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Abstract— In this paper we explore the evolution of both the Inter-
net’'s most heavily used transport protocol, TCP, and the curent network
environment with respect to how the network’s evolution ulimately im-
pacts end-to-end protocols. The traditional end-to-end asimptions about
the Internet are increasingly challenged by the introducton of intermedi-
ary network elements (middleboxes) that intentionally or wintentionally
prevent or alter the behavior of end-to-end communications This paper
provides measurement results showing the impact of the cuent network
environment on a number of traditional and proposed protocd mecha-
nisms (e.g., Path MTU Discovery, Explicit Congestion Notifiation, etc.).
In addition, we investigate the prevalence and correctnessf implementa-
tions using proposed TCP algorithmic and protocol changese(g., selective
acknowledgment-based loss recovery, congestion windowagvth based on
byte counting, etc.). We present results of measurements ken using an
active measurement framework to study web servers and a paise mea-
surement survey of clients accessing information from our wb server. We
analyze our results in the context of gaining further undersanding of the
differences between the behavior of the Internet in theory grsus the behav-
ior we observed through measurements. In addition, these nasurements
can be used to guide the definition of more realistic Internemodeling sce-
narios.

I. INTRODUCTION

While the Internet’s architecture, protocols and appidet
are constantly evolving, there is ofteompeting evolutiote-

tween various network entities. This competing evolutian ¢ Papilities of a

walls, NATs, proxies, etc.) — which change the Internet'siba
end-to-end principlg¢41] — impact TCP. We seek to elucidate
unexpected interactions between layers and ways in whigh th
Internet differs from its textbook description, includiti diffi-
culties various real-world “gotchas” impose on the evantof
TCP (and end-to-end protocols in general). The measurament
presented in this paper also serve as lessons for effottwiia

to further evolve end-to-end protocols and the Interndtisec-
ture.

Internet research is driven by simulations, experimemasl-a
ysis, and deployment studies designed to address particula
problems in the Internet. However, the design of effectnd a
accurate network models is challenging due to the intriosio-
plexity of the Internet and the dynamic nature of the element
composing it. Researchers need better models of networks an
protocols to ground their investigations, such that they fwa-
vide practical benefit on the evolving network [24]. Therefo
a second component of our work assesses the current deploy-
ment status of various proposed TCP algorithmic and prdtoco
modifications and updates the literature with respect tcctie
“modern” TCP stack. This will aid researcher

impact performance and robustness, and even halt commun|Bs2ccurately conducting future evaluations of the netwaud

tions in some cases. For instance, [36] shows that whemgetfPr®P0sed changes.

up a TCP connection to a web server, attempting to negotiatdn this paper, we bring both active and passive measurement
Explicit Congestion Notification (ECN) usage [40] inteddr techniques to bear to study web traffic in the context of tevab

with connection establishment for over 8% of the web servegtated issues. We use active measurements to assess the capa
tested in 2000. For such web servers, the client can onlyesthilities and algorithms used by web servers (the primary dat
lish a TCP connection by re-attempting the connection withosenders in web transactions). Data senders are ultimately i
negotiating ECN usage. The connection failures in the pressntrol of TCP’s congestion control and reliability algbms.

ence of ECN negotiation were caused by firewalls configurdtierefore, our active measurements are focused on studying
to interpret the attempt to negotiate ECN as the signatuge ofvhich congestion control algorithms, loss recovery scheame
port-scanning tool [20]. On the one hand, these firewalls captions are implemented and how they work in the context-of to

be seen as incorrectly associating new functionality wita of

day’s Internet architecture. As a second component, weptes

the first appearances of that new functionality in an undblér passive measurements of the capabilities and limits intbbge
application. On the other hand, the firewalls can also be seweb clients (the primary data receivers). Data receiversato
as doing their job of blocking unwanted traffic. This exampldirectly control the data flow on a TCP connection. However,

shows the fundamental problem of different evolution p#tlas

clients can optionally provide information to the data samd

can become crossed to the detriment of smooth traffic flow orcrease performance (e.g., selective acknowledgmdntay-

the Internet.

dition, limits imposed by receivers (e.g., the advertiséudow

In this paper, we investigate the evolution of TCP [39], theize) can have a dramatic impact on the performance a connec-

Internet’s most heavily used transport protocol, in theteriof
ongoing changes to the Internet’s basic architecture. tiqoa

tion obtains [9].
The remainder of this paper is organized as follows. Sec-

lar, we study the ways in which so-called “middleboxes” (firgjon || describes related work on measurement studies oéira
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port protocols. Section Ill describes the tools and methodo
ogy we use in our study. Section IV presents the results of our
measurements of the deployment of various TCP mechanisms
in web servers. Section V explores interactions betweenrn mid
dleboxes and transport protocols. Section VI reports thelte



of our measurements about the deployment of TCP mechanigrasket trace analysis. However, many of the TBIT tests ate no
in web clients. Section VIl discusses lessons learned isttidy amenable to straightforward post-facto analysis of patthees.
that challenged our assumptions and ultimately shaped ear mFor example, consider a test to determine if a TCP data sé&der
surements and tools. Section VIII presents our conclusienms$ responding correctly to SACK information. To evaluate théd

discusses open questions and future work. sender, a certain pattern of loss events is required (eugti-m
ple packets lost per window of data). An active tool like TBIT
Il. RELATED WORK can easily induce such a specific loss pattern and evaluate th

This paper uses and extends the methodology from [36] on teghavior of the data sender in comparison to the expected be-
TCP Behavior Inference Tool (TBIT). Independent and patallhavior. Meanwhile, passive analysis would require a toat th
work on TBIT extensions detailed at [29] includes tests fionl. possessed a very general understanding of a range of loss pat
ited Transmit, Early Retransmit, and support for the Windot@rns and the expected responses — which would be quite trick
Scaling option in TCP. TBIT follows an earlier history of et to get right. Inducing a specific loss pattern does run theais
probing of TCP. For instance, [17] treats TCP implementetiotripping pathological behavior that is not indicative oétbver-
as black boxes, observing how they react to external stjranidi all behavior of the TCP implementation under study. We belie

studying specific TCP implementations in order to assesadhe the risk for biasing our overall results in this way is smaien
herence to the specification. our large sample of web servers (discussed below).

There is also a considerable body of work on passive tests Oynqther class of tests that involve actively attemptingralt
TCP based on the analysis of packet traces. [37] outle®s p4tive schemes in connection initiation cannot be perfarme
analy, a tool for analyzing a TCP implementation’s behavior bMy passive trace analysis alone. For instance, consider a

inspecting sender and receiver packet traces of TCP cdonecteg; for middleboxes that block TCP SYN segments when the
run between pairs of hosts, while [38] outlines observe&@ac gy s carry advertisements for ECN. Packet traces can indi-

dynamics based aepanalys analysis. Finally, [9] assesses theate whether connections attempting to use ECN succeeil. or fa
properties of web clients using packet traces of TCP COIOTEEL 44\ ever, determining the reason a connection attempting-to
to a particular web server. gotiate ECN failed is due to a middlebox blocking ECN-capabl

In addition, there is some research in the literature on the 2YNs takes active insertion of SYNs with and without ECN ad-
fect of middleboxes on transport protocols (e.g., [10]), Wew- | o rtisements.

ever, do not discuss the body of research on general artthriséc
evaluations of middleboxes, or on the effect of middlebaxes ~TBIT provides a set of tests, each of which is designed to
DNS, BGP, and the like. Rather, the study presented in this [g&amine a specific aspect of the behavior of the remote web
per focuses on interactions between middleboxes and wansgervers, or of the path to and from the web server. Most ofthes
protocols. tests examine the characteristics of the TCP implementata
Finally, there is a large body of literature on active and- patj;le web servers. However, the tests are not restricted to TCP
sive approaches for estimating end-to-end network patpeuro (€-9., the Path MTU Discovery [34] tests). TBIT establishes
ties using TCP [37], [11], [21]. In this paper we do not dissusl CP connection with the remote host at the user level. TBIT
TCP-based tests for estimating path properties such asaess cOmposes TCP segments (or segments from another protocol),
available or bottleneck bandwidth and durations of corigest and uses raw IP sockets to send them to the remote host. TBIT
episodes. Also prevalent in the literature, yet out of scigpe alsO sets up a host firewall to prevent incoming packets from
the current effort, is the body of work based on passive mggaching the kernel of the local machine; a BSD packet fitter i
surements of traffic on a particular link to determine theakre Used to deliver incoming packets to the TBIT process. TBIT's
down of the traffic in terms of round-trip times, applicatiager User-level connection is used to control the sending offalye

protocols, transfer sizes, etc. constructed packets (control, data, acknowledgmen}, &tale-
sired from the local host. Note that all the TBIT tests are sus
I1l. M EASUREMENTS TOOLS AND DATA ceptible to network conditions to some degree. For instaifice

