dleboxes are often configured to suppress all ICMP messages,
resulting in PMTUD failure. If the data sender continues to re-
transmit large packets with the DF bit set, and fails to receive
the ICMP messages indicating that the large packets are being
dropped along the path, the packets are said to be disappearing
into a PMTUDblack hole. We implemented a PMTUD test in
TBIT to assess the prevalence of web servers using PMTUD,
and the success or failure of PMTUD for these web servers. The
test is as follows:
1. TBIT is configured with avirtual link MTU, MTUv. In our
tests, we setMTUv to 256 bytes.
2. TBIT opens a connection to the web server using a SYN
segment that contains an MSS Option of 1460 bytes (which is
based on the MTU of the network to which the TBIT client is
attached).
3. The TCP implementation at the server accepts the connection
and sends MSS-sized segments, resulting in transmitted packets
of MSS + 40 bytes. If the data packets from the server do not
have the DF bit set, then TBIT classifies the server as not at-
tempting to use PMTUD. If TBIT receives a packet with the DF
bit set that is larger thanMTUv TBIT rejects the packet, and
generates an ICMP message to be sent back to the server.
4. If the server is capable of receiving and processing such
ICMP packets, it will reduce the MSS to the value specified in
the MTU field of the ICMP packet, minus 40 bytes for packet
headers, and resume the TCP connection. In this case, TBIT
accepts the proper-sized packets and the communication com-
pletes.
5. If the server is not capable of receiving and processing ICMP
packets it will retransmit the lost data using the same packet

PMTUD Status Number (%)

Total Number of Servers 81776
I. Classified Servers 71737 (88%)
I.A. PMTUD not-enabled 24196 (30%)
I.B. Proper PMTUD 33384 (41%)
I.C. PMTUD Failed 14157 (17%)
II. Errors 9956 (12%)
II.A. Early Reset 545 (0.6%)
II.B. No Connection 2101 (2.5%)
II.C. HTTP Errors 2843 (3.4%)
II.D. Others 4467 (5.5%)

TABLE X

PMTUD TEST RESULTS

size. Since TBIT rejects packets that are larger thanMTUv the
communication will eventually time out and terminate and TBIT
classifies the server/path as failing to properly employ PMTUD.

Table X shows that PMTUD is used and succeeded for
slightly less than half of the servers on our list. For 31% of
the servers on our list, the server did not attempt Path MTU Dis-
covery. For 18% of the servers on our list, Path MTU Discov-
ery failed, presumably because of middleboxes that block ICMP
packets on the path to the web server.

Alternate methods for determining the path MTU are being
considered in the Path MTU Discovery Working Group in the
IETF, based on the sender starting with small packets and pro-
gressively increasing the segment size. If the sender does not
receive an ACK packet for the larger packet, it changes back to
smaller packets.

In a similar strategy, calledblack-hole detection, if a packet
with the DF bit set is retransmitted a number of times without
being acknowledged, then the MSS will be set to 536 bytes [2].
We performed a variant of the PMTUD test in which TBIT does
not send the ICMP packets, to see if any server reduces the size
of the packets sent simply because it didn’t receive an ACK for
the larger packet. We didn’t find any servers performing black-
hole detection.

Since a non-trivial number of network elements discard well-
known ICMP packets the results of our tests do not offer hope
for protocol designers proposing to use new ICMP messages to
signal various network path properties to end systems (e.g., for
explicit corruption notification [28], handoff or outage notifica-
tion, etc.).

C. IP Options

IP packets may contain options to encode additional infor-
mation at the end of IP packets. A number of concerns have
been raised regarding the use of IP options. One concern is that
the use of IP options may significantly increase the overheadin
routers, because in some cases packets with IP options are pro-
cessed on theslow pathof the forwarding engine. A second
concern is that receiving IP packets with malformed IP options
may trigger alignment problems on many architectures and OS
versions. Solutions to this problem range from patching theOS,
to blocking access to packets using unknown IP options or using
IP options in general. A third concern is that of possible denial
of service attacks that may be caused by packets with invalidIP
options going to network routers. These concerns, togetherwith
the fact that the generation and processing of IP options is non-
mandatory at both the routers and the end hosts, have led routers,
hosts, and middleboxes to simply drop packets with unknown
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IP options, or even to drop packets with standard and properly
formed options. This is of concern to designers of transportpro-
tocols because of proposals for new transport mechanisms that
would involve using new IP options in transport protocols (e.g.,
[4], [18]).

