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Abstract

This paper considers the potentially negative impacts of an in-
creasing deployment of non-congestion-controlled best-effort
traffic on the Internet. These negative impacts range from
extreme unfairness against competing TCP traffic to the po-
tential for congestion collapse. To promote the inclusion of
end-to-end congestion control for best-effort traffic, we argue
that router mechanisms are needed to identify and restrict the
bandwidth of selected high-bandwidth best-effort flows that
are using a disproportionate share of the bandwidth in times
of congestion.

Starting with high-bandwidth flows in times of conges-
tion, we describe a sequence of tests identifying those high-
bandwidth flows suitable for bandwidth regulation. These tests
identify a high-bandwidth flow in times of congestion as unre-
sponsive, “not TCP-friendly”, or simply using disproportion-
ate bandwidth. An unresponsive flow is one failing to reduce
its offered load at a router in response to an increased packet
drop rate. A flow that is not TCP-friendly is one whose long-
term arrival rate exceeds that of any conformant TCP in the
same circumstances. A disproportionate-bandwidth flow is
one that uses considerably more bandwidth than other flows in
a time of congestion, when there is suppressed demand from
some of the other flows. We end with a comparison between
this approach and others using per-flow scheduling for all best-
effort traffic.

1 Introduction

The end-to-end congestion control mechanisms of TCP have
been a critical factor in the robustness of the Internet. How-
ever, the Internet is no longer a small, closely knit user com-
munity, and it is no longer possible to rely on all end-nodes to
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use end-to-end congestion control for best-effort traffic. Simi-
larly, it is no longer possible to rely on all developers to incor-
porate end-to-end congestion control in their Internet applica-
tions. The network itself must now participate in controlling
its own resource utilization.

This leads to several possible approaches for best-effort traf-
fic competing for scarce bandwidth in the Internet. One ap-
proach is to propose, as the primary mechanism for sharing
scarce bandwidth, that routers isolate each flow, as much as
possible, from the effects of other flows [She94]. This ap-
proach suggests the deployment of per-flow scheduling mech-
anisms that separately regulate the bandwidth used by each
best-effort flow.

A second approach outlined in this paper is for routers to
support the continued use of end-to-end congestion control as
the primary mechanism for best-effort traffic to share scarce
bandwidth, and to deploy incentives for the continued use of
end-to-end congestion control. These incentives would be in
the form of router mechanisms to restrict the bandwidth of
best-effort flows using a disproportionate share of the band-
width in times of congestion. These mechanisms would give
a concrete incentive to end-users, application developers, and
protocol designers to use end-to-end congestion control for
best-effort traffic.

A third approach would be to rely on the financial incentives
of pricing mechanisms to control sharing. Relying exclusively
on financial incentives would result in a risky gamble that net-
work providers were able to provision additional bandwidth
and deploy effective pricing structures fast enough to keep up
with the growth in unresponsive best-effort traffic in the Inter-
net.

These three approaches to sharing, of isolating flows at
the router, deploying concrete incentives for best-effort traf-
fic to use end-to-end congestion control, and relying on pricing
mechanisms, are not necessarily mutually exclusive. Given the
fundamental heterogeneity of the Internet, there is no require-
ment that all routers or all service providers follow precisely
the same approach.

However, these three approaches can lead to different con-
clusions about the role of end-to-end congestion control for
best-effort traffic, and different consequences in terms of the
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increasing deployment of such traffic in the Internet. The In-
ternet is now at a cross-roads in terms of the use of end-to-
end congestion control for best-effort traffic, and is in a posi-
tion to actively welcome the widespread deployment of non-
congestion-controlled best-effort traffic, to actively discourage
such a widespread deployment, or, by taking no action, to al-
low such a widespread deployment to become a simple fact
of life. We argue in this paper that recognizing the essential
role of end-to-end congestion control for best-effort traffic and
strengthening incentives for best-effort flows to use end-to-end
congestion control are critical issues as the Internet expands to
a larger community.

As we show in Section 2, an increasing deployment of traf-
fic lacking end-to-end congestion control could lead to conges-
tion collapse in the Internet. This form of congestion collapse
would result from congested links sending packets that would
only be dropped later in the network. The essential factor be-
hind this form of congestion collapse is the absence of end-to-
end feedback. Per-flow scheduling algorithms supply fairness
with a cost of increased state, but provide no inherent incentive
structure for best-effort flows to use strong end-to-end conges-
tion control. Our approach, however, gives a low-overhead
mechanism that also provides an incentive structure for flows
to use end-to-end congestion control.

The mechanisms discussed in this paper are suggested to
help manage best-effort traffic only. We expect other traffic
to use one of the “premium services” being added to the In-
ternet. Examples of such premium services are the guaran-
teed and controlled-load services currently under development
in the IETF (Internet Engineering Task Force) [IET]. These
services are primarily for real-time or other traffic with partic-
ular quality-of-service requirements, and require explicit ad-
mission control and preferential scheduling in the network.
Other examples of premium services under development in-
clude more general differential services that would not require
per-flow admissions controls. It seems likely (to us) that pre-
mium services in general will apply only to a small fraction of
future Internet traffic, and that the Internet will continue to be
dominated by best-effort traffic.

Section 2 discusses the problems of extreme unfairness and
potential congestion collapse that would result from increas-
ing levels of best-effort traffic not using end-to-end congestion
control. Next, Section 3 describes a range of mechanisms for
determining which high-bandwidth flows should be regulated
by having their bandwidth use restricted at the router. The most
conservative such mechanism identifies high-bandwidth flows
that are not “TCP-friendly” (i.e., that are using more band-
width than would any conformant TCP implementation in the
same circumstances). The second mechanism identifies high-
bandwidth flows as “unresponsive” when their arrival rate at
the router is not reduced in response to increased packet drops.
The third mechanism identifies disproportionate-bandwidth
flows, high-bandwidth flows that may be both responsive and
TCP-friendly, but nevertheless are using excessive bandwidth

in a time of high congestion.
As mentioned above, a different approach would be the use

of per-flow scheduling mechanisms such as variants of round-
robin or fair queueing to isolate all best-effort flows at routers.
Most of these per-flow scheduling mechanisms prevent a best-
effort flow from using a disproportionate amount of bandwidth
in times of congestion, and therefore might seem to require no
further mechanisms to identify and restrict the bandwidth of
particular best-effort flows. Section 4 compares the two ap-
proaches, and discusses some advantages of aggregating best-
effort traffic in queues using simple FIFO scheduling and RED
queue management along with the mechanisms described in
this paper. Section 5 gives conclusions and discusses some of
the open questions.

The simulations in this paper use the ns simulator, available
at [MF95]. The scripts to run these simulations are available
from the Network Research Group web page [Gro97].

2 The problem of unresponsive flows

Unresponsive flows are flows that do not use end-to-end con-
gestion control, and in particular that do not reduce their load
on the network when subjected to packet drops. This unre-
sponsive behavior can result in both unfairness and congestion
collapse for the Internet. The unfairness is from the bandwidth
starvation that unresponsive flows can inflict on well-behaved
responsive traffic. The danger of congestion collapse comes
from a network busy transmitting packets that will simply be
discarded before reaching their final destinations. We discuss
these two dangers separately below.