As discussed above, we employ both active and passive m@3ACK sentby TBIT is lost in transit to the web server the re-
surements in our study into the characteristics of web wierpU!t Of the test could be inconclusive or even wrongly regubrt
and servers. Web servers act as data senders and web clif@dave taken test-specific measures to make each of our tests
as data receivers in web transactions. Therefore, we use ackS robust as possible. In addition, our large set of web serve
measurements to probe web servers for congestion contiol &fescribed below) helps to minimize any biases that boguis te

loss recovery capabilities, while using passive measungsiie  ntroduce into our results.
assess the options and resource limits enforced by wektslien The list of target web servers used in our study was gathered
Our motivation, approach and methodology is presentedén #iom IRcaches, the NLANR Web Caching project [1]. We used
following two subsections. web cache logs gathered from nine different locations aide
United Stated. Table | shows the cache logs used from Febru-
ary 2004, along with the log sizes, expressed as the number of
We use TBIT [36] to conduct active measurements that probrique IP server addresses from each cache. Since the caches
web servers for their characteristics. A few of the activdTB are located within the continental US, most of the cached ¥/ RL
tests we present, such as the test that determines the sizeonfespond to domain names within the US. However, the cache
the initial window, could just as easily be performed by pass logs also contain a sizable set of web servers located intkiez o

A. Active Tests



[ Servername | Location [ Cache size ]| TCP Stack Servers (%)

Servers (%) H

pb.us.ircache.net Pittsburgh, PA 12867 May 2001 | February 2004
uc.us.ircache.net Urbana-Champain, IL 18711 Total Number of Servers 4550 84394
bo.us.ircache.nef Boulder, CO 42120 I. Classified Servers 3728 (72%) | 27914 (33%)
sv.us.ircache.net Silicon Valley, CA 28800 I.A. NewReno 1571 (35%) 21266 (25%)
sd.us.ircache.net San Diego, CA 19429 I.B. Reno 667 (15%) 3925 (5%)
pa.us.ircache.net Palo Alto, CA 5511 I.C. Reno, Aggressive-FR 279 (6%) 190 (0.2%)
sj.us.ircache.net| MAE-West, San Jose, CA 14447 I.D. Tahoe 201 (4%) 983 (1.2%)
rtp.us.ircache.net Research Triangle Park, N¢ 33009 I.E. Tahoe, No FR 1010 (22%) 1181 (1.4%)
ny.us.ircache.net New York, NY 22846 I.F. Aggressive Tahoe-NoFH 0 7 (0%)
I.G. Uncategorized 362 (0.4%)
TABLE | IT. Classified but ignored - 11529 (14%)
IRCACHE SERVERS AND LOCATIONS (due to unwanted drops)
IIl. Errors 822 (18%) | 44950 (53%)
. . . II.A. No Connection 2183 (2.6%)
continents. Of the 84,394 unique IP ado!re%sfesnd in the lll.B. Not Enough Packets 22767 (27%)
cache logs: 82.6% are from North America, 10.2% are from l1I.C. No Data Received 3352 §4%))
: . II.D. HTTP Error 13903 (16%
0 0 0
Europe, 4.9% arg from Asia, 1.1% are from Oceania, 1.0% are IILEE. Request Failed 839 (1%)
from South America and 0.2% are from Africa. III.F. MSS Error 266 (0.3%)
. . . II.G. Oth 2035 (2.4%
All the TBIT tests outlined in this paper were conducted be- e (2.4%)
tween February and May 2004. The TBIT client was always run TABLE Il
from a machine on the local network at our research laborator RENO/NEWRENO DEPLOYMENT IN WEB SERVERS

There is no local firewall between the machine running TBlgnalysis based on Reno TCP.
and our Internet connection.

Given that data senders (web servers in our study) implement Reno/NewReno Test
most of TCP's “smarts” (congestion control, loss recovety,),
most of the remainder of this paper outlines active TBITs¢st
determine various characteristics of TCP implementatar
networks and where the evolutionary paths collide.

The Reno/NewReno test, adapted from the original TBIT
[36], determines whether a web server uses Tahoe, Reno, or
NewReno loss recovery and congestion control mechanisms fo
a TCP connection that is not SACK-capable. It is well-known
that Reno’s congestion control mechanisms perform poorly
when multiple packets are dropped from a window of data [19].

When characterizing web clients, passive packet tracg/anafracking the deployment of NewReno can guide researchers in
sis is more amenable than active probing for two main reasotiir choices of models for simulations, experiments, al-an
First, initiating a connection to a web client to probe itp&hil-  ysis of congestion control in the Internet. Another reasom f
ities is difficult because often web clients are user machihat these tests is to look for unanticipated behaviors; for ggam
do not run publicly available servers. In addition, dateieers the Reno/NewReno tests in [36] discovered a variant of TCP
(web clients) do not implement subtle algorithms whose ishpawithout Fast Retransmit that resulted from a vendor’s buggy
is not readily observable in packet headers (as is the cdbe Wlementation.
data senders). Rather, data receivers expose their staits, |  The Reno/NewReno test determines the sender’s congestion
and capabilities to the data sender in packet headers and @ntrol mechanism by artificially creating packet dropst tha
tions (e.g., SACK information, advertised window limit$c§. elicit the congestion control algorithm of the server. Ider
Therefore, by tracing packets near a web server, client TEP ito enable the server to have enough packets to send, TBIT ne-
plementations can be well characterized with respect @ntli gotiates a small MSS (256 bytes in our tests). However, us-
impact on web traffic. Section VI outlines our observatiohs Gng a small MSS increases the chances of observing reogderin

B. Passive Tests

web clients. packets (see Section VII), and this reordering can change th
behavior elicited from the server. Therefore, the currestt has
IV. DEPLOYMENT OF TRANSPORTMECHANISMS evolved from the original TBIT test to make it more robust to

This section describes TBIT tests to assess the deploymagket reordering, and consequently to be able to classiy b
status of various TCP mechanisms in web servers. Such td¥ior the original TBIT was not able to understand. The gam
are useful from a number of angles. First, it is useful fotpro Work of the Reno/NewReno test is as described in [36], with th
col designers to understand the deployment cycle for pepogeceiver dropping the3th and16th data packets.
changes. In addition, as discussed previously, it is useful Table 1l shows the results of the Reno/NewReno test.
test the actual behavior of proposed mechanisms in thenietier The Tahoe, Tahoe without Fast Retransmit (FR), Reno, and
keeping an eye out for unexpected behaviors and interactioNewReno variants are shown in [36]. Reno with Aggressive Fas
Another goal of this section is to guide researchers in copst Retransmit, called RenoPlus in [36], is also shown in [3&n&
ing models for the design and evaluation of transport paitoc With Aggressive Fast Retransmit has some response to alparti
For example, if TCP deployments are dominated by NewReAgknowledgment during Fast Recovery, but does not take the
and SACK TCP, then it is odd for researchers to evaluate coMewReno step of retransmitting a packet in response to such a

gestion control performance with simu|ationsy experiment partlal aCknOW|Edgment. For each TCP variant, the tablevsho
the number and percentage of web servers using that vavient.
1We note that the list of servers could be biased by a singlehimadaving note that the results from May 2001 and February 2004 are not
multiple unique IP addresses — which would tend to skew thelte However, di | ble: th diff l f b d
due to the size of the server list, we believe that such atsifawvhile surely Irectly compara e_* t _ey use_ Iiferent lists of web sesyan
present, do not highly skew the overall results. the February 2004 list is considerably larger than the Ma&3120



SACK Type ‘ Servers (%) Servers (%) H [ Type of Server [ Servers (%) |
May 2001 February 2004 Total Number of Servers 84394
Total Number of Servers 4550 84394 1. Not SACK-Capable 24361 (28.8%)
. Not SACK-Capable 2696 (59%) | 24607 (29%) Il. SACK Blocks OK 54650 (64.7%)
Il. SACK-Capable 1854 (41%) | 57216 (68%) IIl. Shifted SACK Blocks | 346 (0.5%)
T.A. Uses SACK Info: 550 (12%) | 23124 (27%) IV. Errors 5037 (6%)
IlLA.1. Proper SACK - 15172 (18%) IV.A. No Connection 4493 (5.3%)
IlLA.2. Semi-Sack — 7952 (9%) IV.B. Early Reset 376 (0.4%)
I1.B. Doesn’'t use SACK Info: | 759 (17%) 2722 (3%) IV.C. Other 160 (0.2%)
I1.B.1. NewReno - 1920 (2%)
I1.B.2. TahoeNoFR - 802 (1%) TABLE IV
II.C. Inconsistent Results 545 (12%) 173 (0.2%) GENERATING SACK INFORMATION AT WEB SERVERS
I1.D. Not enough Pz_ickets 20740 (24.5%)
1 o i Receved o0 are shown i Figure 4 n [36]. |
I.G. Request Failed 2 (0%) While the 2001 and 2004 results are not directly compara-
LA MSS Error 22250(‘73/‘30) ble, the results in Table Il indicate that the fraction ofwe
TIT.A. No Connection 1770 (2%) servers that report themselves as SACK-capable has imcteas
lIl.B. Other 799 (1%) somewhat since 2001, and that most of the SACK-capable web
TABLE IIl servers now, in fact, make use of the information in SACK

