
Adaptive Web Caching

Principle Investigators�

Lixia Zhang �UCLA��
Sally Floyd and Van Jacobson �LBNL�

February� �����

Technical rationale� technical approach� and construc�

tive plan

The success of the World Wide Web has brought an exponential growth of the user popu�
lation� the total host count� and the amount of total tra�c volume on the Internet� As the
Internet connectivity is reaching the global community� the World Wide Web is becoming a
global�scale data dissemination system� Inevitably� this over�night exponential growth has
also caused tra�c overload at various places in the network� Until recently� advances in
delivery fabrics gave the impression that scaling the Internet was simply an issue of adding
more resources� Bandwidth and processing power could be brought to where they were
needed� The Internet�s exponential growth� however� exposed this impression as a myth�
Information access has not been� nor will it likely be� evenly distributed� As have been
repeated observed� popular Web pages create �hot spots	 of network load� with the same
data transmitted over the same network links again and again to thousands of di
erent
users� Hot�spots also move around� The photographs of Venus congested Los Nettos for one
week� the �Midnight Madness	 release of Microsoft�s Internet Explorer ��
 congested North�
WestNet for �� hours� threatening Internet connectivity to University of Washington These
are but a couple of well publicized examples� Recent studies by Margo Seltzer of Harvard
University also con�rms that �ash�crowds are very common� and that the �cool site of the
day	 moves around ���� Bottleneck hot spots develop and break up more quickly than the
network or the Web servers can be re�provisioned� A brute force approach to provisioning is
not only infeasible� but also ine
ective�

The lessons of twenty��ve years of Internet experience teach us that caching is the only way
to handle the exponential growth of user demands� Seltzer�s study also shows that the more
popular the pages� the less likely they are to change� Similarly� the larger documents are
less likely to change than smaller ones� Instead of always fetching pages from the originating
source� data requests can often be more e
ectively answered by �nding �local	 copies near
consumers�

We need to develop a new infrastructure for data dissemination on an ever�increasing scale�
We believe that a multicast�based adaptive caching infrastructure can meet this challenging
need� In the rest of this section� we �rst outline an ideal adaptive caching system� We next
describe a multicast�based design to realize the desired functionalities� We discuss in detail
the two main issues in building the proposed system� autocon�guration of cache groups and
automatic forwarding of Web requests through this maze of cache groups�

�



A Dream Picture

Given that the basic problem is data dissemination to thousands or millions of users� the
basic solution ought to be some form of multicast delivery� That is� when multiple users are
interested in the same data� the data should be fetched only once from the origin server� and
then forwarded via a multicast tree to all the interested parties� Ideally� each piece of data
would travel through each network link no more than once�

Unlike multicast delivery for realtime multimedia applications� however� Web requests for
the same data come asynchronously because di
erent users surf the Web at di
erent times�
Therefore Web �multicasting	 must be done via caching� the network temporarily bu
ers
popular Web pages at places the pages have traveled through �due to previous requests�� so
that future requests for those pages can be served from the cache� Bene�ts of caching include
reduced load at origin servers� shortened page fetching delays to end clients� and best of all�
reduced network load which reduces potential congestion�

One big challenge in building such a caching system is that� generally speaking� we do not
know beforehand which pages would be interesting to users� or where the interested parties
may be located� or when they may fetch the pages� Following the basic principles in the
Internet architecture design� we propose to build an adaptive caching system� Ideally� we
envision a caching system in which a popular page would automatically walk itself down its
distribution tree in response to the intensity of requests� The higher the demand for the page�
the closer the page would get cached to end users and the more copies made� furthermore�
the fetch requests for that page would automatically discover the nearest cache copy� On
the other hand� pages that are rarely fetched would not leave their origin servers� or walk
very far down the distribution tree�

Another challenge in building this caching system is that a popular Web site may pop up
anywhere at any time in the Internet� a number of popular sites may all exist at the same
time� and di
erent data is hot at di
erent places�� If the distribution paths for each page
make a tree� and multiple trees exist simultaneously� each rooted at the origin server of a
popular page� clearly the caching infrastructure to be built cannot be a tree itself� Instead�
the infrastructure ought to be a mesh on which cache trees can automatically build themselves
as popular pages are pulled down towards their clients� As time goes� the trees should also
automatically vanish as the pages become a past interest�

The Basic Approach

The previous section may have painted a seemingly impossible system to build� In this
section we describe how IP multicast can be used as the basic building block that enables
us to realize this dream system� The example topology in Figure � is used to illustrate our
basic design in this section�

�From Seltzer measurement�

�



Figure �� An illustrative example of our adaptive caching design�

Use Multicast

IP multicast serves two distinguished functions� one being the most e�cient way to deliver
the same data to multiple receivers� the other being an information discovery vehicle�a host
can multicast a query to a relevant group when it does not know exactly whom to ask� Our
caching design makes use of both features� we multicast page requests in order to locate the
nearest cache copy� and multicast page responses in order to e�ciently disseminate pages
that have common interest�

To �nd the nearest cache that holds a requested page� the simplest approach could be to
have all the Web servers and cache servers join a single multicast group� Then one could
simply multicast a page request to that group� The nearest cache or origin server with the
page will be the �rst one to hear the request and respond� One fatal �aw of this simple
approach� however� is that it does not scale�we simply cannot a
ord multicasting all Web
requests globally�

One scalable version of the above idea is to organize all Web servers and cache servers into
multiple local multicast groups�� as shown in Figure �� When user�� requests a new page� it
sends the request to a nearby proxy C�� which is also a cache server� If C� does not �nd the
requested page in its local cache� it multicasts the request to a nearby local group of which
it is a member� in the example the nearby group is G�� It is possible that some cache in G��
say C�� has the requested page in its local cache� in which case C� multicasts the requested
page to G�� and C� will forward a copy back to user��� However in case of a cache miss
within the local group� the request must be further forwarded� as explained next�

Request Forwarding

To handle the request forwarding problem� we propose that cache servers join more than
one multicast group� so that all the cache groups heavily overlap each other� When there is

�Although the groups are made of both Web servers and cache servers� in the rest of this paper we call

them cache groups�

�



a cache miss in one group �as indicated by the lack of a response message�� each cache of
the current group checks to see if its other group�s� lies in the direction towards the origin
server of the requested Web page� In our example of Figure �� C� would realize that its
other group� G�� lies in the direction to the origin server� When a cache �nds itself in the
right position to forward the request� it also informs the current group when doing so� This
forwarding decision may also take into account such factors as the past history of neighboring
cache groups in answering previous requests� We must also handle cases when no cache in
the group volunteers to forward the request�

In case the second cache group has a miss again� the request will be forwarded further
following the same rules �in Figure �� for example� C� will multicast the request to G���
Proceeding in this fashion� the request either reaches a cache group with the page� or oth�
erwise is forwarded through a chain of overlapping cache groups between the client and the
origin server� until it reaches the group that includes the origin server of the requested page�

Page Retrieval

Once the request reaches a group in which one or more servers have the requested page� the
node holding the page multicasts the response to the group� possibly after a short random
wait using an algorithm similar to the one developed in Scalable Reliable Multicast �SRM�
���� This multicast response loads neighboring caches in the same group with the page� For
example� when a short time later another request for the same page comes from user�� to
group G�� the request will stop one �multicast hop	 short of the group with the origin server
�G��� The cache that is the member of both G� and G�� namely C� in this case� can now
multicast the page to G� �see Figure ���

The original request gets ful�lled as follows� when cache C� gets the response� it will relay
it back via unicast to the node from whom C� �rst heard the request� which in this case is
C�� In this way the response page will be relayed back to the original client by traversing
those cache servers that multicast�forwarded the request earlier� To further speed up the
page delivery� an alternative is to let C� open a HTTP connection directly back to user���s
proxy server C��

A couple of issues deserve further discussion here� First� although the response is multicast
to the local group whenever a hit occurs� we assume that each cache in the group decides
independently which pages to save� Multicasting the response to the local cache group can
be done reliably using SRM� SRM supports receiver�driven reliable delivery� thus it provides
�exible support for selective reliability� Caches in the local group that are interested in reli�
ably caching the data will request retransmission for any corrupted or lost data� uninterested
parties simply ignore all this�

Another issue concerns data integrity� Hop�by�hop page forwarding through a chain of
unknown caches increases the risk that the data may be intentionally or unintentionally
corrupted� Such potential danger� however� is not new due to caching� In today�s Internet�
hop�by�hop packet forwarding through unknown intermediate routers could also impact data
integrity inadvertently� our proposed caching design simply mimics the �store�and�forward	

�



packet delivery at a higher level� However� it is true that the addition of caching introduces
new opportunities for things to go wrong� We believe that the fundamental solution to
the data integrity problem is end�to�end integrity checking via mechanisms such as MD�
checksum�

Seeing a Demand�Driven Data Di�usion Yet�

From the above we see that fetching a Web page the �rst time from the origin server has
a nice side�e
ect� the requested page is multicast to the group wherever there is a �hit	 to
achieve the e
ect of �popular Web pages walking themselves down the cache tree	� In this
fashion the servers in the same group with the origin server of the page are loaded with that
page� If subsequent requests for the same page come in within a short time period �before
the cached object expires or gets deleted�� they will see a hit before reaching the group with
the origin server� Each of these hits causes the page to propagate �one hop	 away from the
source and get closer to end clients� Thus popular pages quickly propagate themselves into
more caches in the distribution trees� Pages with infrequent requests� on the other hand�
will be seen only by a few caches near the origin server�

We expect further engineering tuning of the design parameters once we get the �rst imple�
mentation up and running� For example� if the deployment starts with a limited number of
cache groups� then one may want to multicast the page to the local group only after seeing
consecutive requests for the same page within a short time interval� If the world eventually
ends up with a large number of cache groups� then pages moving one multicast�hop away
for each hit may be exactly the right speed� The speed of data di
usion through caching
represents an engineering tradeo
 among various factors� but the goal remains the same� an
adaptive system that loads itself according to the demand�

Hierarchy and Scalability

Generally speaking� a scalable system requires some sort of a hierarchical structure� What
we proposed above� however� is a mesh of overlapping groups� rather than a strict hierarchy�
It is on the base of this overlapping mesh that each popular page grows its own cache tree�
Cache servers themselves� on the other hand� do not know or care about the contents of
the pages they cache� or how many distribution trees they have been on� They cache pages
strictly based on the popularity of the demands� a property that enables our design to scale
well with large user populations� Our design is in sharp contrast to some other proposed
cache schemes where the performance relies on analyzing individual users� page fetching
patterns and pre�loading pages accordingly�

The cache tree for each popular page may come and go highly dynamically� but the cache
groups remain relatively stable� As described in the next section� cache groups adjust them�
selves over time according to observed changes in topology� workload� and user population�
When user population and page demand grow� the number of caches and�or the caching
power will need to grow accordingly� Our design will let this cache infrastructure automati�

�



cally readjust itself to meet the new load demand�

Autocon�guration of Cache Groups

In order for this infrastructure of Web caches to be both scalable and robust� the organization
of Web caches and servers into overlapping multicast groups must be self�con�guring� for
several reasons�

� Manual con�guration does not scale� as evidenced in the SQUID system�
� Manual con�guration tend to be error�prune�
� Self�con�guring capability enables cache groups to dynamically adjust themselves ac�
cording to changing conditions in network topology� tra�c load� and user demands�
thus achieving the goal of both robustness and e�ciency�

We believe that self�con�guring systems are an essential component for a range of large�
scale systems in the Internet� Examples include the need for self�con�guring groups for
session messages in RTP� the need for self�con�guring groups for session messages and for
local recovery in scalable reliable multicast �SRM�� and the need for self�con�guring search
structures for information discovery protocols� We envision that the basic approaches to
self�con�guration developed in our Web caching design can be further extended to other
loosely�coupled� large�scale information dissemination systems�

We envision a world in which clusters of caches are placed at both network access points and
internally throughout the various autonomous networks in the Internet� Through a cache
group management protocol �CGMP� to be designed� all Web servers and cache servers auto�
matically organize themselves into geographically and administratively overlapping groups�
Because one basic function of a cache is to relay requests and responses between groups� it
is highly desirable that cache servers run on multi�homed hosts� They can then easily join
di
erent multicast groups� one on each of their network interfaces�

A critical task in building the proposed adaptive caching system is to design this Cache
Group Management Protocol �CGMP�� The autocon�guration of cache groups must satisfy
a number of contrasting constraints� On average� a request for a new page only needs to
travel a small number of �hops	 along some �shortest path	 to reach the origin server� Thus�
the cache groups must have both adequate size and adequate overlap among the groups� On
the other hand� as a cache group becomes larger in size� the group�s tra�c� overhead� and
workload increase� The con�guration protocol needs to balance these requirements for a
small number of cache resolution hop counts and low overhead within each cache group�
The cache groups must also be able to dynamically adjust to the addition or deletion of
caches� routing and load changes� application performance� and tolerance to overhead�

The basic functionality for cache group managements concerns group creation and mainte�
nance� This includes regrouping according to the observed group load� the group cache hit
ratio� the tolerance of group overhead� and the change in topology and caches� For example�
a cache group could split when there is too much tra�c in the group� or a cache group with
a low hit ratio could merge with another group�

�



C1

C3

previous groups

Join Request
Join Invitation

groups after C2 joined

C2

Figure �� An example of group management�

Group Creation

We plan to start with the group management protocol developed by MASH project ���� as
the base and gradually evolve that protocol to our cache group management protocol� The
basic idea has the following steps�

� A well�known multicast address �WKM� is assigned for cache group usage�

� When a new cache� C�� starts up� it performs a expanding ring search for existing Web
groups around its neighborhood by multicasting a Group Join request to WKM out
each of its network interfaces� The request may be repeated with an increasing TTL
value until some neighboring groups are found� or until C� gives up �see later��

� When an existing cache� C�� hears this request� C� sends a reply with its own group
address as an invocation to C� to join the group� This assumes that C��s group G� is
not overly full �as described later��

� C� joins the cache group from which it receives an invitation� If C� receives more
than one invitation from the same interface� it may then choose to join only one of the
groups� The decision can be based on other information carried in the invitation� such
as the current group size and the distance to the invitor�

� In case C� fails to receives an invitation �on some interface� when the TTL value
reaches a pre�set threshold� C� will create a cache group itself and set a timer� C�
can now respond to join requests from others� However if it does not have anyone else
join when the timer expires� it will try again to join other groups with an increased
TTL threshold� �In the initial deployment when cache servers are rare and far apart�
we may need to manually con�gure the neighboring caches for C�� or have C� send a
message with global scope to WKM to get a list of all caches��

Using TTL based group discovery favors the creation of groups among caches on the same
broadcast LANs or around the same network interconnect point� where the cost of multicas�
ting data is not much higher than that of unicast�

�



We propose an open membership policy for cache groups� That is� any cache can join nearby
cache groups� without going through an authentication step �rst� Cache consistency and
data authentication must be properties that reside in the data� and do not rely on trust of
the caches themselves�

Nevertheless� malicious or faulty caches could disturb caching operations by providing false
requests or hit reports� or by volunteering to forward a request and not following through� We
rely on after�the�fact detection rather that on authentication and pre�screening to identify
such disruptive caches� Even the best pre�screening may occasionally fail� making after�the�
fact detection a must for all systems�

Group Maintenance

We propose to use an RTCP�like protocol to maintain the cache groups� Each cache in a
group multicasts Group Messages periodically� The information to be obtained from this
exchange includes the group size� the addresses of each cache� and the distance between
group members�

The group size and distance information will be useful when the workload for a group is
too high �that is� there are too many page requests over short time intervals� and thus the
current group must split into two�

When both the workload and the cache hit ratio on a group is too low� the group may
consider merging with a neighboring cache group �particularly when some cache is a member
of both groups�� Suggestions for merging can be communicated via group members� and
further information about neighboring groups can be collected to make the merging decision�
Merging is done by all members of the current group joining the new group�

Request Forwarding

When a �page miss	 in a cache group is detected� some cache or caches in the group must
further forward the request towards �nal resolution� For an individual cache� we need a
self�con�guring mechanism for that cache to decide if it has a promising neighboring cache�
cache group� or outgoing link towards the origin server for forwarding the request� For a
cache group as a whole� we need mechanisms to assure that the request with a local miss
gets forwarded� as well as to suppress duplicate forwardings�

Where should the request be forwarded�

As we discussed earlier� requests should generally be forwarded �towards	 the origin server�
However� because caches run on hosts rather than routers� they have no information about
the topology of the network� The information a cache C can derive from a request includes
��� the address of the cache N that multicast the request� and ��� the address of the origin