2.1 Problems of unfairness

A first problem caused by the absence of end-to-end conges-
tion control is the drastic unfairness that results from TCP
flows competing with unresponsive UDP flows for scarce
bandwidth. The TCP flows reduce their sending rates in re-
sponse to congestion, leaving the uncooperative UDP flows to
use the available bandwidth.

3 ms
1.5 Mbps

2 ms
10 Mbps10 Mbps
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S3
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10 ms

X Kbps
5 ms

10 Mbps
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Figure 1: Simulation network.

Figure 2 graphically illustrates what happens when UDP
and TCP flows compete for bandwidth, given routers with
FIFO scheduling. The simulations uses the scenario in Fig-
ure 1, with the bandwidth of the R2-S4 link set to 10 Mbps.
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Solid Line: TCP Goodput; Bold line: Aggregate Goodput
X-axis: UDP Arrival Rate (% of R1-R2).  Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput;
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Figure 2: Simulations showing extreme unfairness with three
TCP flows and one UDP flow, and FIFO scheduling.

Solid Line: TCP Goodput; Bold line: Aggregate Goodput
X-axis: UDP Arrival Rate (% of R1-R2).  Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput;
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Figure 3: Simulations with three TCP flows and one UDP flow,
with WRR scheduling. There is no unfairness.

The traffic consists of several TCP connections from node S1
to node S3, each with unlimited data to send, and a single
constant-rate UDP flow from node S2 to S4. The routers have
a single output queue for each attached link, and use FIFO
scheduling. The sending rate for the UDP flow ranges up to 2
Mbps.

Definition: goodput. We define the “goodput” of a flow as
the bandwidth delivered to the receiver, excluding duplicate
packets.

Each simulation is represented in Figure 2 by three marks,
one for the UDP sending rate for that simulation, another for
UDP goodput, and a third for TCP goodput. The -axis shows
the UDP sending rate, as a fraction of the bandwidth on the R1-
R2 link. The dashed line shows the UDP sending rate for the
entire simulation set, the dotted line shows the UDP goodput,
and the solid line shows the TCP goodput, all expressed as a
fraction of the available bandwidth on the R1-R2 link. The
bold line shows the aggregate goodput.

As Figure 2 shows, when the sending rate of the UDP flow
is small, the TCP flows have high goodput, and use almost all
of the bandwidth on the R1-R2 link. When the sending rate of
the UDP flow is larger, the UDP flow receives a correspond-
ingly large fraction of the bandwidth on the R1-R2 link, while
the TCP flows back off in response to packet drops. This un-
fairness results from responsive and unresponsive flows com-
peting for bandwidth under FIFO scheduling. The UDP flow
effectively “shuts out” the responsive TCP traffic.

Even if all of the flows were using the exact same TCP
congestion control mechanisms, with FIFO scheduling the

bandwidth would not necessarily be distributed equally among
those TCP flows with sufficient demand. [FJ92] discusses the
relative distribution of bandwidth between two competing TCP
connections with different roundtrip times. [Flo91] analyzes
this difference, and goes on to discuss the relative distribu-
tion of bandwidth between two competing TCP connections
on paths with different numbers of congested gateways. For
example, [Flo91] shows how, as a result of TCP's congestion
control algorithms, a connection' s throughput varies as the in-
verse of the connection' s roundtrip time. For paths with multi-
ple congested gateways, [Flo91] further shows how a connec-
tion's throughput varies as the inverse of the square root of the
number of congested gateways.

Figure 3 shows that per-flow scheduling mechanisms at the
router can explicitly control the allocation of bandwidth among
a set of competing flows. The simulations in Figure 3 use same
scenario as in Figure 2, except that the FIFO scheduling has
been replaced with weighted round-robin (WRR) scheduling,
with each flow assigned an equal weight. As Figure 3 shows,
with WRR scheduling the UDP flow is restricted to roughly
25% of the link bandwidth. The results would be similar with
variants of Fair Queueing (FQ) scheduling.

2.2 The danger of congestion collapse

This section discusses congestion collapse from undelivered
packets, and shows how unresponsive flows could contribute
to congestion collapse in the Internet.

Informally, congestion collapse occurs when an increase in
the network load results in a decrease in the useful work done
by the network. Congestion collapse was first reported in the
mid 1980s [Nag84], and was largely due to TCP connections
unnecessarily retransmitting packets that were either in transit
or had already been received at the receiver. We call the con-
gestion collapse that results from the unnecessary retransmis-
sion of packets classical congestion collapse. Classical con-
gestion collapse is a stable condition that can result in through-
put that is a small fraction of normal [Nag84]. Problems with
classical congestion collapse have generally been corrected by
the timer improvements and congestion control mechanisms in
modern implementations of TCP [Jac88].

A second form of potential congestion collapse, congestion
collapse from undelivered packets, is the form of interest to
us in this paper. Congestion collapse from undelivered packets
arises when bandwidth is wasted by delivering packets through
the network that are dropped before reaching their ultimate
destination. We believe this is the largest unresolved danger
with respect to congestion collapse in the Internet today. The
danger of congestion collapse from undelivered packets is due
primarily to the increasing deployment of open-loop applica-
tions not using end-to-end congestion control. Even more de-
structive would be best-effort applications that increased their
sending rate in response to an increased packet drop rate (e.g.,
using an increased level of FEC).

3



We note that congestion collapse from undelivered packets
and other forms of congestion collapse discussed in the follow-
ing section differ from classical congestion collapse in that the
degraded condition is not stable, but returns to normal once the
load is reduced. This does not necessarily mean that the dan-
gers are less severe. Different scenarios also can result in dif-
ferent degrees of congestion collapse, in terms of the fraction
of the congested links' bandwidth used for productive work.

Solid Line: TCP Goodput; Bold line: Aggregate Goodput
X-axis: UDP Arrival Rate (% of R1-R2).  Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput;
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Figure 4: Simulations showing congestion collapse with three
TCP flows and one UDP flow, with FIFO scheduling.

Solid Line: TCP Goodput; Bold line: Aggregate Goodput
X-axis: UDP Arrival Rate (% of R1-R2).  Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput;
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Figure 5: Simulations with three TCP flows and one UDP flow,
with WRR scheduling. There is no congestion collapse.

Figure 4 illustrates congestion collapse from undelivered
packets, where scarce bandwidth is wasted by packets that
never reach their destination. The simulation in Figure 4 uses
the scenario in Figure 1, with the bandwidth of the R2-S4 link
set to 128 Kbps, 9% of the bandwidth of the R1-R2 link. Be-
cause the final link in the path for the UDP traffic (R2-S4) is
of smaller bandwidth compared to the others, most of the UDP
packets will be dropped at R2, at the output port to the R2-S4
link, when the UDP source rate exceeds 128 Kbps.

As illustrated in Figure 4, as the UDP source rate increases
linearly, the TCP goodput decreases roughly linearly, and the
UDP goodput is nearly constant. Thus, as the UDP flow in-
creases its offered load, its only effect is to hurt the TCP (and
aggregate) goodput. On the R1-R2 link, the UDP flow ulti-
mately “wastes” the bandwidth that could have been used by
the TCP flow, and reduces the goodput in the network as a
whole down to a small fraction of the bandwidth of the R1-R2
link.