SACK DEPLOYMENT IN WEB SERVERS blocks. As suggested by the results in the next section, sdme
the results in Table Ill that are not “Proper SACK” could be in

list. However, Table Il implies that the deployment of Newige ,enced by middleboxes that translate the TCP sequence,spac
TCP has increased significantly in the last few years; NevwoReg ;t 4o not properly translate SACK blocks.

is now deployed in 77% of the web servers on our list for which

we could classify the loss recovery strategy. In addititie t C. Web Server SACK Generation
deployment of TCP without Fast Retransmit has decreased sig

n|f|cant_ly; this poorly-behaving variant was d!scoyereqaﬁ], in response to incoming SACK information from the web client
where it was reported to be due to a vendor’s failed attempt , : S :
e web server’s use of SACK information is the primary per-

optimize TCP performance for web pages that are small eno%gpmance enhancement SACK provides to web traffic. In this
to fit in the socket buffer of the sender. :

section, however, we focus on whether web servers generate a
curate SACK information. In the normal course of web trans-
B. Web Server SACK Usage actions this matters little because little data flows froeweb

The SACK Behavior test reports the fraction of servers thalient to the web server. However, while not highly applieab
are SACK-capable, and categorizes the variant of SACK cam-web performance, this test serves to illustrate potkepitab-
gestion control behavior for a TCP connection with a SACKems in passing SACK information over some networks. This
capable client. TCP’s Selective Acknowledgment (SACK) opest calls for the client to split an HTTP GET request into-sev
tion [32] enables the transmission of extended acknowleafdmeral segments. Some of these segments are not actuallysent,
information to augment TCP’s standard cumulative acknowdppear to the server as having been lost. These data logses se
edgment. SACK blocks are sent by the data receiver to infolsg the server should trigger SACK blocks (with known seqeenc
the data transmitter of non-contiguous blocks of data taaeh numbers) to be appended to the ACKs sent by the server.
been received and queued. The SACK information can be usedfable IV shows the results of the server SACK generation test
by the sender to retransmit only the data needed by the exceiThe row “Not SACK-Capable” shows the number of servers that

The SACK Behavior test builds on the original TBIT testdid not agree to the SACRRERMITTED option during connec-
with added robustness against packet reordering. TBITd@st tion setup. The row listed “SACK OK” shows the number of
termines if the serveris SACK-capable by attempting thetieg web servers that generated SACK blocks correctly. As Table |
ation of the SACKPERMITTED option during the connectionshows, most of the servers show proper SACK behavior.
establishment phase. For a SACK-capable server, the test deA relatively small number of servers, however, return im-
termines if the server uses the information in the SACK boclproper SACK blocks. The row listed as “Shifted SACK Blocks”
sent by the receiver. TBIT achieves this by dropping packets indicates cases where the SACK blocks received contained se
17 and19, and sending appropriate SACK blocks indicating thguence numbers that did not correspond to the sequence space
blocks of received data. Once the SACK blocks are sent, TBiliBed by connection. Instead, the sequence space in the SACK
observes the retransmission behavior of the server. blocks wasshifted This shifting could have been caused by a

Table Il shows the results for the SACK test. The servelgiggy TCP implementation, or by incorrect behavior from-mid
reported as “Not SACK-Capable” are those that did not agrdieboxes on the path from the server to the client.
to the SACKPERMITTED option negotiated by TBIT. The Two plausible scenarios whereby middleboxes may cause in-
servers listed as “Proper SACK” are those that respondga proorrect SACK blocks to be returned to the web client are:
erly by re-sending only the data not acknowledged in the re-Shifting of TCP sequence numbers can be done by a NAT box
ceived SACK blocks. The servers listed as “Semi-SACK” makbat modifies the URL in a request, and as a consequence has to
some use of the information in the SACK blocks. In contrasthift the TCP sequence numbers in the subsequent data packet
the servers listed as “NewReno” and “Tahoe-NO-FR” make rin addition, the cumulative acknowledgment number and SACK
use of the information in the SACK blocks, even though thdylocks should be altered accordingly in the ACKs transmitte
claim to be SACK-capable. The four types of SACK behaviots the clients. However, due to ignorance or a bug, the SACK

Inthe previous section we evaluated the web server’s behavi



H i Window Halving Behavior | Servers (%) | Servers (%)
blocks may not be properly translated, which could expla@ t ‘ May 2001 | April 2004 ‘
results of OUI’ tests. . Total Number of Servers 4550 84394
« The shifting of TCP sequence numbers also occurs with I. Classified Servers 3461 (76%) | 30690 (36%)

: ; : ; T.A. Window Halved 3330 (73%) | 29063 (34%)

TCP/IP flngerprlnt scrubber_s [43] designed to modify segeen LB Window Not Halved 131 (2.8%) | 1627 (2%)
numbers in order to make it hard for attackers to predict TCP T Errors 1089 (24%) | 53704 (64%)
H A II.LA. No Connection 5097 (6%)
sequence numbers dun_ng an attack. One way that TCP/II_D fin ILB. Not Enough Packets 22362 (26%)
gerprint scrubbers modify sequence numbers is by choosing a II.C. No Data Received 4966 (6%)
i . 1I.D. HTTP Error 13478 (16%)

random _number for each connectioX;. Then,_the sequence ILE. Request Failed 376 (1.79%)
number in each TCP segment for the connection traveling from II.F. MSS Error 354 (0.4%)
ic i . i 1 Il.G. Unwanted Reordering 4622 (5.5%)

the untrustedngtwqu is mcrementgd b;_XZ. L|k¢W|se, each ILH, Unwanted drops 790 (0.5%)
segment traveling in the opposite direction has its ackadgd ILI. Other 1117 (1.3%)

ment number decremented By;. However, if the sequence TABLE V

numbers in the SACK blocks are not modified as well, then the
SACK blocks could be useless to the data sender.

In some cases these bogus SACK blocks will simply B&e note that RFC 2581 specifies that after a loss, the sender
thrown away as useless by the data sender. In cases wherstiauld determine the amount of outstanding data in the m&two
SACK blocks are merely offset a little from the natural segand set the congestion window to half that value in respamse t
ment boundaries, but otherwise are within the connectieg's a loss.
guence space, these incorrect SACK blocks can cause perfor-
mance problems by inducing TCP to retransmit data that ddes Byte Counting

not need retransmitted and by forcing reliance on the (oftenas described in RFC 2581 [12], TCP increases the conges-
lengthy) retransmission timeout to repair actual loss. tion window Ewnd by one MSS for each ACK that arrives
While the tOpiC of web server SACK generation is not impoﬁuring slow start (So_ca”ed “packet Counting”’ or “PC”)eD
tant in terms of the performance of web transactions, thH-int|ayed ACKs, described in [13], [12], allow a TCP receiver to
actions illustrated are germane to all TCP connectionsaaad pock up to two segments in a single ACK. This reduction in the
possible explanations for some of the results in the pressea- numper of ACKs transmitted effectively leads to a reduction
tion when web servers negotiated SACK but did not use “Propgg rate with which the congestion window opens. In order to
SACK” recovery. compensate for this retarded growth, [5], [6] propose iasfre
ing cwndbased on the number of bytes acknowledged by each
incoming ACK, instead of basing the increase on the number
A conformant TCP implementation is expected to halve itf ACKs received. Furthermore, [6] argues thatAgypropriate
congestion window after a packet loss [12]. This congestid@yte Counting (ABClgorithm should only be used in the ini-
control behavior is critical for avoiding congestion cpléz in tial slow start period, not during slow start-based lossvecy.
the network [23]. The Congestion Window Halving test, from\lso note that ABC closes a security hole by which receivers
the original TBIT, verifies that servers effectively haheir may induce senders to increase the sending rate inapppria
congestion window upon a loss event. The test works by irfly sending ACK packets that each ACK a fraction of the se-
tiating a transfer from the web server, waiting until theveer quence space in a data packet [42].
has built up to a congestion window of eight segments, anu the The Byte Counting test is sensitive to the specific slow start
dropping a packet. After the loss, the server should reduee behavior exhibited by the server. We have observed a lange nu
congestion window to four segments. We classify the result ber of possible slow start congestion window growth pagémn
“Window Halved” if the congestion window is reduced to aservers which do not correspond to standard behavior. kor th
most five packets after the loss, and we classify the resultraason, we were forced to implement an elaborate test for an a
“Window Not Halved” otherwise. TBIT is only able to deter-gorithm as simple as Byte Counting. The test works as follows
mine a result for those servers that have enough data to séadan initial congestion window of one segment).
to build up a congestion window of eight segments. A detaildd Receive and acknowledge the first data packet. After this
description of the test is available in [36]. TBIT maintaims ACK is received by the server, the congestion window should
receive window oB segments, to limit the congestion windowbe incremented to two packets (using either PC or ABC).
used by the sender. 2. ACK the second and third data packets with separate ACK
Table V shows the results for the Congestion Window Halpackets. After these two ACKs are received, the server shoul
ing test. Table V shows that, as in 2001, most of the servers @éxcrement its congestion window by two packets (using eithe
hibited correct window halving behavior. For the serveastid PC or ABC).
not halve the congestion window, a look at the packet tracgs s3. ACK the next four packets with a single cumulative ACK
gests that these are servers limited by the receive windbas® (e.g., with an acknowledgment of the seventh data packet).
congestion windows at the time of loss would otherwise have Continue receiving packets without ACKing any of them un-
been greater than eight segments. One possibility is tleaethtil the server times out and retransmits a packet.
servers maintain the congestion window independently fftmm 5. Count the number of new packefs, that arrived at least
receive window, and do not properly halve the effective wind three quarters of a round-trip time after sending the lasKAC
when the congestion window is greater than the receive wind@. Countthe number of earlier ACKR, (out of the three earlier

WINDOW HALVING TESTRESULTS

D. Congestion Window Halving



[ Slow-Start Behavior [ Number (%) ] [ Limited Transmit (LT) Behavior | Number (%) ]
Total Number of Servers: 44579 Total Number of Servers 38652
1. Classified Servers 23170 (52%) 1. Classified Servers 29023 (75%)
I.A. Packet Counting 15331 (51.9%) I.A. LT Implemented 8924 (23%)
1.B. Appropriate Byte Counting 65 (0.1%) I.B. LT Not Implemented 20099 (52%)
1I. Unknown Behvaior 288 (0.6%) II. Errors 9629 (25%)
III. Errors 21121 (47.4%) II.LA. No Connection 420 (1.1%)
II.LA. No Connection 528 (1.2%) 11.B. Not enough packets 3564 (9.2%)
11.B. Not enough packets 13112 (29.4%) II.C. No Data Received 257 (0.7%)
II.C. No data received 386 (0.9%) I.LD. HTTP Errors 224 (0.6%)
I1.D. HTTP Error 215 (0.5%) IL.LE. Request Failed 163 (0.4%)
II.LE. Request Failed 181 (0.4%) II.F. Packet Size Changed 4900 (12.7%)
II.F. Packet Size Changed 5762 (13%) Il.G. Other 101 (0.3%)
1I.G. Unwanted Reordering 827 (2%)
II.H. Other 7 (0%) TABLE VII

TABLE VI DEPLOYMENT OFLIMITED TRANSMIT

BYTE COUNTING TESTRESULTS 2. Drop the second segment.

ACKs) which were sent within an RTT of the first of the 3. TBIT sends two duplicate ACKs triggered by the reception

packets above. These are ACKs that were sent shortly befBf§egments and5. TBIT does not send ACKs when segments
i6@and4 arrive, to provide for increased robustness against un-

the last ACK. For servers with the standard expected behavi g , ;
R should be 0. expected server congestion window growth. Only one dujgica
7. Compute the increasé, in the server congestion windowACK would suffice to trigger the Limited Transmit mechanism
triggered by the last ACK as follows: at the server but TBIT sends two to account for the possibilit
of ACK losses.

(1) 4. If the server does not implement Limited Transmit, then it
If I — 1 then PC d will do nothing when it receives the duplicate ACK. If theser

: If L _> 1 tﬁgn th;N gzxz(reiﬁcreased its congestion Windodoeeni whp;irgigiléii\r?eitseﬁ];}I’rg:;lril;g,téhigPi(t will send anotfeg-s
by L segments in response to this ACK. We classify this as t €We note that if the duplicate ACKs sent by TBIT are dropped

se_rrvher pgrformltng Bbytﬁ.cgltjr?t'gg W'th afl,'[Ln.'t ?f ?t.le;sa; h in the network, then TBIT will see no response from the web
€ observation behind the design ot this test 1 < erver, and will interpret this as a case where Limited Tranhs

number of packets that the server sent after receiving th€ A s not deployed. Greater accuracy could be gained by running

packets in the preceding RTT. The&fepac_kets are assumed tothe test several times for each web server, as was done \gith th
include two packets for each ACK received that ACKed Onl¥BIT tests in [36]

one packet. Thes& packets are also assumed to include four
packets due to the advance in the cumulative acknowledgment
field when the last ACK was received. Any extra packets sent
should be due to the increase in the congestion window dueto |
the receipt of the last ACK. We note that the complexity o§thi o
test is an example in which the difference between theory and 5 |
practice in protocol behavior significantly complicates Hte-
narios that need to be considered. Table VI shows the resfults
the Byte Counting test. We observe that Byte Counting is not
largely deployed in the Internet.

L=N-4-2xR

2000

1800 If LT implemented, rcv this pktE=>

1200

1000 [

seq number

800 -

600 |-
<- Drop
400

F. Limited Transmit

<- Receive and ACK +  <-Send two dup ACKs

200 -

TCP’s Limited Transmit algorithm, standardized in [7], al-
lows a TCP sender to transmit a previously unsent data seégmen
upon the receipt of each of the first two duplicate ACKs, witho
inferring a loss or entering a loss recovery phase. The doal o
Limited Transmit is to increase the chances for low-bandlwid Figure 1 shows a time-sequence plot of the test described
connections to receive the three duplicate ACKs requirédge above for a server with an initial window of four packets. Ta-
ger a fast retransmission and avoid a costly retransmisisima  ble VII shows the results from our tests. The table shows that
out. The Limited Transmit test assesses deployment in weimited Transmitis deployed in at least a fifth of the web sesv
servers. Like the Byte Counting test, this test is senstvine in our dataset. The Limited Transmit test is sensitive to the
size of the initial window employed by the server. The stgte size of the initial window and therefore care needs to be-exer
of the test in all cases is the same but the presence or abskeneised with respect to the size of packets being received fhem
Limited Transmit must be determined in the context of a djweciserver. Note that if there is a change in the packet size fck-pa
ICW. For an ICW of four packets, the test works as follows: ets in the middle of the connection, TBIT flags the result ‘Keac
1. Acknowledge the first data segment in the initial window dize Changed”, and does not classify that server. As shown in
four segments. Upon receiving this ACK, the server shouthopthe table, this happened with some frequency and renddrs tha
its window from four to five segments, and send two more padest inconclusive. Furthermore, a certain minimum numlfer o
ets, the 5th and 6th segments. packets need to be transferred for TBIT to be able to classify

0

1.28 13 1.32 1.34
Time

Fig. 1. Limited Transmit Test: Example for ICW =4

L L L
122 124 126



server, therefore servers with small web pages are clabsifie H. Initial Congestion Window

not having enough packets. The Initial Congestion Window (ICW) test from [36] deter-
G. Congestion Window Appropriateness mines the initial congestion windows used by web servers: Tr
ditionally, TCP started data transmission with a singlenseqgt

When the TCP sender does not have data to send from gy sing slow start to increase the congestion window [13].

application, or is unable to send more data because of imilgoyever, [12] allows an initial window of two segments, and
tions of the TCP receive window, its congestion window stioutg] allows an initial window of three or four segments, degen

reflect the data that the sender has actually been able to seqd o the segment size. As a result, there is interest ikitige
A congestion window that doesn’t reflect current informatioy, o changes in the ICW.

aboutthe state of the network s considered invalid [25]ITF8  Tpg test starts with TBIT establishing a TCP connection to a
(;onge;tion Window Appropriateness test examiqes the ®NY&ven web server using 256 byte MSS. The small MSS in-
tion window used by web servers following a period of restricreases the chances that the server will have enough packets
tions imposed by the receive window. to exercise its ICW. TBIT then requests the corresponding we

In this test, TBIT uses a TCP receive window of one segmefM e and receives all packets initially sent by the sewigh;
to limit the web server’s sending rate to one packet per RTT. Ay ;¢ ACKing any of the incoming segments. The lack of ACKs
ter five RTTs, TBIT increases the receive window signifioantlto ces the server to retransmit the first segmentin the ICBVTT

and waits to see how many packets the web server sends ingigy counts the number of segments received, reports the ICW
sponse. Consider a web server using standard slow-stant frg e computed and terminates the test.

an initial window of K segments, increa}sing its congestion win- Despite the small MSS, there still may be some servers with-
dow without regard to whether that window has actually begqy; enough data to fill their ICW. TBIT detects such cases by
used. Such a web server will have built up a congestion Wigzching for the FIN bit set in one of the data segments. Such
dow of K + 5 segments after five round-trip times of sendingygts are inconclusive; the corresponding servers haveah |

one packet per round-trip time, because each ACK increbsesdqy | to or larger than the number of packets received. We re-
congestion window by one segment. The web server could Syt only those servers that had enough data to send théie ent
denly sendK + 5 packets back-to-back when the receive wingw without setting the FIN bit.

dow limitation is removed. In contrast, a web server usirg th

Congestion Window Validation procedure from [25] will haae .
congestion window of two or three segments, depending on the 1°°K’2:K 30K +— (54%)

initial window. ] 1%

10K+
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=1 N S S S S Fig. 3. Initial Window Test, for an MSS of 256 bytes.
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Fig. 2. The congestion window after a receive-window-leditperiod
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Figure 3 shows the distribution of ICWs used by the measured
web servers. The figure shows that most web servers use an
Figure 2 shows the number of segments that each seritial window of one or two segments, and a smaller number
sends in response to the increased receive window at the efidervers use an initial window of three or four segments. In
of the Congestion Window Appropriateness test. The mgjoriaddition, there are a few servers using ICW values of mone tha
of servers respond with an window of two to four packets, shofiour segments — including some servers using ICWs larger tha
ing moderate behavior. A smaller fraction of the serversaad 10 segments. These results are similar to those from 20Q.1 [36
with a large window of eight or nine packets, suggestingtirat which show 2% of the web servers had an initial window of three
server increases its congestion window without regardHter tor four segments, and 3% had initial windows larger than four
actual number of segments sent. segments. Thus, TCP initial windows of three or four segsent

In some cases the number of segments transmitted shows #natseeing very slow deploymentin web servers.
the server is violating the standard rules for opening the-co We note that the ICWs shown in Figure 3 could
gestion window during slow-start, even aside from the issue change with different values for the MSS. For example,
the appropriateness of a congestion window that has neeer beww.spaceimaging.com has an ICW of 64 segments when the
used. Because a conformant web server can have an initial WSS is restricted to 256 bytes, but an ICWarfly 14 segments
dow of at most four segments, a conformant web server can haith an MSS of 1460 bytes.
a congestion window of at most nine segments after five single Figure 4 shows the fraction of packets dropped and the frac-
packet acknowledgments have been received. tion of packets reordered as a function of the ICW value uged b



30 . . . ! ! ! Number (%) Number (%) H

ECN Status Sep 2000 Feb 2004
&l 223%  232%  23.6% E gzﬁzering 1 Total Number of Servers 24030 84394
@ ol 18.8% 1. Classified Servers 21879 (91%) | 80498 (95.4%)
S - I.A. Not ECN-capable 21602 (90%) | 78733 (93%)
é sl ] 1.B. ECN-Capable 277 (1.1%) 1765 (2.1%)
5 12.4% 11.1% I.B.1no ECNECHO in ACK 255 (1.1%) 1302 (1.5%)
S ol : ] 1.B.2 ECNECHO in ACK 22 (0.1%) 463 (0.5%)
0\3 7.1% 73% 6.3% 5.8% 1.C. Malformed SYN/ACK 0 183 (0.2%)
sl 3.9% ’ 1 II. Errors 2151 (9%) 3896 (4.6%)
I I I 1.6% II.LA. No Connection 2151 (9%) 3194 (3.8%)
0 | 2 . -é ILA.1. only with ECN 2151 (9%) 814 (1%)
" . ) 11.A.2. also without ECN 0 2380 (2.8%)
Initial Congestion Window Value I.B. HTTP Error — 336 (0.4%)
: : . II.C. No Data Received - 54 (0%)
Fig. 4. Percent of connections with dropped/reordered gtacks. ICW ID. Others B 312 (0.4%)
TABLE VIl

the server hosting the associated connections. The webrserv
with larger initial windows of three or four packets do not ex

ECN TESTRESULTS

perience higher packet drop rates overall. Even the oatalkio [ ECNfields in data packets [ Number (%) |
TCP connections with ICWs greater than four segments do not ECN-capable servers 1765
. . L . Received data packets w/ ECT 00 (Not-ECT) 758 (42%)
experience increased packet drop rates. In addition, eciog Received data packets w/ ECT 01 (ECT(1)) 0 (0%)
rates are similar for ICWs of 1-3 segments and then the percen Received data packets w/ ECT 10 (ECT(0)) 1167 (66%)
. . . Received data packets w/ ECT 11 (CE) 0 (0%)
age of servers experiencing reordering drops off. Received data packets w/ ECT 00 and w/ ECT L0 174 (10%)
TABLE IX

V. MIDDLEBOXES AND TRANSPORTPROTOCOLS
. . . . CODEPOINTS IN PACKETS FROMECN-CAPABLE SERVERS
The increased prevalence of middleboxes puts into question

the general applicability of the end-to-end principle. Mgt three-quarters of cases when ECN is negotiated a congéstion
boxes introduce dependencies and hidden points of fadum@, dication is not returned to the client. This could be causged b
can affect the performance of transport protocols and eppli a bug in the web server's TCP implementation or a middlebox
tions in the Internet in unexpected ways. Middleboxes tlvat dhat is clearing the congestion mark as the segment traverse
vert an IP packet from its intended destination, or modi§y ithe network. Finally, we also observe a small number of web
contents, are generally considered fundamentally diftfrem servers send a malformed SYN/ACK packet, with both the ECN
those that correctly terminate a transport connection andg/c ECHO and Congestion Window Reduced (CWR) bits set in the
out their manipulations at the application layer. Suchdiims SYN/ACK packet.
or modifications violate the basic architectural assunmptiat For 3194 of the web servers, no TCP connection was estab-
packets flow from source to destination essentially uncedndished. For our TBIT test, if the initial SYN packet is droghe
(except for TTL and QoS-related fields). The effects of sucFBIT resends the same SYN packet — TBIT does not follow the
changes on transport and application protocols is unpisgle advice in RFC 3168 of sending a new SYN packet that does
in the general case. In this section we explore the ways tmait attempt to negotiate ECN. Similarly, if TBIT receives@H
middleboxes might interfere in unexpected ways with end-tReset in response to a SYN packet, TBIT drops the connection,
end communications. instead of sending a subsequent SYN packet that does not at-
tempt to negotiate ECN-capability.

In order to assess how many of these connection failures are

Explicit Congestion Notification (ECN) [40] is a mechanisncaused by the attempt of ECN negotiation, we run two back-to-
that allows routers to mark packets to indicate congestion, back TBIT tests to each server. The first test does not atteEmpt
stead of dropping them. After the initial deployment of ECNregotiate ECN. After a two-second idle period, another esan
capable TCP implementations, there were reports of middien is attempted using ECN. We observe that 814 connections
boxes (in particular, firewalls and load-balancers) thatkéd (1% of the web servers, @% of the connection failures) are
TCP SYN packets attempting to negotiate ECN-capability, eipparently refused because of trying to negotiate ECNegine
ther by dropping the TCP SYN packet, or by responding with@nnection was established successfully when no ECN raegoti
TCP Reset [20]. [36] includes test results showing the inact tion was attempted. Table VIl indicates that the fractibweb
of web servers that were ECN-capable and the fraction ofspatiervers with ECN-blocking middleboxes on their path has de-
to web servers that included middleboxes blocking TCP SYdeased substantially since September 2000 — from 9% in 2000
segments attempting to negotiate ECN-capability. The TBID 1% in 2004.
test for ECN is described in [36]. We further explored the behavior of ECN-capable servers by

Table VIII shows the results of the ECN test for 84,394 wetecording the ECT codepoints in the data packets received by
servers. Only a small fraction of servers are ECN-Capaliies— t TBIT. Table 1X shows the number of servers from which the
percentage has increased fram% in 2000 t02.1% in 2004. different codepoints were observed. TBIT received dat&gisc
After a web server has successfully negotiated ECN we senith the ECT 00 codepoint from about 42% of the ECN-capable
a segment marked “Congestion Experienced (CE)” and recatvers. The ECN specification defines two ECT code points
whether the mark is reflected back to the TBIT client. The réhat may be used by a sender to indicate its ECN capabilities
sults are given on lines 11.B.1 and I1.B.2 on the table. Ingbly in IP packets. The specification further indicates thatquols

A. ECN-capable Connections



PMTUD Status [ Number (%) ]|

that require only one such a codepastibulduse ECT (1) =

10. We observe that ECN-capable servers do use ECT(1) and D e 5570
found no server made use of tfi#~'T°(0) = 01 codepoint. We IA_PMTUD not-enabled| 24196 (30%)
; I.B. Proper PMTUD 33384 (41%)
further observe that no router between our TBIT gllent a@l th . PMTUD Failed 14157 (170/2)
ECN-capable servers reported Congestion Experiencedi(CE) 1T Errors 9956 (12%)
H i H IILA. Early Reset 545 (0.6%)
any segment. Finally, TBI_T received both dat'.;t segments with 1B Mo Conmontion 101 (2.50"/0)
ECT = 00andECT = 10 in the same connection from about II.C. HTTP Errors 2843 (3.4%)
10% of the ECN-capable servers. This behavior may indicate II.D. Others 4467 (5.5%)
that the ECT code point is being erased by a network element TABLE X
(e.g. router or middlebox) along the path between the ECN- PMTUD TESTRESULTS

capable server and the client. ] ] ]
size. Since TBIT rejects packets that are larger th&AU,, the