TBIT’s IP options test considers TCP connections with three
types of IP options in the TCP SYN packet, theIP Record Route
Option, the IP Timestamp Option, and a new option calledIP
Option X, which is an undefined option and represents any new
IP option that might be standardized in the future. We experi-
mented with two variants of Option X, both of size 4. The first
variant uses a copy bit of zero, class bits set to zero and 25 asthe
option number. The second variant of IP Option X sets the class
bits to a reserved value, and uses an option number of 31. The
results for experiments with both Option X variants are similar.
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Fig. 5. Handling IP Options in TCP SYN packets.

Figure 5 shows the TCP connection behavior with different
IP options in the associated SYN packets. For each attempted
connection there are three possible outcomes: no connection es-
tablished, connection established with the IP option ignored, or
IP option accepted. As Figure 5 shows, in many cases no con-
nection was established when the Record Route Option or the
Timestamp Option was included in the SYN packet. When IP
Option X is included in the SYN segment, the connection was
not established to over 70% of the web servers tested. This does
not bode well for the deployment of new IP options in the Inter-
net.

Most IP options are usually expressed in the first packet (e.g.,
the TCP SYN packet) in the communication between end hosts.
We performed an additional test to assess the behavior when IP
option X is placed in data packets in the middle of an established
connection. For each established connection TBIT offers two
classifications: “success” or “broken connection”. The former
indicates that the server successfully delivered its data regard-
less of the IP option insertion. The latter classification indicates
that the insertion of the IP option forced the connection to be
idle for at least 12 seconds (which we then define as “broken”).
We performed two sets of tests, with and without insertion of
option X. The connection failure rate across both sets of tests is
roughly 3%. The tests without IP options show nearly 6% of the
connections are “broken” for some reason. Meanwhile, when
inserting IP option X into the middle of the transfer, 44% of
the connections are broken, indicating a significant issue when
attempting to utilize IP options in mid-connection.

D. TCP Options

Next we turn our attention to potential problems when TCP
options are employed. TCP options are more routinely used than

IP options (see Section VI). For instance, TCP uses the times-
tamp option [26] to (among other things) take round-trip time
measurements more frequently than once per round-trip time,
for the Protection Against Wrapped Sequences [26] algorithm
and for detecting spurious timeouts [31].

However, middleboxes along a path can interfere with the use
of TCP options, in an attempt to thwart attackers trying to fin-
gerprint hosts. Network mapping tools such as NMAP (Network
Mapper) use information from TCP options to gather informa-
tion about hosts; this is calledfingerprinting. Countermeasures
to fingerprinting, sometimes calledfingerprint scrubbers[43],
attempt to block fingerprinting by inspecting and minimallyma-
nipulating the traffic stream. One of the strategies used by fin-
gerprint scrubbers is to reorder TCP options in the TCP header;
any unknown options may be included after all other options.In
order to avoid being fingerprinted, some sites may reject con-
nections negotiating specific or unknown options, or drop pack-
ets encountered in the middle of the stream that contain those
options.

The TCP options test first assesses the behavior of the web
server when the TCP Timestamp option is included in the SYN
packet. To test for performance with unknown TCP options,
we also initiate connections using an unallocated option num-
ber, TCP OptionY , in the SYN packet. Our tests indicate a
connection failure rate of about 0.2% in all scenarios. Option
Y is ignored in the remainder of the connections. The times-
tamp option is ignored by roughly 15% of the servers (but the
connection is otherwise fine). The reason the servers ignorethe
timestamp option is not visible to TBIT, but could be either a
middlebox stripping or mangling the option or the web server
not supporting timestamps. Next we assess the use of options
in the middle of a TCP connection, by establishing a connection
without TCP options and then using the Timestamp option or
Option Y on a data packet in the middle of the connection. The
connection failure rate for both options is roughly 3% – indicat-
ing that sending unknown options midstream is not problematic
for most web servers.