Per-flow scheduling mechanisms at the router can not be re-
lied upon to eliminate this form of congestion collapse in all
scenarios. For a scenario as in Figure 5, where a single flow

is responsible for almost all of the wasted bandwidth at a link,
per-flow scheduling mechanisms are reasonably successful at
preventing congestion collapse as well as unfairness. Figure
5 shows the same scenario as in Figure 4, except the router
uses WRR scheduling instead of FIFO scheduling. Because
the UDP flow is restricted to 25% of the link bandwidth, there
is a minimal reduction in the aggregate goodput.

Solid Line: TCP Goodput; Bold line: Aggregate Goodput
X-axis: UDP Arrival Rate (% of R1-R2).  Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput;
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Figure 6: Simulations with one TCP flow and three UDP flows,
showing congestion collapse with FIFO scheduling.

Solid Line: TCP Goodput; Bold line: Aggregate Goodput
X-axis: UDP Arrival Rate (% of R1-R2).  Dashed Line: UDP Arrivals; Dotted Line: UDP Goodput;
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Figure 7: Simulations with one TCP flow and three UDP flows,
showing congestion collapse with WRR scheduling.

In contrast, in a scenario as in Figures 6 and 7 where a num-
ber of unresponsive flows are contributing to the congestion
collapse, per-flow scheduling does not completely solve the
problem. Figures 6 and 7 show a different traffic mix that illus-
trates some congestion collapse for a network with routers with
either FIFO or Round Robin scheduling. In this scenario, there
is one TCP connection from node S1 to node S3, and three
constant-rate UDP connections from node S2 to S4. Figure 6
shows FIFO scheduling, and Figure 7 shows WRR scheduling.
In Figure 6, in high load the aggregate goodput of the R1-R2
link is only 10% of normal, and in Figure 7, the aggregate
goodput of the R1-R2 link is 35% of normal.

Figure 8 shows that the limiting case of a very large num-
ber of very small bandwidth flows without congestion control
could threaten congestion collapse in a highly-congested Inter-
net regardless of the scheduling discipline at the router. For the
simulations in Figure 8, there are ten flows, with the TCP flows
all from node S1 to node S3, and the constant-rate UDP flows
all from node S2 to S4. The -axis shows the number of UDP
flows in the simulation, ranging from 1 to 9. The -axis shows
the aggregate goodput, as a fraction of the bandwidth on the
R1-R2 link, for two simulation sets, one with FIFO schedul-
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Number of UDP Flows (as a Fraction of Total Flows).  
Dotted Line: FIFO Scheduling; Solid Line: WRR Scheduling
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Figure 8: Congestion collapse as the number of UDP flows
increases.

ing, and the other with WRR scheduling.
For the simulations with WRR scheduling, each flow is as-

signed an equal weight, and congestion collapse is created by
increasing the number of UDP flows going to the R2-S4 link.
For scheduling partitions based on source-destination pairs,
congestion collapse would be created by increasing the num-
ber of UDP flows traversing the R1-R2 and R2-S4 links that
had separate source-destination pairs.

The essential factor behind this form of congestion collapse
is not the scheduling algorithm at the router, or the bandwidth
used by a single UDP flow, but the absence of end-to-end con-
gestion control for the UDP traffic. The congestion collapse
would be essentially the same if the UDP traffic somewhat
stupidly reserved and paid for more than 128 Kbps of band-
width on the R1-R2 link in spite of the bandwidth limitations
of the R2-S4 link. In a datagram network, end-to-end conges-
tion control is needed to prevent flows from continuing to send
when a large fraction of their packets are dropped in the net-
work before reaching their destination. We note that conges-
tion collapse from undelivered packets would not be an issue
in a circuit-switched network where a sender is only allowed
to send when there is an end-to-end path with the appropriate
bandwidth.

2.3 Other forms of congestion collapse

In addition to classical congestion collapse and congestion
collapse from undelivered packets, other potential forms of
congestion collapse include fragmentation-based congestion
collapse, congestion collapse from increased control traffic,
and congestion collapse from stale packets. We discuss these
other forms of congestion collapse briefly in this section.

Fragmentation-based congestion collapse [KM87, RF95]
consists of the network transmitting fragments or cells of pack-
ets that will be discarded at the receiver because they cannot
be reassembled into a valid packet. Fragmentation-based con-
gestion collapse can result when some of the cells or frag-
ments of a network-layer packet are discarded (e.g. at the link
layer), while the rest are delivered to the receiver, thus wasting
bandwidth on a congested path. The danger of fragmentation-
based congestion collapse comes from a mismatch between

link-level transmission units (e.g., cells or fragments) and
higher-layer retransmission units (datagrams or packets), and
can be prevented by mechanisms aimed at providing network-
layer knowledge to the link-layer or vice-versa. One such
mechanism is Early Packet Discard [RF95], which arranges
that when an ATM switch drops cells, it will drop complete
packets of cells. Another mechanism is Path MTU discov-
ery [KMMP88], which helps to minimize packet fragmenta-
tion.

A variant of fragmentation-based congestion collapse con-
cerns the network transmitting packets received correctly by
the transport-level at the end node, but subsequently dis-
carded by the end-node before they can be of use of the end
user [Var96]. This can occur when web users abort partially-
completed TCP transfers because of delays in the network and
then re-request the same data. This form of fragmentation-
based congestion collapse could result from a persistent high
packet drop rate in the network, and could be ameliorated by
mechanisms that allow end-nodes to save and re-use data from
partially-completed transfers.

Another form of possible congestion collapse, congestion
collapse from increased control traffic, has also been discussed
in the research community. This would be congestion collapse
where, as a result of increasing load and therefore increasing
congestion, an increasingly-large fraction of the bytes trans-
mitted on the congested links belong to control traffic (packet
headers for small data packets, routing updates, multicast join
and prune messages, session messages for reliable multicast
sessions, DNS messages, etc.), and an increasingly-small frac-
tion of the bytes transmitted correspond to data actually deliv-
ered to network applications.

A final form of congestion collapse, congestion collapse
from stale packets, could occur even in a scenario with infi-
nite buffers and no packet drops. Congestion collapse from
stale packets would occur if the congested links in the network
were busy carrying packets that were no longer wanted by the
user. This could happen, for example, if data transfers took
sufficiently long, due to high delays waiting in large queues,
that the users were no longer interested in the data when it fi-
nally arrived. This could also happen if, in a time of increasing
load, an increasing fraction of the link bandwidth was being
used by push web data delivered to the client unnecessarily.

2.4 Building in the right incentives

Given that the essential factor behind congestion collapse from
undelivered packets is the absence of end-to-end congestion
control, one question is how to build the right incentives into
the network. What is needed is for the network architecture as
a whole to include incentives for applications to use end-to-end
congestion control.

In the current architecture, there are no concrete incentives
for individual users to use end-to-end congestion control, and
there are in some cases “rewards” for users that do not use
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end-to-end congestion control, in that they might receive a
larger fraction of the link bandwidth than they would other-
wise. Given a growing consensus among the Internet com-
munity that end-to-end congestion control is one of the funda-
mental bases for the future health and survival of the Internet,
there are some social incentives for protocol designers, soft-
ware vendors, and the like not to produce products designed
for the Internet that do not use end-to-end congestion control;
it would not be good for business to be held responsible for
the degradation on the Internet. However, it is not sufficient to
depend only on social incentives such as these.