B. Path MTU Discovery communication will eventually time out and terminate andTB

351 sh that TCP perf is direct i Itclassifies the server/path as failing to properly employ RNAT
[35] shows tha performance 1s cirectly proportional 1o '{'able X shows that PMTUD is used and succeeded for

the segment size employed. However, [27] argues that pacski'zghtly less than half of the servers on our list. For 31% of

fragmentation can cause poor performance. As a compromise; . ; )

. € servers on our list, the server did not attempt Path MT4J Di
TCP_can use Path MTU Discovery (PMTUD) [34]’.[33] 0 de'covery. For 18% of the servers on our list, Path MTU Discov-
termine the largest segment that can be transmitted across

given network path without being fragmented. Initiallye ttlata er;?faned, presumably because of middleboxes that bloskRC

sender transmits a segment with the IP “Don’t Fragment” (D'Qja;ﬁets otn the ?ﬁtz tc;thzwteb sgr_ver.th th MTU bei
bit set and whose size is based on the MTU of the local net " ¢ nate MENods for determining the pa are being

work. Routers along the path that cannot forward the segm JI-_n5|dered in the Path MTU D'S.COVG.ry Working Group in the
. : N S . F, based on the sender starting with small packets and pro

without first fragmenting it (which is not allowed because iBF ressivelv increasing the seament size. If the sender does n

set) will return an ICMP message to the sender noting that t%eceiv“é a)r/1 IACK EIlCEet for thge lar erlza;:ket it chanaes back t

segment cannot be forwarded because it is too large. Thesend I ket P gerp ' 9

then reduces its segment size and retransmits. Problerhs WINANET PACKELS.

PMTUD are documented in [30], which notes that many routers;In a similar _strate_gy, caIIeUIack—hoIe detecthnf_a pack_et
ﬁ;h the DF bit set is retransmitted a number of times without

fail to send ICMP messages and many firewalls and other mjd-, .

dleboxes are often configured to suppress all ICMP messa ng afcknov;ledgeq, the][\ LhePI\/I\I/IS_I_SUv[\;lll be .set Lc.’ 5?131?Bti¥rtzs [2].

resulting in PMTUD failure. If the data sender continuesde r performed a variant of the ) testin whic 0es
not send the ICMP packets, to see if any server reduces the siz

transmit large packets with the DF bit set, and fails to nexei h K imolv b it didn ) AQK
the ICMP messages indicating that the large packets arg be Itlt € packets sent simp y’ ecause itdidn't receive an 0
je larger packet. We didn’t find any servers performinglolac

dropped along the path, the packets are said to be disapgeah e d s
into a PMTUDblack hole We implemented a PMTUD test in ole etection. . ,
TBIT to assess the prevalence of web servers using PMTUD,S'nce a non-trivial number of network elements discard-well

and the success or failure of PMTUD for these web servers. THPWN ICMP packets the results of our tests do not offer hope
test is as follows: for protocol designers proposing to use new ICMP messages to

1. TBIT is configured with airtual link MTU, MTU,. In our signal various network path properties to end systems, (@m.
tests, we seb/ TU, to 256 bytes ' Y explicit corruption notification [28], handoff or outagetifiza-

2. TBIT opens a connection to the web server using a SY#en: etc.).
segment that contains an MSS Option of 1460 bytes (whichés
based on the MTU of the network to which the TBIT client is™
attached). IP packets may contain options to encode additional infor-
3. The TCP implementation at the server accepts the commectination at the end of IP packets. A number of concerns have
and sends MSS-sized segments, resulting in transmittéefszacbeen raised regarding the use of IP options. One conceratis th
of MSS + 40 bytes. If the data packets from the server do ribe use of IP options may significantly increase the overiread
have the DF bit set, then TBIT classifies the server as not eduters, because in some cases packets with IP optionsare pr
tempting to use PMTUD. If TBIT receives a packet with the DEessed on thslow pathof the forwarding engine. A second
bit set that is larger than/T'U,, TBIT rejects the packet, andconcern is that receiving IP packets with malformed IP aio
generates an ICMP message to be sent back to the server. may trigger alignment problems on many architectures and OS
4. If the server is capable of receiving and processing sue@rsions. Solutions to this problem range from patchingaBe
ICMP packets, it will reduce the MSS to the value specified to blocking access to packets using unknown IP options agusi
the MTU field of the ICMP packet, minus 40 bytes for packdP options in general. A third concern is that of possibleidien
headers, and resume the TCP connection. In this case, TBFGervice attacks that may be caused by packets with iniRlid
accepts the proper-sized packets and the communication captions going to network routers. These concerns, togetler
pletes. the fact that the generation and processing of IP optioneris n

5. Ifthe server is not capable of receiving and processiddgRC mandatory at both the routers and the end hosts, have lestsput
packets it will retransmit the lost data using the same packests, and middleboxes to simply drop packets with unknown

IP Options
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IP options, or even to drop packets with standard and prppelf® options (see Section VI). For instance, TCP uses the times
formed options. This is of concern to designers of trangmart tamp option [26] to (among other things) take round-tripeim
tocols because of proposals for new transport mechanisas tihheasurements more frequently than once per round-trip, time
would involve using new IP options in transport protocolg(e for the Protection Against Wrapped Sequences [26] algorith
[4], [18]). and for detecting spurious timeouts [31].

TBIT’s IP options test considers TCP connections with three However, middleboxes along a path can interfere with the use
types of IP options in the TCP SYN packet, iReRecord Route of TCP options, in an attempt to thwart attackers trying te fin
Option the IP Timestamp Optionand a new option calletP  gerprint hosts. Network mapping tools such as NMAP (Network
Option X which is an undefined option and represents any néapper) use information from TCP options to gather informa-
IP option that might be standardized in the future. We expetion about hosts; this is calldihgerprinting Countermeasures
mented with two variants of Option X, both of size 4. The firsb fingerprinting, sometimes calldihgerprint scrubberg43],
variant uses a copy bit of zero, class bits set to zero and @teasattempt to block fingerprinting by inspecting and minimatig-
option number. The second variant of IP Option X sets thesclasipulating the traffic stream. One of the strategies usedrby fi
bits to a reserved value, and uses an option number of 31. Heeprint scrubbers is to reorder TCP options in the TCP heade
results for experiments with both Option X variants are Emi any unknown options may be included after all other optidms.

order to avoid being fingerprinted, some sites may reject con

w| 9% E oo ‘ T ] nections negotiating specific or unknown options, or drogkpa
2 ol ] success . i ets_encountered in the middle of the stream that contairethos
2 options.
“g: “I 5% 4o The TCP options test first assesses the behavior of the web
g o 34% 36% 0% | server when the TCP Timestamp option is included in the SYN
8Ll 21% 20% | packet. To test for performance with unknown TCP options,
02% 400 ﬂ ﬂ H we also initiate connections using an unallocated optiom-nu
® T Now opions Record Route TimeStamp Option X ber, TCP OptionY’, in the SYN packet. Our tests indicate a
IP Option Test type (SYN) connection failure rate of about 0.2% in all scenarios. @pti
Fig. 5. Handling IP Options in TCP SYN packets. Y is ignored in the remainder of the connections. The times-

Figure 5 shows the TCP connection behavior with differefMP option is ignored by roughly 15% of the servers (but the
IP options in the associated SYN packets. For each attempgéfinection is otherwise fine). The reason the servers ighere
connection there are three possible outcomes: no connemtio timestamp option is not visible to TBIT, but could be either a
tablished, connection established with the IP option igdpor Middlebox stripping or mangling the option or the web server
IP option accepted. As Figure 5 shows, in many cases no c8R! supporting timestamps. Next we assess the use of options
nection was established when the Record Route Option or tRéhe middie of a TCP connection, by establishing a conoacti
Timestamp Option was included in the SYN packet. When Ngithout TCP options and then using the Timestamp option or
Option X is included in the SYN segment, the connection w&2ption Y on a data packet in the middle of the connection. The
not established to over 70% of the web servers tested. This dgonnection failure rate for both options is roughly 3% — aadt
not bode well for the deployment of new IP options in the ntei"d that sending unknown options midstream is not problemat
net. for most web servers.

Most IP options are usually expressed in the first packet, (e.g
the TCP SYN packet) in the communication between end hosts.
We performed an additional test to assess the behavior vthen I The previous sections discuss results from active measure-
option X is placed in data packets in the middle of an estabtls ments targeted from a TBIT client machine to a set of web
connection. For each established connection TBIT offers twerver destinations. Such analysis sheds light on the aerre
classifications: “success” or “broken connection”. Tharer ness and performance characteristics of a significant ptipal
indicates that the server successfully delivered its degand- of in-the-field web servers, and also provides insights thte
less of the IP option insertion. The latter classificatiadidgates characteristics of the intermediate nodes on the paths gt
that the insertion of the IP option forced the connection¢o Ipackets between the TBIT client and the servers. Howevr, th
idle for at least 12 seconds (which we then define as “brokeni§ only one part of the story. We are also interested in olisgrv
We performed two sets of tests, with and without insertion dfie Internet from the perspective of web clients. To achibise
option X. The connection failure rate across both sets @ i8s perspective we collect full packet traces of traffic to amairfithe
roughly 3%. The tests without IP options show nearly 6% of theeb server of our research laboratory. In this section wegme
connections are “broken” for some reason. Meanwhile, whee result from the analysis of those traces.
inserting IP option X into the middle of the transfer, 44% of We collected packet traces of full TCP packets to and from
the connections are broken, indicating a significant isshenw port 80 on our lab’s web server for roughly two weeks (from
attempting to utilize IP options in mid-connection. February 24, 2004 to March 10, 2004). Capturing entire packe

) allowed us to verify the TCP checksum and discard packets tha
D. TCP Options did not pass. In the dataset we observed 206,255 connections

Next we turn our attention to potential problems when TCfom 28,364 clients (where a “client” is defined as an IP ad-

options are employed. TCP options are more routinely usad thdress). Of these, 632 (or, 0.3%) connections were not a@alyz

VI. CLIENT-SIDE PASSIVE MEASUREMENTS
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due to the packet trace missing the initial SYN sent by trentli the bogus SACK blocks were completely outside the sequence
and therefore throwing off our analy3id\Ve do not believe that space used by the connection, we believe that packet cagturi
deleting these connections biased our results. glitches are not the predominant cause of these bogus SACK
The first set of items we measure are the capabilities thetclidlocks.
TCPs advertise during connection startup. Of all the dlient We also investigated whether there were cases when the cu-
205 (or 0.7%) show inconsistent capabilities across cdiorex mulative acknowledgment in incoming ACKs did not fall on
from the same IP address. An example inconsistency would®&egment boundary. Of the roughly 4.7 million ACKs re-
one connection from a particular IP address advertisingsup ceived by our web server, 18,387 ACKs contained cumulative
for SACK, while a subsequent connection does not. Our incoAEK numbers that did not agree with the segments sent. These
sistency check includes the SACK permitted option, the $imeACKs were originated by 36 clients. The rate of receivingthe
tamp option, the window scale option (and the advertiseae)al strange ACKs is 0.4% in the entire dataset, meanwhile the num
the MSS option (and the MSS value) and whether the connger of clients responsible for these ACKs represents 0.18eof
tion advertises support for ECN. Options may be inconsistefataset, indicating that buggy clients or middleboxes neathb
due to a NAT between the client and our server that effegtivedause of these ACKs.

hides multiple clients behind a single IP address. Altéve8t,  |n our dataset, the timestamp option is advertised by
system upgrades and configuration changes may also acc@d6 clients (or 21.5%). Clients that do not accuratelyoech
for inconsistency over the course of our dataset. timestamp values to the server or middleboxes that alter the

We next study TCP’s cumulative acknowledgmentand the sfnmestamp of a passing packet may cause performance degra-
lective acknowledgment (SACK) option [32]. In our dataseiation to the connection by increasing or reducing the netra
24,906 clients (or 87.8%) advertised “SACK permitted” iie thmission timeout (RTO) estimate of the server. If the RTO @ to
initial SYN. Across the entire dataset 236,192 SACK blocksmall the data sender will timeout prematurely, needlegsly
were returned from the clients to our web server. We obseryénding data and reducing the congestion window. If the RTO
loss (retransmissions from the server) without receiving ais too large performance will suffer due to needless waitiag
SACK blocks with only two clients. This could be due to a bugpre retransmitting a segment. In our dataset, 20 clientsmed
in clientimplementations, middlebox interference or dienget-  at least one timestamp that the server never sent (some of the
work dynamics (e.g., ACK loss). Therefore, we conclude thginestamps returned by these clients were valid). Thisltresu
clients advertising “SACK permitted” nearly always follay  suggests that the network and the endpoints are faithfatiye
with SACK blocks, as necessary. ing timestamps in the vast majority of cases.

As outlined in section IV-C, the TBIT SACK tests yield some

transfers where the sequence numbers in the SACK blocks from L

the clients are “shifted” from the sequence numbers in tke lo 00 [
packets. Inaccurate SACK blocks can lead to the sender spu- '

riously retransmitting data that successfully arrivedhs te- 08

ceiver, and waiting on a timeout to resend data that was ad- 07

vertised as arriving but which was never cumulatively agkino y 0°

edged. To look for such a phenomenon in web clients or mid- g 05 _~

dleboxes close to clients we analyzed the SACK blocks redeiv 04

from the clients and determined whether they fall along #te s 03 )

ment boundaries of the web server’s transmitted data seigmen 0.2 I

We found 1,242 SACK blocks (or 0.5%) do not fall along data 01 B,

segment boundaries. These SACK blocks were generated by 01000 10000 100000 16406
49 clients (or 0.2%). The discrepancy between the rate efvec Advertised Window (bytes)

ing strange SACK blocks and the percentage of hosts responsi
ble for these SACK blocks suggests a client-side or middiebo

bug. These results roughly agree with the results in Se€#on  \ye next examine the advertised windows used by web clients.
C. Ofthe bogus SACK blocks received 397 were offset—i.e., tfg] shows how the client’s advertised window was found to of-
sequence numbers in the SACK block were within the sequengR gictate the ultimate performance of the connectiorufgig
space used by the connection, but did not fall along data&Bgmsp gy the distribution of the maximum window advertisement
boundaries. Meanwhile, the remaining 845 bogus SACK blockgserved for each client in our dataset. Roughly, the Bistion
were for sequence space never used by the connection. Ngig;ys modes at 8 KB, 16 KB and 64 KB. These results show an
a possible explanation for some of the strange SACK blocksrease in advertised window sizes over those reporte] {in]

is that our packet tracing infrastructure missed a data 880m>00). In our dataset the median advertised window obsésved
and therefore when a SACK arrives we have no record of tﬂfst over 32 KB and the mean is almost 44 KB, whereas [9]
given packet boundaries. However, given thattile discrep- yeports the median advertised window as 8 KB and a mean of
ancy between the overall rate of observing these SACKs whegikg Additionally, 7,540 clients (or 26.6% of our datasad)
compared to the percentage of clients involved afdhiany of - yertised support for TCP’s window scaling option [26], wiic

2The dataset actually includes one trace for every 24 houngeT herefore, calls for the adve_rtlsed window to be scaled by a gNe_n faqor
it is fairly common for the trace to start in mid-connection. allow for larger windows than can naturally be advertisethm

Fig. 6. Distribution of advertised windows use by web clgent
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given 16 bits in the TCP header. Just over 97% of the clierifberefore, we encourage researchers to design tests ¢hat-ar
that indicate support for window scaling advertise a windotust to changing packet sizes (or, at the least warn the @iser o
scale factor of zero — indicating that the client is not sugli test when such an event is observed).

its advertised window (but understands window scaling & th
server wishes to scale its window). Just over 1% of the dient
our dataset use a scale factor of 1, indicating that the tidedr
window in the client’s segments should be doubled befonregusi
We observed larger window scale factors (as high as 9) inlsmal
numbers in our dataset.

We next look at the MSS advertised by web clients in the
initial three-way handshake. Two-thirds of the clientsdiae I A N () e 30K 1K |
MSS of 1460 bytes (Ethernet-sized packets). Over 94% of the M e H ”””
clients used an MSS of between 1300 bytes and 1460 bytes. ° o 128 256 si2 1024
The deviation from Ethernet-sized packets may be caused by , MSS value
tunnels. Roughly 4% of the clients in our dataset advertised Fig. 8. Reordering vs MSS
an MSS of roughly 536 bytes. We observed advertisements a€hoosing a small MSS to maximize the number of segments
small as 128 bytes and as large as 9138 bytes. This analylsesweb server transmits is a worthy goal. However, we also
roughly agrees with [9]. find that as the MSS is reduced the instances of packet reorder

Finally, we note that we observed 49 clients (or 0.2% of theg increase. Figure 8 shows the percentage of reordered seg
clients in our dataset) advertising the capability to uspliE ments as a function of the MSS size. One explanation of this
Congestion Notification (ECN) [40]. That is, only 49 clientphenomenon is that using a smaller MSS yields transfers that
sent SYNs with both the ECN-Echo and Congestion Windogonsist of more segments and therefore have more oppaéesinit

5.5%

4.1%

3k 12M 2.7%

% of reordered packets

Reduced bits in the TCP header set to one. for reordering. Alternatively, small packets may be trdadd-
ferently in the switch fabric — which has been shown to be a
VIl. M EASUREMENTLESSONS cause of reordering in networks [14]. Whatever the cause, re

In conducting the measurements presented in this paper $#&rchers should keep this resultin mind when designingrexp
observed a number of properties of the network and the end jRents that utilize small segments. Additionally, the tesug-
tems that challenged our assumptions and ultimately shayred 9€sts that performance comparisons done using small ségmen
tools. In this section, we distill several lessons learted oth- May not be directly extrapolated to real-world scenariogneh
ers conducting similar measurements should keep in mind. larger segments are the rule (as shown in Section VI) since re

ordering impacts performance [14], [15], [44].
T o \ \ \ As outlined in Section IV, we find web servers’ slow start
1K 1 behaviors to be somewhat erratic at times. For instance, Sec
e 1 tion IV-E finds some web servers using “weak slow start” where

151
100 H 46 ﬁ w ] the web server does not increase the congestion as quickly as
512 ’_‘

100K

8K

Number of servers

allowed by the standaréls In addition, we also found cases
YR where the congestion window is opened more aggressivety tha

MSS Value allowed. These differences in behavior make designing TBIT
Fig. 7. Minimum MSS Test like tests difficult since the tests cannot be staked aroirttse

The TBIT tests presented in this paper attempt to use a snfajpected behavior.

MSS so that the web server splits the data transfer into negre s Also, we found that some of our TBIT measurements could
ments than it naturally would. In turn, this provides TBITthvi NOt self containedas were all the tests from the original TBIT
additional ways to manipulate the data stream. For instahceWork [36]. Some of the tests we constructed depended on pecu-
a server transmits one segment of 1280 bytes then TBIT cankifities of each web server. For instance, the Limited $rait
easily conduct certain tests, such as assessing the Mitial tests outlined in Section IV-F require apriori knowledgettué
dow. However, if the server is coaxed into sending 10 segsneWeb server's initial window. This sort of test complicatesan
of 128 bytes each the test becomes possible. The originadl TElUrement because multiple passes are required to assesstom
tests presented in [36] employed a 100 byte MSS. When #€ capabilities of the web servers.
initiated the present study we found this MSS to be too smallFinally, we note that in our passive analysis of web client
for a significant number of web servers. Therefore, detengin characteristicverifying the TCP checksum is kiéy some of
the smallest allowable MSS is important for TBIT-like measu Our observations. In our dataset, we received at least ape se
ments. Figure 7 shows the distribution of minimum MSS sizégent with a bad TCP checksum from 120 clients (or 0.4% of
we measured across the set of web servers used in our stif#g.clients in the dataset). This prevalence of bogus clecks
As shown, nearly all servers will accept an MSS as small islarger than the prevalence of some of the identified cherac
128 bytes, with many servers supporting MSS sizes of 32 aiéics of the web client (or network). For instance, we idfesd
64 bytes. Another aspect of the segment size that surprsed y , o .

Such non-aggressive behavior is explicitly allowed untiergstandard con-

is that sggment Sizes sometlr_neS Change durlng_the co_urse Qés@on control specification [12], but we found it surprgsithat a web server
connection (e.g., as reported in the tests of ABC in Sect)n | would be more conservative than necessary.

0

32 64 128 256
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| TCP Mechanism | Section | Deployment Status

Loss Recovery VI, IV-B | SACK is prevalent (in two-thirds of servers and nine-tertthelients).
IV-A NewReno is the predominant non-SACK loss recovery strategy
Congestion Responsg IV-D Most servers halve their congestion window correctly adttoss.
Byte Counting IV-E Most web servers use packet counting to increase the caog@shdow.
Initial Cong. Window | 1V-H Most web servers use an ICW of 1 or 2 segments.
ECN V-A ECN is not prevalent.
Advertised Window | VI The most widely used advertised window among clients is 64\B many clients
using 8 KB and 16 KB, as well.
MSS VI Most of the clients in our survey use an MSS of around 1460shyte
TABLE XI

INFORMATION FOR MODELINGTCPBEHAVIOR IN THE INTERNET.

| Behavior | Section | Possible Interactions with Routers or Middleboxes
SACK IV-B,VI | In small numbers of cases, web clients and servers recei@X$#ocks with incorrect
sequence numbers.
ECN V-A Advertising ECN prevents connection setup for a small (andrdshing) set of hosts.
PMTUD V-B Less than half of the web servers successfully complete &t Discovery.
PMTUD is attempted but fails for one-sixth of the web servers
IP Options | V-C For roughly one-third of the web servers, no connectiontist#ished when the client includes

an IP Record Route or Timestamp option in the TCP SYN packet.
For most servers, no connection is established when th& @fieludes an unknown IP Option.
TCP Options| V-D The use of TCP options does not interfere with connecticabdishment. Few problems
were detected with unknown TCP options, and options inaudelata packets in mid-stream.

TABLE XII
INFORMATION ON INTERACTIONS BETWEEN TRANSPORT PROTOCOLS ANROUTERS OR MIDDLEBOXES

only 49 clients that advertise support for ECN and reporirec Window Scale Option, Minimum RTO, Minimum MSS, and the
ing bogus SACK blocks from 36 clients. If we had not verifieeployment of D-SACK (Duplicate SACK). These also include
the TCP checksum these two characteristics could haveyeas#ctions of detecting middleboxes that perform TTL-rangit
been skewed by mangled packets and we’d have been none-timeltests on the effects of reordering on transport prosoddie
wiser. In our experiments, we uséchdumg to capture full updated TBIT software will also be available.
packets and thetepurify® to verify the checksums and then store  There are a wealth of important TCP behaviors that we have
only the packet headers in the trace files we further anafyzednot examined in our tests. For example, we have not explored
the TCP restart behavior after an idle period or attempted to
determine whether TCPs properly employ backoff when using
Our goals have been to track the deployment (or lack theredfe retransmission timer. In addition, new TCP mechanisms
of transport-related mechanisms in end-to-end protogudsim are continually being proposed, standardized and depi@ygd
middleboxes; to look out for the ways that the performance blighSpeed TCP [22]) and assessing their deployment, charac
mechanisms in the Internet differs from theory; and to adersi teristics and behaviors are useful future work. Finally;jqui-
how researchers should update their models of transpaxpracally re-running the tests presented in this paper is useftack
cols in the Internet to take into account current practicbe T changes in TCP, as well as in the interactions between end-to
measurements reported in this paper explore the deployofienénd protocols and the evolving network architecture.
TCP mechanisms in web servers and browsers. Table XI proAnother class of extensions to the work presented in this pa-
vides a set of high-level aspects of a “modern” version of TGhr is be to explore the behavior of TCP in alternate applica-
that are in widespred use and researchers can use as a sgb®s (e.g., peer-to-peer systems, email, web caching, @oe
rules of thumb when conducting TCP evaluations. Our megay to explore the TCP performance in client machines (which
surements involving the interactions between TCP and tlde mjs more important for applications such as peer-to-pedesys
dleboxes along the network path are summarized in Table Xlthan it is for the web transactions studied in this paper)ldiou
An extended version of this paper will be available shortly ope to construct a web site that a client could visit to reqthest
the TBIT web site [3] with sections that were deleted fronsthiactive TBIT-style tests be performed for the TCP implementa
paper due to lack of space. These include sections on TCRih on the client machine. For instance, the web serverdcoul
4 http:/Aww.tcpdump.org drop part.icular_ pa_lckets and observe the client’s reactien, (
5http://irg.cs.ohiou.edu/ eblanton/tcpurify/ basically just flipping around our current TBIT tests).
_ ®Before truncating a captured packet to store on the headekatér process-  Angther interesting area for future investigation is in énea
ing, tcpurify stores a code in the TCP checksum field indicating whether thef . i . .
checksum in the original packet was right, wrong or whetiepurify did not of using TBIT: like tools for performance evaluation. FoF in
have enough of the packet to make a determination. stance, a performance comparison of a server using vanous i

VIIl. CONCLUSIONS ANDFUTURE WORK



tial congestion window values might be useful. A TBIT-liket [13]
can impose an initial window upon a web server via the adv 1r21]
tised window. However, when that restriction is removed the
web server may or may not behave as if its natural ICW was
the imposed ICW. Techniques for conducting this kind of pelt®!
formance comparison in a solid and meaningful way (and de-
tecting when such a comparison is not meaningful) is a riea af16]
for future investigation.

As new transport protocols such as SCTP and DCCP begirnip
be deployed, another area for future work will be to construc
tools to monitor the behavior, deployment and charactesist (18]
these protocols in the Internet.

While we examined some ways that middleboxes interfel#]
with communication, a key open question is that of assessing
ways that middleboxes affect tiperformanceof transport pro- [20]
tocols or of applications. One middlebox that clearly affec
TCP performance is that of Performance Enhancing Prox%g
(PEPs) [16] that break single TCP connections into two cof22]
nections. For example, it has been suggested that there beul
problems when PEPs use a different version of FTP or of T([:2I§]
from that used by the end-nodes; active tests could be utseful24]
investigate this further.

A completely different kind of test that could benefit froneth [25)
active probing approach outlined in this paper would be one t

detect the presence or absence of Active Queue Managen%%
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