VI. CLIENT-SIDE PASSIVE MEASUREMENTS

The previous sections discuss results from active measure-
ments targeted from a TBIT client machine to a set of web
server destinations. Such analysis sheds light on the correct-
ness and performance characteristics of a significant population
of in-the-field web servers, and also provides insights intothe
characteristics of the intermediate nodes on the paths thatcarry
packets between the TBIT client and the servers. However, this
is only one part of the story. We are also interested in observing
the Internet from the perspective of web clients. To achievethis
perspective we collect full packet traces of traffic to and from the
web server of our research laboratory. In this section we present
the result from the analysis of those traces.

We collected packet traces of full TCP packets to and from
port 80 on our lab’s web server for roughly two weeks (from
February 24, 2004 to March 10, 2004). Capturing entire packets
allowed us to verify the TCP checksum and discard packets that
did not pass. In the dataset we observed 206,255 connections
from 28,364 clients (where a “client” is defined as an IP ad-
dress). Of these, 632 (or, 0.3%) connections were not analyzed
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due to the packet trace missing the initial SYN sent by the client
and therefore throwing off our analysis2. We do not believe that
deleting these connections biased our results.

The first set of items we measure are the capabilities the client
TCPs advertise during connection startup. Of all the clients,
205 (or 0.7%) show inconsistent capabilities across connections
from the same IP address. An example inconsistency would be
one connection from a particular IP address advertising support
for SACK, while a subsequent connection does not. Our incon-
sistency check includes the SACK permitted option, the times-
tamp option, the window scale option (and the advertised value),
the MSS option (and the MSS value) and whether the connec-
tion advertises support for ECN. Options may be inconsistent
due to a NAT between the client and our server that effectively
hides multiple clients behind a single IP address. Alternatively,
system upgrades and configuration changes may also account
for inconsistency over the course of our dataset.

We next study TCP’s cumulative acknowledgment and the se-
lective acknowledgment (SACK) option [32]. In our dataset,
24,906 clients (or 87.8%) advertised “SACK permitted” in the
initial SYN. Across the entire dataset 236,192 SACK blocks
were returned from the clients to our web server. We observe
loss (retransmissions from the server) without receiving any
SACK blocks with only two clients. This could be due to a bug
in client implementations, middlebox interference or simple net-
work dynamics (e.g., ACK loss). Therefore, we conclude that
clients advertising “SACK permitted” nearly always followup
with SACK blocks, as necessary.

As outlined in section IV-C, the TBIT SACK tests yield some
transfers where the sequence numbers in the SACK blocks from
the clients are “shifted” from the sequence numbers in the lost
packets. Inaccurate SACK blocks can lead to the sender spu-
riously retransmitting data that successfully arrived at the re-
ceiver, and waiting on a timeout to resend data that was ad-
vertised as arriving but which was never cumulatively acknowl-
edged. To look for such a phenomenon in web clients or mid-
dleboxes close to clients we analyzed the SACK blocks received
from the clients and determined whether they fall along the seg-
ment boundaries of the web server’s transmitted data segments.
We found 1,242 SACK blocks (or 0.5%) do not fall along data
segment boundaries. These SACK blocks were generated by
49 clients (or 0.2%). The discrepancy between the rate of receiv-
ing strange SACK blocks and the percentage of hosts responsi-
ble for these SACK blocks suggests a client-side or middlebox
bug. These results roughly agree with the results in SectionIV-
C. Of the bogus SACK blocks received 397 were offset – i.e., the
sequence numbers in the SACK block were within the sequence
space used by the connection, but did not fall along data segment
boundaries. Meanwhile, the remaining 845 bogus SACK blocks
were for sequence space never used by the connection. Note:
a possible explanation for some of the strange SACK blocks
is that our packet tracing infrastructure missed a data segment
and therefore when a SACK arrives we have no record of the
given packet boundaries. However, given that (i) the discrep-
ancy between the overall rate of observing these SACKs when
compared to the percentage of clients involved and (ii) many of

2The dataset actually includes one trace for every 24 hour period. Therefore,
it is fairly common for the trace to start in mid-connection.

the bogus SACK blocks were completely outside the sequence
space used by the connection, we believe that packet capturing
glitches are not the predominant cause of these bogus SACK
blocks.

We also investigated whether there were cases when the cu-
mulative acknowledgment in incoming ACKs did not fall on
a segment boundary. Of the roughly 4.7 million ACKs re-
ceived by our web server, 18,387 ACKs contained cumulative
ACK numbers that did not agree with the segments sent. These
ACKs were originated by 36 clients. The rate of receiving these
strange ACKs is 0.4% in the entire dataset, meanwhile the num-
ber of clients responsible for these ACKs represents 0.1% ofthe
dataset, indicating that buggy clients or middleboxes may be the
cause of these ACKs.