Axelrod in “The Evolution of Cooperation” [Axe84] dis-
cusses some of the conditions required if cooperation is to be
maintained in a system as a stable state. One way to view
congestion control in the Internet is as TCP connections co-
operating to share the scarce bandwidth in times of conges-
tion. The benefits of this cooperation are that cooperating TCP
connections can share bandwidth in a FIFO queue, using sim-
ple scheduling and accounting mechanisms, and can reap the
benefits in that short bursts of packets from a connection can
be transmitted in a burst. (FIFO queueing' s tolerance of short
bursts reduces the worst-case packet delay for packets that ar-
rive at the router in a burst, compared to the worst-case delays
from per-flow scheduling algorithms.) This cooperative be-
havior in sharing scarce bandwidth is the foundation of TCP
congestion control in the global Internet.

The inescapable price for this cooperation to remain stable
is for mechanisms to be put in place so that users do not have
an incentive to behave uncooperatively in the long term. Be-
cause users in the Internet do not have information about other
users against whom they are competing for scarce bandwidth,
the incentive mechanisms cannot come from the other users,
but would have to come from the network infrastructure it-
self. This paper explores mechanisms that could be deployed
in routers to provide a concrete incentive for users to partici-
pate in cooperative methods of congestion control. Alternative
approaches such as per-flow scheduling mechanisms and re-
liance on pricing structures are discussed later in the paper.

Section 3 continues with mechanisms for identifying which
of these high-bandwidth flows are sufficiently unresponsive
that their bandwidth should be regulated at the router.

3 Identifying flows to regulate

In this section, we discuss the range of policies a router might
use to decide which high-bandwidth flows to regulate. For a
router with RED queue management, the arrival rates of high-
bandwidth flows can be efficiently estimated from the recent
packet drop history at the router, as described in [FF97]. The
router only needs to consider regulating those best-effort flows
using significantly more than their “share” of the bandwidth
in the presense of suppressed demand (as evidenced by packet
drops) from other best-effort flows. A router can “regulate”

a flow's bandwidth by differentially scheduling packets from
that flow, or by preferentially dropping packets from that flow
at the router [LM96]. When congestion is mild (as represented
by a low packet drop rate), a router does not need to take any
steps to identify high-bandwidth flows or further check if those
flows need to be regulated.

The tests in this section assume that a “flow” is defined on
the granularity of source and destination IP addresses and port
numbers, so each TCP connection is a single flow. For a router
in the interior of the network where a different granularity is
used to define a flow, it will be necessary to use different poli-
cies to identify a “flow” whose bandwidth should be regulated.
An additional issue not addressed in this paper is that prac-
tices such as encryption and packet fragmentation could make
it problematic for routers to classify packets into fine-grained
flows. The practice of packet fragmentation should decrease
with the use of MTU discovery [MD90], but the practice of
encryption [Atk95] is more likely to be increasing.

The policies outlined in this section for regulating high-
bandwidth flows range in the degree of caution. The most
conservative policy would be only to regulate high-bandwidth
flows in times of congestion when they are known to be vi-
olating the expectations of end-to-end congestion control, by
being either unresponsive to congestion or exceeding the band-
width used by any conformant TCP flow under the same cir-
cumstances. A less “conservative” policy would include regu-
lating any high-bandwidth flow using significantly more than
its “share” of the bandwidth in a time of high congestion.

The router applies a set of tests to determines if the selected
flow is unresponsive, not TCP-friendly, or “disproportionate-
bandwidth”. If the flow meets the criteria for any of these tests,
the bandwidth of the flow should be regulated by the router.

3.1 Identifying flows that are not TCP-friendly

Definition: TCP-friendly flows. We say a flow is TCP-friendly
if its arrival rate does not exceed the bandwidth of a confor-
mant TCP connection in the same circumstances. The test of
whether or not a flow is TCP-friendly assumes TCP can be
characterized by a congestion response of reducing its conges-
tion window at least by half upon indications of congestion
(i.e., packet drops), and of increasing its congestion window
by a constant rate of at most one packet per roundtrip time
otherwise. This response to congestion leads to a maximum
overall sending rate for a TCP connection with a given packet
loss rate, packet size, and roundtrip time. Given a non-bursty
packet drop rate of , the maximum sending rate for a TCP
connection is Bps, for

(1)

for a TCP connection sending packets of B bytes, with a fairly
constant roundtrip time, including queueing delays, of R sec-
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onds. This equation is discussed in more detail in Appendix
B.

The TCP-friendly test can only be applied to a flow at the
level of granularity of a single TCP connection. To apply this
test, the router should know a maximum packet size in bytes
for packets on that link, and a minimum roundtrip time for
any flows using that link. The minimum roundtrip time
could be set to twice the one-way propagation delay of the at-
tached link; this would limit the appropriateness of this test to
those routers where the propagation delay of the attached link
is likely to be a significant fraction of the end-to-end delay of
a connection' s path.

The router can use its measurement of the aggregate packet
drop rate for that queue over the recent time interval to estimate

, the non-bursty packet drop rate experienced by a particular
flow. Given the packet drop rate , the minimum roundtrip
time , and the maximum packet size , a router can use
equation (1) to easily calculate the maximum arrival rate from
a conformant TCP connection. Actual TCP connections will
generally use less than this maximum bandwidth, because they
have limited demand, a longer roundtrip time, a window size
limitation, a smaller packet size, a less-aggressive TCP imple-
mentation, a receiver that sends delayed ACKs, or additional
packet drops from elsewhere in the network.

Given and , equation (1) reduces to a simple table at the
router: if the steady-state packet drop rate is “x”, then the ar-
rival rate of an individual flow should be at most “y”. If a flow's
drop rate (the ratio of a flow's dropped packets to its arriving
packets) is lower than the aggregate drop rate for the queue,
the router will overestimate the flow's actual drop rate, but at
the same time will underestimate the flow's arrival rate in Bps.
These effects tend to cancel, implying the estimates should not
lead to problems with incorrect identification of unresponsive
or unfriendly flows. This is confirmed by our simulations to
date.

The test of TCP-friendliness does not attempt to verify that
a flow responds to each and every packet drop exactly as
would a conformant TCP flow. It does however assume a flow
should not use more bandwidth than would the most aggressive
conformant TCP implementation in the same circumstances.
The TCP protocol itself is subject to change, and the conges-
tion control mechanisms used to derive equation (1) could at
some point be changed by the IETF (Internet Engineering Task
Force), the responsible standards body. Nevertheless, the two
limitations on TCP's window increase and decrease algorithms
have been followed by all conformant TCP implementations
since 1988 [Jac88], and have an installed base in the end-
systems of the Internet that will persist for some time, even
if at some point in the future changes might be proposed to
the TCP standards to allow more aggressive responses to con-
gestion. As long as best-effort traffic is dominated by such an
installed base of TCP traffic, it would be reasonable for routers
to restrict the bandwidth of any flow with an arrival rate higher
than that of any conformant TCP implementation in the same

circumstances.
Care should be taken to only apply the TCP-friendly test

to measurements taken over a sufficiently large time interval.
The time period should not correspond to only one or two flow
round-trip times. If the interval represents a small number of
roundtrip times, then the flow might not have time to respond
to the packet drops during that cycle until one roundtrip time
later (i.e. in the subsequent cycle). If a very long round-trip
time flow is incorrectly identified as not TCP-friendly because
of a short measurement interval relative to its roundtrip time,
then the router will notice the flow's delayed response to con-
gestion a short time later, and can remove the bandwidth re-
strictions then.

Another consideration in applying equation (1) is the preva-
lence of packet drops from buffer flow. Equation (1) only ap-
plies for a non-bursty packet drop behavior, where a flow re-
ceives at most one packet drop per window of data, and there-
fore each packet drop corresponds to a separate indication of
congestion to the end nodes. In particular, when congestion is
high, and there is significant buffer overflow, multiple packets
dropped from a window of data are likely to be fairly common.

The TCP-friendly test does not attempt to detect all flows
which are not TCP-friendly. For example, the router might
know a lower bound on any flow's roundtrip time, but the
router does not know any flow's actual round-trip time. For
routers with attached links with large propagation delays, the
TCP-friendly test of equation (1) gives a useful tool for iden-
tifying flows which are not TCP-friendly. For routers with at-
tached links of smaller propagation delay, the TCP-friendly
test of equation (1) is less likely to identify any unfriendly
flows. Such routers cannot exclude the possibility that a con-
formant TCP flow could receive a disproportionate share of the
link bandwidth simply because it has a significantly smaller
roundtrip time than competing TCP flows.

An individual flow whose arrival rate significantly exceeds
the maximum TCP-friendly arrival rate either is not using
TCP-friendly congestion control, or has larger packets or a
smaller round-trip time than assumed by the router. Close
to 100% of the packets in the Internet are 1500 bytes or
smaller [TMW97]; routers could detect those high-bandwidth
flows that use larger packets simply by observing the sizes of
packets in the recent history of dropped packets. However,
there is no simple test for a router to determine the end-to-
end round-trip time of an active connection. The position of
this paper is that routers should freely restrict the bandwidth
of best-effort flows determined not to be TCP-friendly in times
of congestion. Such flows are “stealing” bandwidth from TCP-
friendly traffic. Any such flow should only have its bandwidth
restriction removed when there is no longer any significant link
congestion, or when it has shown to reduce its arrival rate ap-
propriately in response to congestion.

Definition: the TCP-friendly test. One possibility for the
TCP-friendly test would be to identify a high-bandwidth best-
effort flow as not TCP-friendly if its estimated arrival rate is
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greater than , for B the maximum packet size
in bytes, twice the propagation delay of the attached link,
and the aggregate packet drop rate for that queue. A flow's
restriction would be removed if its arrival rate returns to less
than , for the new packet drop rate .

3.2 Identifying unresponsive flows

The TCP-friendly test is based on the specific congestion con-
trol responses of TCP, and many routers may not want to use
such a “TCP-centric” measure. The TCP-friendly test is also of
limited usefulness for routers unable to assume strong bounds
on TCP packet sizes and round-trip times. A more general
test would be simply to verify that a high-bandwidth flow was
responsive (i.e. its arrival rate decreases appropriately in re-
sponse to an increased packet drop rate).

Equation (1) shows that for a TCP flow with persistent de-
mand, if the long-term packet drop rate of the connection in-
creases by a factor of , then the arrival rate from the source
should decrease by a factor of at least . For example, if
the long term packet drop rate increases by a factor of four,
than the arrival rate should decrease at least by a factor of two.
This suggests a test for identifying unresponsive flows if the
drop rate is changing. If the steady state drop rate increases by
a factor , and the presented load for a high-bandwidth flow
does not decrease by a factor reasonably close to or more,
then the flow can be deemed not to be using congestion con-
trol (unresponsive). Similarly, if the steady state drop rate in-
creases by a factor , and the presented load for aggregated
traffic does not decrease by a factor reasonably close to or
more, then either the mix of the aggregated traffic has changed,
or the traffic as an aggregate is not using congestion control,
and can be categorized as unresponsive.

Applying this test to a flow requires estimates of a flow's ar-
rival rate and packet drop rate over several long time intervals.
The flow's arrival rate could be estimated from the history of
packet drops maintained by the RED queue manangement, and
the flow's packet drop rate could be estimated using the aggre-
gate packet drop rate at the queue.

This test does not attempt to detect all flows that are not
responding to congestion, but is only applied to the high band-
width flows. When the packet drop rate remains relatively con-
stant, no flows will be identified as unresponsive. In addition,
the router has limited information about the flow's responses to
congestion. The primary congestion indications experienced
by a flow might be coming from elsewhere in the network. In
addition, the arrival rate seen by a router is a result not only
of the sending rate, but also of the drop rate experienced by a
flow at a congested link earlier on its path.

As discussed in the previous section, care should be taken
when applying this test. In particular, a test for unrespon-
siveness is less straightforward for a flow with a variable de-
mand. In addition to possible end-to-end congestion mecha-
nisms such as senders adjusting their coding rates or receivers

subscribing and unsubscribing from layered multicast groups,
the original data source itself could be ON/OFF or otherwise
have strong rate variations over time. If a high-bandwidth flow
is restricted because it has been identified as unresponsive, and
it is later determined to be responding to congestion by reduc-
ing its arrival rate, then the restriction is removed.

Instead of applying the test passively by observing how the
flow's arrival rate changes in response to changes in the packet
drop rate, another possibility would be to apply the test ac-
tively. This could be done by purposefully increasing the
packet drop rate of a high bandwidth flow in times of con-
gestion, and observing whether the arrival rate of the flow on
that link decreases appropriately.

An additional refinement of this “responsiveness” test would
be to distinguish three separate subcases: flows with an in-
creasing or relatively constant average arrival rate (as indicated
by the drop metric) in the face of an increasing packet drop rate
at the router; a flow whose average arrival rate generally tracks
longer-term changes in the packet drop rate at the router; and a
flow whose average arrival rate seems to change independently
of changes in the router' s packet drop rate.

The router can freely restrict the bandwidth of best-effort
flows determined to be unresponsive in times of congestion.
Such flows are “stealing” bandwidth from responsive TCP-
friendly traffic.

Definition: the test for unresponsiveness. One possibility
for the unresponsiveness test is to identify a high-bandwidth
best-effort flow as unresponsive if the packet drop rate in-
creases by more than a factor of four, but the flow's arrival
rate has not decreased to below 90% of its previous value. Re-
strictions would be removed from an unresponsive flow only
if, after an increased packet drop rate, its arrival rate returns to
at most half of its arrival rate when it was restricted.

3.3 Identifying flows using disproportionate
bandwidth

A third test would be simply to identify flows that use a dis-
proportionate share of the bandwidth in times of high conges-
tion, where a disproportionate share is defined as a significanly
larger share than other flows in the presence of suppressed de-
mand from some of the other flows. A router could restrict the
bandwidth of such flows even if the flows are known to be us-
ing conformant TCP congestion control. A conformant TCP
flow could use a “disproportionate share” of bandwidth under
several circumstances: if it was the only TCP with sustained
persistent demand, or the only TCP using large windows, or
the only TCP with a significantly smaller roundtrip time or
larger packet sizes than other active TCPs.

Let be the number of flows with packet drops in the re-
cent reporting interval. The most straightforward test to check
if a flow was using a disproportionate share of the bandwidth
in times of congestion might be to test if the flow's fraction of
the aggregate arrival rate was greater than some small constant
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times , when the aggregate packet drop rate was greater
than some preconfigured threshold deemed as an unacceptable
level of congestion. Our test is a modification of this approach
that, instead of using a preconfigured threshold for the accept-
able packet drop rate, simply allows for greater skewedness
in the distribution of best-effort bandwidth when packet drop
rates are lower. The goal is only to prevent flows from using a
highly disproportionate share of the bandwidth when there is
likely to be “sufficient” demand from other best-effort flows.

The first component of the disproportionate-bandwidth test
is to check if a flow is using a disproportionate share of the
bandwidth. We define a flow as using a disproportionate share
of the best-effort bandwidth if its fraction of the aggregate ar-
rival rate is more than , for the natural logarithm.
We chose this fraction because it is close to one (i.e., 0.9) for

equal to two, and grows slowly as a multiple of .
The second component of our test takes into account the

level of congestion itself, as reflected in the aggregate packet
drop rate . We define a flow as having a high arrival rate rel-
ative to the level of congestion if its arrival rate is greater than

Bps for some constant . This definition is motivated
by our characterization in the appendix of the relationship be-
tween the arrival rate and the packet drop rate for conformant
TCP. For our simulations we set to 12,000, which is close to

for bytes and seconds.
Gauging the level of unsatisfied demand is problematic. For

a large round-trip time TCP flow with persistent demand, a sin-
gle packet drop can represent a significant suppressed demand.
For a short bursty web transfer, a single packet drop might not
mean much in terms of unsatisfied demand. A conservative ap-
proach would be to limit the restriction of a high-bandwidth re-
sponsive flow so that over the long run, each such flow receives
as much bandwidth as the highest-bandwidth unrestricted flow.
In restricting the bandwidth of a high-bandwidth flow that has
not been identified as either unresponsive or not TCP-friendly,
care should be taken not to “punish” it by restricting its band-
width too severely.

Definition: the disproportionate-bandwidth test. Let be
the aggregate packet drop rate for the unrestricted best-effort
traffic, and let be the number of flows with packet drops in
the most recent interval. One possibility for a disproportionate-
bandwidth test would be to identify a best-effort flow as us-
ing disproportionate-bandwidth if the estimated arrival rate is
greater than and the arrival rate is also greater
than a fraction of the best-effort bandwidth. The
restriction would be removed when one of these conditions is
no longer true.

4 Alternate approaches

One alternative to the use of router mechanisms proposed in
this paper would be the ubiquitous deployment at all congested
routers in the Internet of per-flow scheduling mechanisms such

as round-robin or fair queueing scheduling, to isolate each flow
from all other flows at the router. In general, per-flow schedul-
ing algorithms separately schedule the packets from each flow,
dividing the available bandwidth among the various flows. Per-
flow scheduling mechanisms at the router would indeed take
care of many of the fairness issues concerning competing best-
effort flows. With per-flow scheduling at the router, it might
also seem that there is no need for further mechanisms to iden-
tify and restrict the bandwidth of best-effort flows that do not
use appropriate end-to-end congestion control. In this sec-
tion we argue that (1) routers with per-flow scheduling mech-
anisms still need additional mechanisms as an incentive for
best-effort flows to use end-to-end congestion control; and (2)
FIFO scheduling has some advantages for best-effort traffic
that are apart from issues of implementation efficiency or in-
centives regarding end-to-end congestion control.

As we have seen in Section 2, per-flow scheduling cannot,
by itself, prevent congestion collapse from undelivered pack-
ets. To what extent would the use of per-flow scheduling mech-
anisms encourage end-to-end congestion control for best-effort
traffic? Recommendations for the ubiquitous deployment of
per-flow scheduling for best-effort traffic are based on an as-
sumption that in a heterogeneous world, best-effort flows can-
not be relied upon to be responsive to congestion, and there-
fore best-effort flows should be isolated from each other. In
some sense per-flow scheduling has incentives in the wrong
direction, encouraging flows to make sure that “their” queue
in the congested router never goes empty (so that they never
lose “their” turn at scheduling).

An advantage of FIFO scheduling over per-flow scheduling
is that FIFO scheduling is more efficient to implement. This is
a particularly important concern as link speeds increase, result-
ing in an increase in the number of very short best-effort flows
active at one time. Apart from considerations of implementa-
tion efficiency, however, FIFO scheduling is in many ways the
optimal scheduling algorithm for a class of traffic where the
long-term aggregate arrival rate is restricted by either admis-
sion controls or, in the case of best-effort traffic, by compati-
ble end-to-end congestion control procedures. In comparison
to Fair Queueing [DKS90] or Round Robin scheduling, FIFO
scheduling reduces the tail of the delay distribution [CSZ92].
In particular, FIFO scheduling allows packets arriving in a
small burst to be transmitted in a burst, rather than having the
packets “spread out” and delayed by the scheduler.

In some sense, FIFO scheduling and per-flow Fair Queueing
or Round Robin scheduling are two ends of a spectrum. The
middle ranges of the spectrum would include not only FIFO
scheduling enhanced by mechanisms for the differential treat-
ment on unresponsive flows, but could also include relaxed
variants of per-flow scheduling that allow for small bursts to be
transmitted by each flow and include additional incentives for
end-to-end congestion control. This middle range would also
include FIFO scheduling with differential dropping for flows
using a disproportionate share of the bandwidth [LM96], or
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scheduling mechanisms such as Class-Based Queueing (CBQ)
[FJ95] or Stochastic Fair Queueing (SFQ) [McK90] that can
operate on levels of granularity betweeen the two extremes of
either a single flow or the aggregate best-effort traffic.

We note that routers with per-flow or per-class schedul-
ing for best effort traffic still require active queue manage-
ment mechanisms; the queue management mechanism (or lack
thereof) is to some extent orthogonal to the scheduling mech-
anism. Active queue management mechanisms such as RED
allow the router to control the average queue size, prevent un-
necessary packet drops, and provide indications of incipient
congestion to the end-nodes [BCC 97].

A more speculative issue is whether min-max fairness is the
ideal fairness metric to use for best-effort traffic at a specific
router. Min-max fairness has the advantage of being simple to
define at a router; indeed, it is the basis for our approach in this
paper for defining flows using a disproportionate share of the
link bandwidth. However, instead of considering the network
as a whole, the min-max definition of fairness restricts atten-
tion separately to each isolated component. A more approp-
priate fairness metric for recognizing each flow's equal access
to the scarce resources of the Internet would take into account
such global factors as the number of congested links on each
flow's path.

Another alternative to the router mechanisms described in
this paper might be the deployment of pricing structures sen-
sitive to the behavior of each flow in the global Internet that
would elicit the desired behavior. Even if pricing structures
could be envisioned that provided a sufficient incentive for ap-
plications to use end-to-end congestion control, the detailed
global state required by such a pricing scheme could be a very
high cost to the network indeed.

In contrast, router mechanisms that detect and restrict the
bandwidth of uncooperative flows can be deployed incremen-
tally, without requiring global knowledge or global consis-
tency in the network infrastructure, to provide a concrete in-
centive to flows to use appropriate congestion control mech-
anisms. Such mechanisms could be deployed at a congested
router, using information from packet drops (or other conges-
tion indications) generated at the router itself.

In a network engineered so that the typical case is one of suf-
ficient bandwidth for the demand, distinctions between the var-
ious scheduling algorithms and incentive mechanisms would
become less important. Similarly, in such a network the pos-
sibility of congestion collapse due to congested links carrying
packets that would later be dropped in the network would be-
come more remote. It is hard to predict, however, when or if
the scenario of sufficient bandwidth for the demand is likely to
be achieved.

5 Conclusions and future work

We have argued in this paper on the need for end-to-end con-
gestion control, and further, on the need for mechanisms in the
network to detect and restrict unresponsive or high-bandwidth
best-effort flows in times of congestion. These mechanisms
would provide a incentive in support of end-to-end congestion
control for best-effort traffic.

Clearly there is more work still to be done in developing and
investigating the mechanisms outlined in this paper. We have
not yet outlined a specific proposal for implementing these
mechanisms. We also intend to explore these mechanisms in
complex scenarios with multiple congested gateways, more re-
alistic traffic models for UDP traffic, and higher-priority real-
time traffic.

We believe the most important issue is not the precise func-
tioning of the mechanisms to restrict the bandwidth of unre-
sponsive best-effort flows, but simply that such mechanisms be
deployed. Mechanisms such as these would go a long way to
making concrete the essential role played by congestion con-
trol for best-effort traffic in the Internet.
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A One TCP connection or many?

This section discusses the negative impact on the network of
breaking a single TCP connection into multiple connections
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at the application level to increase throughput. In particular,
we show that while this approach might increase throughput
for those applications that break a TCP connection into mul-
tiple connections (relative to those applications that do not do
this), it also increases the packet drop rate shared by all of
the best-effort traffic. Breaking a single TCP connection into
multiple connections is one example of a possible spiral of
increasingly-aggressive TCP congestion control that leads to
increasing packet drop rates in the Internet.

For a TCP connection that has been separated into dif-
ferent TCP subconnections, a single packet drop results in one
of the subconnections, receiving -th of the aggregate
bandwidth, having its throughput cut in half. Thus, a single
packet drop causes the aggregate arrival rate to be dropped to a
fraction of its previous value. Then, because
each TCP subconnection continues to increase its congestion
window by one packet per RTT for those TCP subconnections
that have not yet reached the receiver's advertised window, the
aggregate TCP connections together increase their arrival rate
by up to packets per RTT. This is much more aggressive
congestion control that would lead to a correspondingly-larger
steady-state packet drop rate in the Internet. A router could de-
tect a TCP connection that had been separated into different
TCP subconnections by defining the granularity of a “flow” by
source and destination IP addresses only.

B Characterizing TCP-friendly flows

Since congestion control was introduced to TCP in
1988 [Jac88], TCP flows in the Internet used packet drops as
an indication of congestion, and have responded by reducing
their offered load by half for each window of data experiencing
a packet drop. For a responsive flow with persistent demand,
increasing the packet drop rate for a flow at a router should,
after a short delay, result in a decreased arrival rate from that
flow at that router. In this section we give an upper bound
on the arrival rate from any single conformant TCP connec-
tion at a router, given a non-bursty steady-state packet drop
rate at the router, an upper bound the TCP packet size, and a
lower bound on the TCP connection' s roundtrip time. Using
this characterization, routers can characterize selected flows as
using more bandwidth than would any TCP flow in the same
circumstances.

In this section we explore the relationship between through-
put and the packet drop rate for a conformant TCP connection
[Flo91, OKM96, MF97, MSMO97]. By a conformant TCP
connection, we mean a TCP connection where the TCP sender
follows the following two essential components of today's
TCP congestion control. First, the TCP data sender interprets
any packet drop in a window of data as an indication of con-
gestion, and responds by reducing the congestion window, and
therefore the effective sending rate, at least in half. Second,
during the congestion avoidance phase in the absence of con-

gestion, the TCP sender increases the congestion window by
at most one packet per roundtrip time (or more precisely, by at
most one packet per window of data). These two components
lead to a simple relationship between the “steady-state” packet
drop rate received by a TCP connection, and the “steady-state”
average throughput achieved by that connection.

There are many reasons why conformant TCP implementa-
tions might respond to congestion less aggressively than al-
lowed by the limits of congestion control described above.
TCP implementations have potentially-long delays due to re-
transmit timeouts; at times, TCP senders invoke slow-start in
responding to congestion; TCP connections may be limited by
maximum bounds on the window size, imposed by buffering
or lack of window scaling at either at the sender or receiver;
for TCP connections where the receiver only sends an ACK
packet for every two data packets, the TCP sender increases
the congestion window by less than one packet per roundtrip
time.

We assume a steady-state model of TCP as introduced in
Section 5 of [Flo91]. For the purposes of heuristic analysis,
we assume a single packet is dropped from a TCP connection
each time the congestion window is increased to packets
(and never when the congestion window is below packets).
The steady-state model assumes a non-zero but non-bursty av-
erage packet drop rate of , where an individual TCP connec-
tion has at most one packet drop in a window of data. The
TCP sender responds to a packet drop by cutting the conges-
tion window at least in half. After a packet is dropped, the
TCP sender increases its congestion window by at most one
packet each roundtrip time, until the congestion window again
reaches its old value of packets (and, in steady state, the
TCP connection receives another packet drop). The assump-
tion in this model of a deterministic and repeatable pattern, al-
though admittedly unrealistic, leads to results verified by sim-
ulations in this section and by an independently derived more
rigorous analysis in [OKM96]. The equation that results from
this steady-state model has also been proposed as a basis for
new congestion-control mechanisms [MF97].

We consider a TCP connection sending packets (or more
precisely, segments) of bytes, with a fairly constant
roundtrip time, including queueing delays, of seconds. Each
time a packet is dropped, the TCP sender has a congestion win-
dow of packets.

By decreasing its window by at least half for each packet
drop and increasing its window by at most one per round-trip
time afterwards, the TCP sender transmits at least

(2)

packets for each packet dropped. The fraction of the sender' s
packets that are dropped is then bounded by the reciprocal of
that value:

(3)
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From equation (3),

(4)

For our steady-state model assuming a link with steady-
state packet drop rate , equation (4) gives the maximum con-
gestion window of a TCP connection when a packet is
dropped. With a steady-state packet drop rate of in the
steady-state model, the TCP connection sends packets
between packet drops. Because the congestion window is de-
creased by at least half, and increased by at most one packet
per roundtrip time, there are at least roundtrip times be-
tween packet drops in the steady-state model. The maximum
sending rate for a TCP connection over a single cycle of the
steady-state model is thus Bps, for

Substituting for from equation (4), we get

(5)

This upper bound on TCP's average sending rate applies for
any conformant TCP that decreases its congestion window by
at least half, and, after the congestion window has been de-
creased by half, increases the congestion window by at most
one packet per roundtrip time. Thus, this upper bound also
applies to a TCP restricted by the receiver's advertised win-
dow, or by TCP variants such as Vegas TCP which sometimes
refrain from increasing the congestion window during the con-
gestion avoidance phase. Assuming a steady-state packet drop
rate of , and thus in the steady-state model that the TCP
connection gets to send packets between packet drops,
clearly the TCP connection maximizes its average throughput
by increasing its congestion window by the maximum allowed
amount each roundtrip time.

