
ECN Implementations in the NS Simulator

Sally Floyd and Kevin Fall

Lawrence Berkeley National Laboratory
One Cyclotron Road, Berkeley, CA 94720

floyd@ee.lbl.gov, fall@ee.lbl.gov

December 30, 1998

1 Introduction

This document illustrates the validation test for ECN (Explicit Congestion Notification) in the NS simulator [NS95].
Figure 1 shows a single simulation with two-way traffic, showing the use of the CE (Congestion Experienced) bit

in the IP packet header, and the CWR (Congestion Window Reduction) and ECN-Echo bits in the TCP header. We
refer to a packet with the CE bit marked as a CE packet. Similarly, a CWR packet denotes a packet carrying a CWR
notification, and an ECN-Echo ACK packet denotes an ACK packet with the ECN-Echo bit set.

Figures 2 and 3 show that multiple CE packets in a window of data are considered as a single instance of congestion.
Figures 4, 5, 6, and 7 show that interspersed dropped packets and CE packets are treated as a single instance of

congestion. While the behavior in these simulations is specific to Tahoe TCP, similar simulations in the test suite
show that the same property holds for the Reno, NewReno, and Sack TCP implementations. Figures 8 and 9 are a
separate simulation scenario showing that interspersed dropped packets and CE packets are treated as a single instance
of congestion.

Figures 10, 11, and 12 show that interspersed dropped packets and CE packets are treated as a single instance of
congestion even when the packet drops are sufficiently severe to result in a retransmit timeout. Figure 13 shows that
retransmitted packets with the CE bit set are interpreted as a new instance of congestion.

2 Running the tests in NS

All of the tests in this document can be run in the NS simulator with the commands “test-all-ecn” and “test-all-ecn-ack”
in the tcl/test directory.

To run only a single simulation from the file “test-suite-ecn.tcl”, use the command:
ns test-suite-ecn.tcl ecn nodrop tahoe

in the directory tcl/test. For each simulation, more detailed information about the simulation scenario can be found in
the simulation files “test-suite-ecn.tcl” and “test-suite-ecn-ack.tcl”

3 Interpreting the diagrams

The top diagram in each figure shows the data packets transmitted in a single TCP session. For each packet, there is a
mark when the packet arrives at the congested gateway, and a separate mark, possibly later, when the packet leaves the
congested gateway. For each mark, the x-axis shows the time, and the y-axis shows the packet number mod 90. There
is an “X” for each dropped packet, an “X” enclosed in a box for each CE packet, and a solid diamond for each CWR
packet.

This work was supported by DARPA under DARPA grant DABT63-96-C-0105. This is a revised version of a document that was first made
available in October 1998.

1

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80

: data

.

..
..

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
... : acks

: drops
: CE
: ECN-echo
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0

10
30

Figure 1: The test “ecn ack in the file “test-suite-ecn-ack.tcl”.

In addition, Figure 1 includes ACK packets. There is a small dot for each ACK packet arriving at the congested
gateway in the reverse direction, and a small open square for each ECN-Echo ACK packet.

The bottom diagram shows the TCP congestion window as a function of time.

4 An illustration of ECN-Echo packets

This test shows the data and ACK packets for an ECN-capable TCP connection. There are no packets dropped in this
simulation. Three separate packets have the CE bit, at times 1.2, 1.4, and 1.7. The bottom diagram shows that the TCP
sender cuts the congestion window in half after each CE packet.

When the TCP receiver receives a data packet with the CE bit set, the receiver sets the ECN-Echo bit on returning
ACK packets. The receiver continues to set the ECN-Echo bit until it receives a data packet with the CWR bit set,
indicating that the TCP sender has responded to congestion.

Test 1 uses Sack TCP, but Tahoe, Reno, and NewReno TCP show identical behavior for this scenario.

2

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10
30

Figure 2: The test “ecn nodrop tahoe”.

5 Multiple CE packets

This test shows TCP in an environment with no packet drops but with occasional ECN packets with the CE bit set.
Tests 2 and 3 use Tahoe TCP, but for each test Reno, NewReno, and Sack TCP show identical behavior.

For this simulation, when the first packet has its CE bit set at time 1.2, there is a substantial queueing delay, as
illustrated by the time between that packet's arrival and departure from the congested gateway. At time 1.5, a CWR
packet arrives at the congested gateway, indicating that the TCP sender has reduced its congestion window. This
reduction in the congestion window can be seen in the bottom graph, and can also be seen visually in the reduction of
the queueing delay at the congested gateway. For simplicity, these figures do not show the ACK packets.

3

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10
30

Figure 3: The test “ecn twoecn tahoe”.

This test shows that TCP considers two successive CE packets as a single instance of congestion. In particular,
TCP cuts its congestion window in half only once in response to the two CE packets.. The tests in Figures 2 and 3
show the same evolution of the congestion window.