In our dataset, the timestamp option is advertised by
6,106 clients (or 21.5%). Clients that do not accurately echo
timestamp values to the server or middleboxes that alter the
timestamp of a passing packet may cause performance degra-
dation to the connection by increasing or reducing the retrans-
mission timeout (RTO) estimate of the server. If the RTO is too
small the data sender will timeout prematurely, needlesslyre-
sending data and reducing the congestion window. If the RTO
is too large performance will suffer due to needless waitingbe-
fore retransmitting a segment. In our dataset, 20 clients returned
at least one timestamp that the server never sent (some of the
timestamps returned by these clients were valid). This result
suggests that the network and the endpoints are faithfully carry-
ing timestamps in the vast majority of cases.
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Fig. 6. Distribution of advertised windows use by web clients.

We next examine the advertised windows used by web clients.
[9] shows how the client’s advertised window was found to of-
ten dictate the ultimate performance of the connection. Figure 6
shows the distribution of the maximum window advertisement
observed for each client in our dataset. Roughly, the distribution
shows modes at 8 KB, 16 KB and 64 KB. These results show an
increase in advertised window sizes over those reported in [9] (in
2000). In our dataset the median advertised window observedis
just over 32 KB and the mean is almost 44 KB, whereas [9]
reports the median advertised window as 8 KB and a mean of
18 KB. Additionally, 7,540 clients (or 26.6% of our dataset)ad-
vertised support for TCP’s window scaling option [26], which
calls for the advertised window to be scaled by a given factorto
allow for larger windows than can naturally be advertised inthe
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given 16 bits in the TCP header. Just over 97% of the clients
that indicate support for window scaling advertise a window
scale factor of zero — indicating that the client is not scaling
its advertised window (but understands window scaling if the
server wishes to scale its window). Just over 1% of the clients in
our dataset use a scale factor of 1, indicating that the advertised
window in the client’s segments should be doubled before using.
We observed larger window scale factors (as high as 9) in small
numbers in our dataset.

We next look at the MSS advertised by web clients in the
initial three-way handshake. Two-thirds of the clients used an
MSS of 1460 bytes (Ethernet-sized packets). Over 94% of the
clients used an MSS of between 1300 bytes and 1460 bytes.
The deviation from Ethernet-sized packets may be caused by
tunnels. Roughly 4% of the clients in our dataset advertised
an MSS of roughly 536 bytes. We observed advertisements as
small as 128 bytes and as large as 9138 bytes. This analysis
roughly agrees with [9].

Finally, we note that we observed 49 clients (or 0.2% of the
clients in our dataset) advertising the capability to use Explicit
Congestion Notification (ECN) [40]. That is, only 49 clients
sent SYNs with both the ECN-Echo and Congestion Window
Reduced bits in the TCP header set to one.

VII. M EASUREMENTLESSONS

In conducting the measurements presented in this paper we
observed a number of properties of the network and the end sys-
tems that challenged our assumptions and ultimately shapedour
tools. In this section, we distill several lessons learned that oth-
ers conducting similar measurements should keep in mind.
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The TBIT tests presented in this paper attempt to use a small
MSS so that the web server splits the data transfer into more seg-
ments than it naturally would. In turn, this provides TBIT with
additional ways to manipulate the data stream. For instance, if
a server transmits one segment of 1280 bytes then TBIT cannot
easily conduct certain tests, such as assessing the InitialWin-
dow. However, if the server is coaxed into sending 10 segments
of 128 bytes each the test becomes possible. The original TBIT
tests presented in [36] employed a 100 byte MSS. When we
initiated the present study we found this MSS to be too small
for a significant number of web servers. Therefore, determining
the smallest allowable MSS is important for TBIT-like measure-
ments. Figure 7 shows the distribution of minimum MSS sizes
we measured across the set of web servers used in our study.
As shown, nearly all servers will accept an MSS as small as
128 bytes, with many servers supporting MSS sizes of 32 and
64 bytes. Another aspect of the segment size that surprised us
is that segment sizes sometimes change during the course of a
connection (e.g., as reported in the tests of ABC in Section IV).

Therefore, we encourage researchers to design tests that are ro-
bust to changing packet sizes (or, at the least warn the user of a
test when such an event is observed).
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Choosing a small MSS to maximize the number of segments
the web server transmits is a worthy goal. However, we also
find that as the MSS is reduced the instances of packet reorder-
ing increase. Figure 8 shows the percentage of reordered seg-
ments as a function of the MSS size. One explanation of this
phenomenon is that using a smaller MSS yields transfers that
consist of more segments and therefore have more opportunities
for reordering. Alternatively, small packets may be treated dif-
ferently in the switch fabric — which has been shown to be a
cause of reordering in networks [14]. Whatever the cause, re-
searchers should keep this result in mind when designing exper-
iments that utilize small segments. Additionally, the result sug-
gests that performance comparisons done using small segments
may not be directly extrapolated to real-world scenarios where
larger segments are the rule (as shown in Section VI) since re-
ordering impacts performance [14], [15], [44].

As outlined in Section IV, we find web servers’ slow start
behaviors to be somewhat erratic at times. For instance, Sec-
tion IV-E finds some web servers using “weak slow start” where
the web server does not increase the congestion as quickly as
allowed by the standards3. In addition, we also found cases
where the congestion window is opened more aggressively than
allowed. These differences in behavior make designing TBIT-
like tests difficult since the tests cannot be staked around asingle
expected behavior.

Also, we found that some of our TBIT measurements could
not self containedas were all the tests from the original TBIT
work [36]. Some of the tests we constructed depended on pecu-
liarities of each web server. For instance, the Limited Transmit
tests outlined in Section IV-F require apriori knowledge ofthe
web server’s initial window. This sort of test complicates mea-
surement because multiple passes are required to assess some of
the capabilities of the web servers.

Finally, we note that in our passive analysis of web client
characteristicsverifying the TCP checksum is keyto some of
our observations. In our dataset, we received at least one seg-
ment with a bad TCP checksum from 120 clients (or 0.4% of
the clients in the dataset). This prevalence of bogus checksums
is larger than the prevalence of some of the identified character-
istics of the web client (or network). For instance, we identified

3Such non-aggressive behavior is explicitly allowed under the standard con-
gestion control specification [12], but we found it surprising that a web server
would be more conservative than necessary.
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TCP Mechanism Section Deployment Status
Loss Recovery VI, IV-B SACK is prevalent (in two-thirds of servers and nine-tenthsof clients).

IV-A NewReno is the predominant non-SACK loss recovery strategy.
Congestion Response IV-D Most servers halve their congestion window correctly aftera loss.
Byte Counting IV-E Most web servers use packet counting to increase the congestion window.
Initial Cong. Window IV-H Most web servers use an ICW of 1 or 2 segments.
ECN V-A ECN is not prevalent.
Advertised Window VI The most widely used advertised window among clients is 64 KBwith many clients

using 8 KB and 16 KB, as well.
MSS VI Most of the clients in our survey use an MSS of around 1460 bytes.

TABLE XI

INFORMATION FOR MODELINGTCPBEHAVIOR IN THE INTERNET.

Behavior Section Possible Interactions with Routers or Middleboxes
SACK IV-B,VI In small numbers of cases, web clients and servers receive SACK blocks with incorrect

sequence numbers.
ECN V-A Advertising ECN prevents connection setup for a small (and diminishing) set of hosts.
PMTUD V-B Less than half of the web servers successfully complete PathMTU Discovery.

PMTUD is attempted but fails for one-sixth of the web servers.
IP Options V-C For roughly one-third of the web servers, no connection is established when the client includes

an IP Record Route or Timestamp option in the TCP SYN packet.
For most servers, no connection is established when the client includes an unknown IP Option.

TCP Options V-D The use of TCP options does not interfere with connection establishment. Few problems
were detected with unknown TCP options, and options included in data packets in mid-stream.

TABLE XII

INFORMATION ON INTERACTIONS BETWEEN TRANSPORT PROTOCOLS AND ROUTERS OR MIDDLEBOXES.

only 49 clients that advertise support for ECN and report receiv-
ing bogus SACK blocks from 36 clients. If we had not verified
the TCP checksum these two characteristics could have easily
been skewed by mangled packets and we’d have been none-the-
wiser. In our experiments, we usedtcpdump4 to capture full
packets and thentcpurify5 to verify the checksums and then store
only the packet headers in the trace files we further analyzed6.