This might at first seem counter-intuitive. However, the pur-
poses of the steady-state model in this section are to explore
the relationship between the steady-state packet drop rate and
the steady-state arrival rate from the TCP connection. Cer-
tainly in a specific scenario with all else being equal, a TCP
that refrains from increasing its congestion window from time
to time might increase its own throughput by decreasing the
aggregate packet drop rate. This does not change the fact that
the inequality in equation (1) still describes the relationship
between the packet drop rate and the arrival rate for that con-
nection.

For TCP connections where the data receiver sends at most
one ACK for every two packets, we could show a stronger up-
per bound on the sending rate. For a TCP connection with a
delayed-ACK sink, the sender receives one acknowledgement

The same result was derived by [OKM96], using a more rigorous model,

with a constant of 1.3 instead of 1.22 ( ).

for every two packets, and increases its window more slowly
that a TCP connection that receives an ACK for every packet.
With a delayed-ACK sink, the fraction of that connection' s ar-
riving packets that are dropped is

(6)

This gives an upper bound on the arrival rate of

(7)

Equations (5) and (7) do not take into account TCP delays
due to waiting for retransmit timers to time out. Thus, equa-
tion (5) drastically overestimates the bandwidth for steady-
state scenarios when the congestion window is less than
four packets when a packet is dropped. From equation (4),
this occurs when the packet drop rate is 16% or higher. (If the
congestion window is four or higher, the TCP connection can
recover from a single packet drop using Fast Retransmit, af-
ter receiving several duplicate acknowledgements. If the con-
gestion window is smaller, then the TCP connection generally
has to wait for a retransmit timeout. [FF96]) In the extreme
case, for a packet drop rate of 100%, our steady-state model
would assume that the TCP connection stubbornly sends one
packet every roundtrip time, and equation (5) (because it used
an approximation in equation (2)) gives a TCP sending rate of
slightly over one packet per roundtrip time. Incorporating the
notion of retransmit timer backoff in the model would give a
much more realistic result.

Although the language in this paper refers only to packet
drops, proposals have been made to add explicit congestion
notification to TCP/IP [Flo94]. If explicit congestion notifica-
tion were deployed, then instead of dropping a packet to pro-
vide feedback about congestion, a router could simply “mark”
packets by setting the the Explicit Congestion Notification bit
in packet headers.

B.1 Simulations verifying the “TCP-friendly”
characterization

In this section we use simulations to loosely verify the “TCP-
friendly” characterization in equation (5). This equation
has also been verified with simulations and experiments in
[MSMO97].

R1S1 S4

100 Mbps
1 msec

10 Mbps
28 msec

Figure 9: Simulation network.
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(1460-byte packets, 0.06 second roundtrip time)
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Figure 10: TCP-friendly bandwidth for a 60-ms roundtrip time
and 1460-byte packets.

Figure 9 illustrates the simulation topology used to evalu-
ate the “TCP-friendly” characterization. The solid line in Fig-
ure 10 shows the TCP-friendly bandwidth from equation (5) as
a function of the packet drop rate. Figure 10 assumes a TCP
connection with minimum roundtrip time of seconds
and a maximum packet size of bytes. The -axis
shows , the fraction of arriving packets that are dropped, and
the -axis shows , the upper bound on TCP arrival rate in
KBps.

Each dashed line in Figure 10 shows the results from a sin-
gle simulation set. Each simulation consists of two compet-
ing connections, one TCP and the other UDP, from node S1
to node S4. For each simulation set the sending rate of the
UDP flow ranges from zero up to the available bandwidth of
the congested link. The router uses FIFO scheduling and RED
queue management. The RED packet drop mechanisms are
generally able to prevent both the FIFO buffer from overflow-
ing and RED's average queue size from exceeding its maxi-
mum threshold. The TCP connection sees a roundtrip time,
including queueing delay, of roughly 60 ms.

Each simulation is represented by a number in Figure 10.
The simulations in a simulation set differ from each other only
in the sending rate of the UDP flow. Numbers “1” through
“3” show simulations where the TCP connection uses 1460-
byte packets. Numbers “4” through “6” show simulations with
512-byte packets. Simulation sets “2” and “5” use Tahoe TCP,
and the others use SACK TCP. Simulation sets “3” and “6” use
data receivers with delayed ACKs (sending one ACK to ac-
knowledge two data packets), and the others use single ACKS
(sending an ACK for every data packet). For all of the sim-
ulations, the TCP clock granularity is 100 ms. The -axis in
Figure 10 shows the fraction of the TCP connection' s arriving
packets that are dropped, and the -axis shows the TCP con-
nection's sending rate.

For the SACK and Tahoe simulations with 1460-byte pack-
ets and single-ACK receivers (simulation sets “1” and “2”),

the simulation results are a reasonable match to the computed
TCP-friendly bandwidth. For drop rates lower than 2%, the
SACK and Tahoe TCPs receive more than the computed TCP-
friendly bandwidth. Examining the output traces shows that
in these simulations, it is not uncommon for two packets to be
dropped from a single window of data in a congestion epoch.
When this happens, the two packet drops constitute a single
indication of congestion to the end nodes.

For packet drop rates greater than 5%, Figure 10 shows that
the TCP-friendly bandwidth greatly overestimates the arrival
rate of a TCP connection. As mentioned earlier, this is because
the current version of the steady-state model does not take into
account delays due to retransmit timers.

Simulations with 512-byte packets closely match equa-
tion (5) using 512-byte packets. As seen in Figure 10, the
more aggressive the TCP congestion control (i.e. a TCP with
1460-byte packets is more aggressive than TCP with 512-
byte packets), the higher the steady-state packet drop rate
needed to sustain the same per-connection bandwidth. A spi-
ral of increasingly-aggressive congestion control would lead to
a matching spiral of an increasingly-high steady-state packet
drop rate, in the context of a fixed available bandwidth.

(with SACK TCP, delayed-ACK sink,, 512-byte packets, 0.06 second roundtrip time)
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Figure 11: TCP bandwidth vs. steady-state drop rate, for
SACK TCP with a delayed-ACK sink, a 60-ms roundtrip time
and 512-byte packets.

Figure 11 shows the results for SACK TCP with a delayed-
ACK sink with the simulated topology of figure 9. For a
fixed throughput, a TCP connection with a delayed-ACK sink
should receive half the packet drop rate of a TCP connec-
tion that receives an ACK for every packet. The top solid
line shows the analytical results for an immediate-ACK sink,
and the bottom solid line shows the analytical results for an
delayed-ACK sink. For a given packet drop rate, a TCP con-
nection with a delayed-ACK sink will receive less throughput
than a TCP connection with an immediate-ACK sink.
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