The first CE packet in this test, packet 242, has its CE bit set by the RED queue at the congested gateway. Packet
243, in contrast, arrives at the RED queue with its CE bit already set, from explicit “drop pkt” and “markecn ”
commands in the simulation script in the file “test-suite-ecn.tcl”.

4

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

30

Figure 4: The test “ecn drop tahoe”.

6 Interspersed dropped packets and CE packets

This test shows that TCP considers a CE packet followed by a dropped packet as a single instance of congestion.
Figures 4 through 6 all show the same evolution of the congestion window, with a single Slow-Start to recover from
a combination of CE packets and dropped packets at time 1.3. Figures 4 through 9 show behavior specific to Tahoe
TCP. Similar simulations in the test suite show that Reno, NewReno, and Sack TCP implementations also respond to
interspersed packet drops and CE packets as a single instance of congestion.

For this scenario, the TCP sender reduces the Slow-Start threshold ssthresh and cuts its congestion window in
half when it receives notification of the CE packet. The TCP sender subsequently Slow-Starts when it infers a packet
loss from the receipt of three dup ACKs (duplicate acknowledgements). However, the Slow-Start is not accompanied
by a second reduction ssthresh.

The TCP sender reduces ssthresh to half the current congestion window or half the receiver's advertised window, whichever is smaller.

5

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

30

Figure 5: The test “ecn drop1 tahoe”.

This test shows that TCP considers a dropped packet followed closely by a CE packet as a single instance of
congestion.

The second dup ACK received by the TCP sender has the ECN-Echo bit set in the TCP header. When the TCP
sender receives the ECN-Echo dup ACK, it reduces ssthresh and cuts its congestion window in half. When the TCP
sender receives the third dup ACK, it retransmits the lost packet and Slow-Starts. However, the TCP sender does not
reduce ssthresh a second time.

6

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

30

Figure 6: The test “ecn drop2 tahoe”.

This test shows that even when the dropped packet and the CE packet are separated by a number of intervening
packets, Tahoe TCP considers the dropped packet and the following CE packet as a single instance of congestion. In
this test the TCP sender learns of the CE packet after it has initiated Fast Recovery and Slow-Start.

The dropped packet and the CE packet in this scenario occur within a single window of data.

7

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

30

Figure 7: The test “ecn noecn tahoe”.

This test shows a single dropped packet, without any accompanying CE packet. In this test RED queue manage-
ment has been disabled, to show the test without any CE packets. Up until time 2.0, Figure 7 shows the same evolution
of the congestion window as in Figures 4 through 6.

8

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

30

Figure 8: The test “ecn bursty tahoe”.

Figures 8 and 9 show that interspersed dropped packets and CE packets are treated as a single instance of conges-
tion. Again, while the behavior in these simulations is specific to Tahoe TCP, similar simulations in the test suite show
that the same property holds for the Reno, NewReno, and Sack TCP implementations.

This test shows a burst of packet drops with no CE packets. The TCP sender recovers with a Fast Retransmit after
receiving three dup ACKs. The Tahoe TCP sender reduces ssthresh and sets the congestion window to the default
initial value (in this case, one packet) to enter Slow-Start. The burst of back-to-back packets sent at time 1.6, when the
sender receives an ACK packet sharply advancing the cumulative acknowledgement number, is allowed because the
experimental “maxburst” parameter to be turned off by default in NS.

9

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

30

Figure 9: The test “ecn burstyEcn tahoe”.

This test shows a CE packet followed by the same burst of packet drops as in Figure 8. When the TCP sender
receives the ECN-Echo ACK acknowledging the data in the CE packet, it resets ssthresh to half of the old congestion
(or to half of the receiver's advertised window, whichever is smaller), and cuts its congestion window in half. There-
fore, when the TCP sender receives three dup ACKS, it does not reduce ssthresh again, but only resets the congestion
window to one to initiate Slow-Start.

10

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

30

Figure 10: The test “ecn timeout2 tahoe”.

7 Simulations with retreansmit timeouts

This test shows a large burst of packets being dropped, so that the TCP sender is forced to wait for a retransmit timeout.
Tests 10, 11, and 12 use Tahoe TCP, but in each case tests with Reno, NewReno, and Sack TCP show identical

behavior.

11

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

30

Figure 11: The test “ecn timeout tahoe”.

This test is similar to Figure 10 except that a CE packet immediately precedes the burst of packet drops. The
congestion window has a slightly different evolution from Figure 10 between times 1.4 and 1.9, but the two figures
show the same evolution of the congestion window after time 1.9.

In this simulation, in response to an ACK packet with the ECN-Echo bit set that acknowledges the CE packet, TCP
reduces ssthresh and reduces its congestion window by half. After the retransmit timeout, instead of reducing ssthresh
again, the TCP sender sets ssthresh to the current congestion window. Thus, TCP is not penalized twice for the CE
packet and the retransmit timeout.

12

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

30

Figure 12: The test “ecn timeout3 tahoe”.

This test is similar to Figure 10 except that a CE packet is interspersed among the burst of packet drops. Note that
the congestion window has the same evolution as in Figure 11.

In this simulation, TCP reduces its congestion window by half in response to a duplicate ACK packet with the
ECN-Echo bit set, sent in response to the CE packet. After the retransmit timeout, instead of setting the variable
ssthresh to half the congestion window, the TCP sender sets ssthresh to the current congestion window.

13

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

30

Figure 13: The test “ecn timeout1 reno.

This test shows that a retransmitted packet with its CE bit set is interpreted by the TCP sender as a new instance
of congestion. This test uses Reno TCP.

This test contains a second TCP connection whose packets are not shown in this figure. Because of congestion
caused by the second TCP connection, a retransmitted packet from this TCP connection has its CE bit set at time 2.0.

14

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0 1 2 3 4 5 6

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0 1 2 3 4 5 6

5
10

15

Figure 14: The test “ecn smallwin tahoe.

8 ECN with small congestion windows

This test shows Tahoe TCP when successive packets are dropped while the congestion window equals one packet. For
the first such drop, a retransmit timeout is required for recovery (because the sender does not receive three duplicate
acknowledgements to initiate Fast Retransmit). In successive drops, the retransmit timeout is backed-off, using ex-
ponential backoff. This exponential backoff of the retransmit timer is an essential component of TCP's congestion
control procedures, allowing robust operation in environments where the available bandwidth is less than one packet
per roundtrip time.

15

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0 2 4 6 8 10

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0 2 4 6 8 10

0
10

20

Figure 15: The test “ecn smallwinEcn tahoe.

This test is similar to that in Figure 14, except that no packets are actually dropped. Successive packets have the
CE bit set while the congestion window equals only one MSS-sized packet. TCP's congestion window is bounded
below by one MSS. When the TCP sender receives an ECN-Echo packet and the congestion window is already only
one MSS-sized packet, the TCP sender refrains from sending a new packet, and sets the retransmit timer. This figure
shows the exponential backoff of the retransmit timer with successive CE packets.

An alternative implementation would be simply to allow the congestion window to be smaller than one MSS and
to send smaller packets, and not to set the retransmit timer unless the congestion window is small relative to the packet
header size. While this approach merits investigation, we do not recommend it at this time, because this would allow
ECN-Capable TCP to be substantially more aggressive than non-ECN TCP during times of high congestion.

16

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0

5
10

Figure 16: The test “ecn secondpkt tahoe.

If the first packet (i.e., the SYN or SYN/ack packet) of a TCP connection was dropped, the TCP connection would
not yet have an estimate of the roundtrip time, and a (large) default value would be used for the retransmit timer. This
test shows the second and fourth packets dropped from a TCP connection. Each packet drop is accompanied by a
retransmit timeout.

17

Time

P
ac

ke
t N

um
be

r
(m

od
 9

0)

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80

: data
: drops
: CE
: CWR

Time

C
on

ge
st

io
n

W
in

do
w

0.0 0.5 1.0 1.5 2.0

0
5

15

Figure 17: The test “ecn secondpktEcn tahoe.

In contrast to Figure 16, this test shows a TCP connection when the second and fourth packets have the CE bit
set. After the first CE packet, there is no retransmit timeout, and the sender simply reduces the congestion window
from two to one packets. Therefore, when congestion is encountered while the congestion window is small, an ECN-
Capable TCP connection can have a significant advantage over a non-ECN-Capable connection.

If the router decides to indicate congestion by dropping or marking a packet that is the first packet (i.e., the SYN
or SYN/ack packet) of the TCP connection, the TCP end-nodes would not yet have negotiated ECN-Capability, and
that packet would not have the ECT bit set. Therefore, the router would have to drop rather than mark the packet, and
the TCP sender would have to wait for the retransmit timer to expire. Thus, ECN-capability does not help response
times for congestion encountered by the first packet of a TCP connection.

18

9 Conclusions

This note illustrates TCP's detailed response to ECN in the NS simulator. The response of TCP to ECN is described
more generally in [ECN] and [Flo94].

References

[ECN] “The ECN Web Page,”. URL http://www-nrg.ee.lbl.gov/floyd/ecn.html.

[Flo94] S. Floyd. “TCP and Explicit Congestion Notification,”. ACM Computer Communication Review, 24(5):10–
23, Oct. 1994.

[NS95] “NS (Network Simulator),”, 1995. URL http://www-mash.cs.berkeley.edu/ns/.

19