VIII. C ONCLUSIONS ANDFUTURE WORK

Our goals have been to track the deployment (or lack thereof)
of transport-related mechanisms in end-to-end protocols and in
middleboxes; to look out for the ways that the performance of
mechanisms in the Internet differs from theory; and to consider
how researchers should update their models of transport proto-
cols in the Internet to take into account current practice. The
measurements reported in this paper explore the deploymentof
TCP mechanisms in web servers and browsers. Table XI pro-
vides a set of high-level aspects of a “modern” version of TCP
that are in widespred use and researchers can use as a set of
rules of thumb when conducting TCP evaluations. Our mea-
surements involving the interactions between TCP and the mid-
dleboxes along the network path are summarized in Table XII.

An extended version of this paper will be available shortly on
the TBIT web site [3] with sections that were deleted from this
paper due to lack of space. These include sections on TCP’s

4http://www.tcpdump.org
5http://irg.cs.ohiou.edu/ eblanton/tcpurify/
6Before truncating a captured packet to store on the headers for later process-

ing, tcpurify stores a code in the TCP checksum field indicating whether the
checksum in the original packet was right, wrong or whethertcpurify did not
have enough of the packet to make a determination.

Window Scale Option, Minimum RTO, Minimum MSS, and the
Deployment of D-SACK (Duplicate SACK). These also include
sections of detecting middleboxes that perform TTL-rewriting,
and tests on the effects of reordering on transport protocols. The
updated TBIT software will also be available.

There are a wealth of important TCP behaviors that we have
not examined in our tests. For example, we have not explored
the TCP restart behavior after an idle period or attempted to
determine whether TCPs properly employ backoff when using
the retransmission timer. In addition, new TCP mechanisms
are continually being proposed, standardized and deployed(e.g.,
HighSpeed TCP [22]) and assessing their deployment, charac-
teristics and behaviors are useful future work. Finally, periodi-
cally re-running the tests presented in this paper is usefulto track
changes in TCP, as well as in the interactions between end-to-
end protocols and the evolving network architecture.

Another class of extensions to the work presented in this pa-
per is be to explore the behavior of TCP in alternate applica-
tions (e.g., peer-to-peer systems, email, web caching, etc.). One
way to explore the TCP performance in client machines (which
is more important for applications such as peer-to-peer systems
than it is for the web transactions studied in this paper) would
be to construct a web site that a client could visit to requestthat
active TBIT-style tests be performed for the TCP implementa-
tion on the client machine. For instance, the web server could
drop particular packets and observe the client’s reaction (i.e.,
basically just flipping around our current TBIT tests).

Another interesting area for future investigation is in thearea
of using TBIT-like tools for performance evaluation. For in-
stance, a performance comparison of a server using various ini-
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tial congestion window values might be useful. A TBIT-like tool
can impose an initial window upon a web server via the adver-
tised window. However, when that restriction is removed the
web server may or may not behave as if its natural ICW was
the imposed ICW. Techniques for conducting this kind of per-
formance comparison in a solid and meaningful way (and de-
tecting when such a comparison is not meaningful) is a rich area
for future investigation.

As new transport protocols such as SCTP and DCCP begin to
be deployed, another area for future work will be to construct
tools to monitor the behavior, deployment and characteristics of
these protocols in the Internet.

While we examined some ways that middleboxes interfere
with communication, a key open question is that of assessing
ways that middleboxes affect theperformanceof transport pro-
tocols or of applications. One middlebox that clearly affects
TCP performance is that of Performance Enhancing Proxies
(PEPs) [16] that break single TCP connections into two con-
nections. For example, it has been suggested that there could be
problems when PEPs use a different version of FTP or of TCP
from that used by the end-nodes; active tests could be usefulto
investigate this further.

A completely different kind of test that could benefit from the
active probing approach outlined in this paper would be one to
detect the presence or absence of Active Queue Management
mechanisms at the congested link along a path. To some extent,
this can be done with passive tests, by looking at the patternof
round-trip times before and after a packet drop. However, active
tests may be much more powerful, by allowing the researcher to
send short runs of back-to-back packets, as well as potentially
problematic, in attempting to induce transient congestionin the
network.
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