�



Web server S for the requested page� To make the forwarding decision� C needs to know if
it is closer to S than N is� or� less strongly� if it or its neighboring router has an outgoing
interface towards S that is di
erent from its outgoing interface towards N� Addressing this
question of dynamically determining the request forwarding path will be a central component
of our research�

We propose a couple of approaches to this problem� One approach is to make the best use
of information that caches already have� For example� if S is on the same network as one
of C�s interfaces �by comparing the network ID�� then C clearly is in a position to forward
the request� If we are willing to go one step further to build up such a �forwarding base	
for caches� then one can apply a similar approach as the Ethernet bridge learning algorithm�
and cache network address information about the direction that answers to requests come
from� It might also be possible to add more information to group messages� and have a cache
put in the message for group G� not only all the addresses of its own� but also the addresses
of members of group G�� in which the cache is also a member�

A similar approach at a higher level of granularity would be to make use of the �geographical
addressing	 implicit in the �country	 in the domain name� Caches could build up their own
forwarding bases of which cache group to ask next for requests for an origin server in a
particular country� These forwarding bases could be based both on which caches are nearer
to that country� and which caches have had the best past record of answering requests for
origin servers in that country�

A second� and complementary� approach is to develop a standard interface to IP routing
protocols� so that� for unknown server addresses� a cache can query the neighboring router
about that router�s output interfaces to the cache N and the origin server S�

It also may not always be the case that the request should be forwarded to a cache group
physically closer to the origin server� For example� a small local cache in Australia near
the congested trans�continental link might be better o
 forwarding the request to a large
regional or national cache that happens to be in the other direction� Thus� in answering the
question of �should I forward the request	� in addition to the distance factor a cache may
also add in a bias factor that is dynamically adjusted according to the past hit rates for
requests sent to neighboring caches�

More research is clearly needed in determining the request forwarding path� Because this
decision requires information from routing protocols� it is likely to be the most challenging
issue in building our cache design� On the other hand� we should also point out that the
request forwarding decision only need to be �roughly right	� and the resulting forwarding
path is not necessarily �the shortest	 one� Take the example in Figure � again� Instead
of going through the shortest chain of cache groups G�� G�� G� to reach the origin server
group G�� the request from user�� may take a longer path through G�� G�� G�� G� to reach
G�� which has little impact on the overall performance� The basic performance gain of the
system lies in the caching e
ectiveness� how fast to get a page the �rst time is a secondary
factor here� Even though a longer forwarding path leads to a longer fetching delay the �rst
time� the performance gain of the system will come from the side�e
ect of loading up caches�
so that subsequent requests for the same page can then be answered with much reduced

�



delay� One way to reduce the worst�case delay for the �rst request would be to limit the
number of �hops	 that a request could travel before being forwarded to the origin server�

Which cache should forward the request�

The ideal case would be for exactly one cache in a cache group to volunteer to forward a
request� When multiple caches in a cache group volunteer to forward the request� the caches
can use a randomized timer algorithm similar to the one in SRM ��� to prevent multiple
caches from forwarding the request� However� it is not a problem if occasionally more than
one cache in a cache group forwards a request� Duplicate requests are likely to �collide	 �run
into the same cache group� along the way� In the worst case� duplicate copies of the page
may be fetched�

On the other hand� for a request that results in a local miss� it is mandatory that at least
one cache in the cache group forward the request� If no caches in the group volunteer to
forward the request after a timeout� the cache that brought the request to the group can
either contact the origin server directly� or randomly select a cache in the group to forward
the request�

Other Issues in Building the Proposed Caching System

This section discusses several issues that are not particular to our proposal� but that need
to be addressed by any web�caching infrastructure� including by the manually�con�gured
unicast�based web�caching infrastructure currently being deployed�

How Many Web Pages Are Cachable�

However there have been various concerns about the general feasibility Web caching�

�� One concern is �data correctness	� Without a clear and precise de�nition of caching
functionality� some Web application designers are worried about obsolete data being
served to end users� Thus direct dialog between the origin server and client can seem
a simple and sure way to do things right�

�� Another resistance to caching comes from commercial content providers who have a
vast interest in collecting demographic information regarding page access statistics�

�� There are also concerns about data integrity and copyright issues� The �rst one needs
to verify that the page from the cache is the exact one from the origin server� the
second needs to assure that no one but the authenticated client can get a copy�

Because of the above concerns� Web applications are often implemented in a cache�unfriendly
way� such as with pages with a lifetime of zero� Such applications are referred to as �cache�
busters	�

�




We believe that adequate lifetime information in each page and strict enforcement by all the
caches should address the �rst concern� For the second concern� we point out that collecting
accurate hit counts has only been a goal� Proxy caching is widely deployed today� with no
reports back to the origin server on the number of cache hits� We believe that deploying an
explicit demographic information collection protocol like the one proposed recently ���� is
the best way to collect the needed cache access statistics numbers�

Regarding data integrity and copyright issues� the Internet itself is a store�and�forward sys�
tem� and nothing can prevent a malicious party from physically modify� or obtaining� a copy
of some data that is delivered over the net even without a caching system� The only sure way
to achieve data integrity is by applying an end�to�end checksum to detect any modi�cations�
Similarly� the only sure way to control copyright is to encrypt data to prevent wiretappers
from seeing the contents�

The question of �how many pages are cachable	 translates to the question of �how many
pages would be cachable given an e
ective and globally�deployed web�caching infrastruc�
ture	� The answer to the second question depends on the attractiveness of the caching sys�
tem itself� We believe that as the Web caching system is further developed� and it becomes
clear that cachable pages are generally delivered to the user faster than are non�cachable
pages� more Web applications will be motivated to make their pages cachable� After all�
caches serve no purpose but to help the applications get the data to end users faster and
more easily�

Caching E�ectiveness

Assuming that many or most Web pages are cachable� the next question is how much per�
formance improvement Web caching can bring� The potential gain of caching is three�fold�
reducing load at the servers� tra�c in the Internet� and fetching delay to the end users� We
discuss the �rst two below�

How much tra�c reduction can Web caching bring� The percentage of web tra�c out of
the total network load gives the upper bound on cache savings� The other limiting factor
concerns the cache hit ratios� Recent network tra�c measurement numbers suggest that
Web tra�c has exceeded �
� of the total network load� and this percentage is still growing�
However� the relevant question is not how much tra�c reduction could web caching bring
with current tra�c patterns� but how much a ubiquitous and globally�deployed web caching
system could contribute to the delivery of current and reliable information to end�users in
the long term�

The cache hit rate generally diminishes as the cache moves further away from the original
data source� Signi�cant reductions on the server load and on network tra�c can only be
made by an e
ective caching system that includes caches near the servers as well as near the
end users� Ultimately� the web caching infrastructure needs to be ubiquitous throughout the
Internet�

��



Page Consistency

Most data objects change over time� It is unacceptable to serve obsolete objects from caches
without an explicit request from the client to do so� The cache consistency problem is
inherent in any caching system� whether it is the current� widely used proxy caching� or our
proposal� However� a self�con�gured web caching system reemphasizes the requirement that
the cache consistency and data authentication must be properties that resides in the data�
and do not rely on trust of the caches themselves�

Our basic approach to avoid obsolete objects is for caches to enforce lifetime limits on all
the cached objects� This can be done with the �opaque validators	 in HTTP���� ���� Each
cached object must be deleted when its lifetime expires� If there are no further requests for
the information� nothing further needs to be done� If further requests arise� they will bring
the latest information to the cache as a side�e
ect� We can rely on future demand for a page
to bring in the most recent page as a by�product�

Incremental Deployment

We plan to collaborate with the Harvest�SQUID Caching team to explore transition strate�
gies to convert the current manually con�gured caching infrastructure into an autocon�g�
ured� adaptive caching system� This �rst step would be the incremental deployment into
the current unicast caching infrastructure of dynamic mechanisms for forwarding requests
to neighboring caches� This is the key next step needed for the current infrastructure to
gracefully scale to a larger number of caches� In addition� our proposal would address the
incremental deployment of a multicast�based cache architecture into the existing architecture
of unicast communications between clients� web caches� and servers�

Summary

We believe that as the Internet becomes more global we must have a self�con�guring data
dissemination system that can scale with it� We further envision that the basic approaches
taken in the web caching infrastructure will be generally applicable to other global�scale
information dissemination applications� While there are currently no Internet systems us�
ing self�con�guration of this nature� we believe that self�con�guration is an increasingly�
important functionality that will be required by a wide range of Internet systems facing
issues of scale�

Comparison with Other Research

Before the invention of the World Wide Web� FTP was the main tool for data dissemina�
tion� Heavy loading at popular FTP servers �e�g� the one hosting Internet RFC�s� was

��



observed� At that time� however� the network user population was small and the problem
was adequately handled by manually con�guring one or two replication sites of the same
FTP server�

The success of the Web brought unprecedented high demand on Web servers� Facing the
overload problem caused by �hot pages	� a few measures have been taken recently� One
common practice today is proxy caching� Most corporate sites have �rewall gateways between
their internal network and the public Internet� Web proxy servers are used to relay requests
and replies across the �rewalls� while at the same time they also serve as caches�

Generally speaking� however� proxy caches do not seem to achieve high hit ratios because
they are at the leaves of data distribution trees� Consequently� they do not e
ectively reduce
the load around the origin servers of popular pages� To handle the ever increasing demand
for popular pages� some of the busiest Web servers use replication� Manually con�gured
replications may work well for specialized servers with predictable demand� such as the
Netscape homepage server� but are not useful in coping with ��ash crowds	�

The Harvest�SQUID Object Cache is a Web caching infrastructure currently being deployed
in the Internet ��
�� All cache servers in the SQUID system are connected in a manu�

ally con�gured hierarchical tree� As the �rst step towards reducing unnecessary network
load through caching� SQUID has attracted many users� especially overseas network service
providers who are concerned with making the most e�cient use of the expensive� bandwidth�
limited transoceanic links� However� experience has also shown intrinsic limitations of the
manual con�guration of large systems� such as the burden on system administrators to con�
�gure the cache hierarchy and to coordinate with each other� the inevitable human errors�
misunderstandings of issues concerning the overall system performance� the desire for local
optimization� and the lack of adaptivity to network changes� Australia makes a typical ex�
ample here� ideally one would like to see all Web caches in Australia group themselves into
a cluster which then has one peer connection to the cache hierarchy in the U�S� However�
fourteen separate Australian sites con�gured themselves directly onto the cache tree in U�S�
instead of peering with each other locally� leading to the same Web page being fetched di�
rectly from the U�S� by each of the fourteen sites� See ���� for more details� The lesson to
be learned is that manual con�guration of large scale systems is not only burdensome but
also vulnerable to errors and misuse� Self�con�guring systems� such as the one proposed in
this research� can be designed to minimize the possibilities of such abuses�

Furthermore� the single cache hierarchy of SQUID does not provide e�cient data routing
among all users and servers� it often happens that a new page on an origin server located
in California is �rst fetched by a root node in east coast and then traverses down the cache
tree to be delivered to the requester� also located in California� Because all cache misses
are fetched by the root nodes �rst and then disseminate down the tree� the cache hierarchy
creates arti�cial hot spots of cache load near the roots of the tree�

To reduce such overload in a hierarchical cache� Povey has suggested a modi�cation to the
SQUID operation ���� Instead of fetching all new pages through the root nodes� Povey
suggested that the hierarchy structure is used for data searching only� When a leaf node� L�
searches for a new page and cannot �nd it anywhere in the tree� the node L itself will fetch

��



the page directly from the origin server� cache it locally� and then send the advertisement of
the page up the tree� so that when other nodes search for the same page again they will be
able to �nd it� This modi�cation reduces the load near the top of the tree� but it fails to
address the issue of manual con�guration� and the need for doing a tree�walk to search for
each missing page can also add signi�cant overhead to the system�

Another cache performance study by Gwertxman and Seltzer ��� compares three cache con�
sistency mechanisms currently in use in the Internet� time�to�live �elds� client polling� and
invalidation protocols� They �nd that time�to�live �elds are a good solution when reducing
network bandwidth is the driving force� though client polling are generally a stronger mech�
anism� There is also a growing literature on caching and removal policies for web caches ����
which we plan to explore during the implementation of our cache protocols�

To facilitate Web caching implementation� the HTTP���� protocol speci�cation provides
a number of supporting mechanisms ���� Server�speci�ed expiration times are added to
prevent obsolete data from being served to clients� and a validation mechanism is proposed
to eliminate the unnecessary retransmission of previous responses that have not changed�
The validation mechanism allows a cache with a long�lived entry to check with the origin
server to see if the cached entry is still usable� HTTP���� includes both end�to�end headers
that are cachable and hop�by�hop headers that are meaningful only for a single transport�level
connection and cannot be cached� Our design will assume the availability of these server�
speci�ed expiration times and validation mechanisms� We will also report to the HTTP
Working Group any new cache�supporting mechanisms that we discover in our research� so
that they can be considered for inclusion in future versions of the HTTP protocol�

To the best of our knowledge� we believe the adaptive Web caching approach outlined herein
is the very �rst proposal to build a robust� self�con�guring caching infrastructure for global�
scale data dissemination� We believe our �ndings of how to build self�con�guring systems
will be generally applicable to other loose�coupled� globally distributed systems� To go
beyond simulation and lab tests and put our design in global scale real �eld trial� we have
been involved with� and will continue� discussions with the developers of the SQUID cache
infrastructure to jointly develop a transition plan to incrementally deploy our protocols� at
the proper time� in the SQUID infrastructure�

References

��� Van Jacobson� �How to Kill the Internet	� SIGCOMM ��� Middleware Workshop� Au�
gust ����� URL ftp���ftp�ee�lbl�gov�talks�vj�web�ame�ps�Z

��� R� Fielding� J� Gettys� J� Mogul� M� Frystyk� T� Berners�Lee� �Hypertext Trans�
fer Protocol � HTTP����	� Internet Proposed Standard protocol� RFC��
�� URL
ftp���ds�internic�net�rfc�rfc�
���txt�

��



��� Sally Floyd� Van Jacobson� Ching�Gung Liu� Steve McCanne and Lixia Zhang� �A
Reliable Multicast Framework for Lightweight Session and Application Layer Framing	�
Proceeding of ACM SIGCOMM ���� Aug� �����

��� Sally Floyd and Van Jacobson� Random Early Detection gateways for Congestion Avoid�
ance� IEEE�ACM Transactions on Networking� V�� N��� August ����� p� ��������

��� James Gwertxman and Margo Seltzer� �World�Wide Web Cache Consistency	� USENIX
����� URL http���www�eecs�harvard�edu� vino�web�usenix������

��� Margo Seltzer� �The World Wide Web� Issues and Challenges	� Presented at IBM
Almaden� July ����� http���www�eecs�harvard�edu� margo�slides�www�html

��� Venkata Padmanabhan and Je
rey Mogul� �Improving HTTP Latency	� URL
http���www�ncsa�uiuc�edu�SDG�IT���Proceedings�DDay�mogul�HTTPLatency�html�

��� Dean Povey and John Harrison� �A Distributed Internet Cache	� �
th Australian
Computer Science Conference� Sydney� Australia� February ���� ����� URL URL
http���www�isi�edu�lsam�ib�http�perf��

��� Stephen Williams� Marc Abrams� Charles Standridge� Ghaleb Abdulla� and Edward
Fox� �Removal Policies in Network Caches for World�Wide Web Documents	� Sigcomm
�����

��
� �A Distributed Testbed for National Information Provisioning	� URL
http���www�nlanr�net�Cache��

���� Duane Wessels and Kim Cla
y� �Evolution
of the NLANR Cache Hierarchy� Global Con�guration Challenges	� November �����
URL http���www�nlanr�net�Papers�Cache���

���� Jun Li� Si Yuan Tong� and Adam Rosenstein� �MASH� The Multicasting Archie Server
Hierarchy	� Project report� December ����� UCLA Computer Science Department�

���� Je
rey Mogul and Paul Leach� �Simple Hit�Metering for HTTP	� Internet Draft� Jan�
uary �����

���� L� Zhang� S� Deering� D� Estrin� S� Shenker� D� Zappala �RSVP� A New Resource
ReSerVation Protocol	� IEEE Network� September� ����

���� R� Bagrodia and W� Liao� �MAISIE� A Language for the Design of E�cient Discrete�
Event Simulations	� IEEE Transactions on Software Engineering� Vol� �
���� April �����
pp� ��������

���� �Virtual InterNetwork Testbed	� URL http���netweb�usc�edu�vint�

��


