
Determining an Appropriate Sending Rate Over an Underutilized
Network Path∗

Pasi Sarolahti
Nokia Research Center

pasi.sarolahti@iki.fi

Mark Allman, Sally Floyd
ICIR/ICSI

{mallman,floyd}@icir.org

Abstract

Determining an appropriate sending rate when beginning
data transmission into a network with unknown character-
istics is a fundamental issue in best-effort networks. Tra-
ditionally, the slow-start algorithm has been used to probe
the network path for an appropriate sending rate. This
paper provides an initial exploration of the efficacy of an
alternate scheme called Quick-Start, which is designed to
allow transport protocols to explicitly request permission
from the routers along a network path to send at a higher
rate than allowed by slow-start. Routers may approve,
reject or reduce a sender’s requested rate. Quick-Start
is not a general purpose congestion control mechanism,
but rather an anti-congestion control scheme; Quick-Start
does not detect or respond to congestion, but instead,
when successful, gets permission to send at a high sending
rate on an underutilized path. Before deploying Quick-
Start there are many questions that need to be answered.
However, before tackling all the thorny engineering ques-
tions we need to understand whether Quick-Start provides
enough benefit to even bother. Therefore, our goal in this
paper is to start the process of determining the efficacy
of Quick-Start, while also highlighting some of the issues
that will need to be addressed to realize a working Quick-
Start system.

∗This paper will appear in the special issue of Computer Networks
on “Hot Topics in Transport Protocols for Very Fast and Very Long Dis-
tance Networks”.

1 Introduction

A fundamental aspect of communication in general-
purpose, best-effort packet-switched networks is deter-
mining an appropriate sending rate. The appropriate
sending rate depends on the characteristics of the network
path between the two peers (bandwidth, propagation de-
lay, etc.), as well as the amount of load being placed on
the network by competing traffic at the given time. Tradi-
tionally, TCP [20] has used a set of congestion control al-
gorithms for determining an appropriate sending rate [11].
The rate is controlled using a congestion window (cwnd),
which is an upper bound on the amount of unacknowl-
edged data that can be injected into the network.

TCP’s traditional method for determining the capac-
ity of a network path with unknown characteristics is to
use the slow start algorithm [11], which initializes cwnd
to between one and four segments and then increases
cwnd exponentially during each subsequent round-trip
time (RTT) of the connection. In the best case slow-start
takes log2N − 1 RTTs and requires sending N − 3 pack-
ets before reaching a cwnd of N packets [11]. When there
is contention for resources along the network path, slow
start is a reasonable procedure. However, over underuti-
lized paths that could support large congestion windows,
possibly allowing an entire data transfer to be sent in one
RTT, slow start can take much time, and require much
data to be transmitted before achieving the desired send-
ing rate.

In this paper we provide an initial investigation of the
usefulness of setting the initial sending rate using Quick-
Start, a mechanism that allows a sender to advertise a
desired sending rate, while the network can approve, re-

1



ject or reduce the requested rate. While Quick-Start is
designed to be used with a range of transport protocols,
in this paper we consider its use with TCP. When using
Quick-Start, a TCP sender may use the SYN packet to
advertise a desire to transmit at X bytes/second. Each
hop along the path may (i) explicitly approve the rate re-
quest in the SYN, (ii) explicitly reject the connection’s
use of a higher-than-standard initial sending rate, (iii) re-
duce the rate from X to some X ′ or (iv) do nothing, which
implicitly prevents the connection’s use of a higher-than-
standard initial sending rate. Assuming some rate request
X ′ arrives at the receiver, that rate is echoed back to the
sender in the ACK of the SYN. The sender can then de-
termine if all routers along the path approved the rate re-
quest, and if so, the sender can fairly safely transmit at
X ′ bytes/second. If the request is rejected the sender will
fall back to standard slow-start. As outlined in Section 3,
routers supporting Quick-Start do not reserve bandwidth,
and do not promise that the approved rate will be available
one round-trip time later. Rather, routers “allocate” aggre-
gate Quick-Start bandwidth only in the sense that this al-
location is used by the router in deciding whether to grant
future Quick-Start requests. Connections are not guaran-
teed the capacity “allocated”— though steps are taken in
the allocation process to try to make failure a rare event.

This paper makes a number of contributions, as fol-
lows. (i) We present the first, if preliminary, well-rounded
evaluation of Quick-Start. (ii) While alternate faster-than-
slow-start schemes have been proposed, Quick-Start is
the first scheme to allow a large data transfer in the first
round-trip time after connection set-up, explicitly involv-
ing all nodes along a network path in arriving at an explicit
appropriate sending rate. (iii) We introduce the notion of
anti-congestion control. In other words, Quick-Start only
provides a quick check to determine whether a network
with unknown conditions is underutilized (uncongested)
and permits a large initial sending rate. Quick-Start does
not attempt to control the sending rate over the lifetime
of a connection, but rather yields to standard congestion
control for that task. (iv) We introduce and explore the
notion of rate requests for best-effort traffic. (v) Because
Quick-Start is so explicit and inclusive in choosing an ini-
tial sending rate, the scheme can serve as a baseline for
evaluating alternate schemes.

This paper represents only a start to the evaluation of
the costs and benefits of Quick-Start. Before Quick-Start

could see wide use, a variety of questions need to be an-
swered. This paper makes some assumptions that could
not be made in the real world; for example, while Section
7 briefly discusses deployment issues such as interactions
with middleboxes, IP tunnels, or non-IP queues, we do
not address these issues in this paper; these issues are dis-
cussed in some detail in [9]. We investigate web transfers,
focusing on medium-sized flows that are shown to get the
most benefit from using Quick-Start, and assume that the
TCP sender is able to determine the desired sending rate
for the Quick-Start request at the time when TCP connec-
tion is being established, based on the amount of data that
is going to be sent. The assumptions made in the paper
are not intended to minimize the required effort needed
to realize a working Quick-Start system. Rather, the as-
sumptions are part of the process of understanding the po-
tential usefulness of Quick-Start separately from puzzling
through the array of details that need nailed down for a
Quick-Start deployment.

While our conclusion is that Quick-Start’s benefits
make it an attractive area for future work we are not con-
vinced that Quick-Start would be feasible for the global
Internet. However, many smaller (but, not small) net-
works that are within a single administrative domain—
and therefore are not subject to the same concerns present
on the global Internet—may find Quick-Start to be an at-
tractive mechanism. For instance, [18] shows that within
one particular enterprise typical network utilization is 2–3
orders of magnitude less than the raw capacity of the net-
work and therefore Quick-Start could help applications to
better use these untapped resources. Further, [2] notes
that within long-delay satellite networks faster slow start
is desirable.

The rest of this paper is organized as follows. Sec-
tion 2 compares and contrasts Quick-Start with related
work. Section 3 details the Quick-Start mechanism and
discusses design issues. Section 4 describes the simula-
tion setup used in our study, and Section 5 illustrates the
potential advantages and disadvantages of Quick-Start.
Section 6 discusses the handling of Quick-Start Requests
by routers. Section 7 briefly highlights deployment is-
sues, while Section 8 outlines possible vulnerabilities of
Quick-Start and discusses potential mitigations to the vul-
nerabilities. Finally, Section 9 offers conclusions and fu-
ture work.

2



2 Related Work

Quick-Start was first proposed in an Internet-Draft [9].
The Internet-Draft provides a protocol specification so
that implementations can be built and experiments con-
ducted. In this paper we start the process of evaluating
Quick-Start, concentrating more on the performance and
algorithmic design rather than on the details of the proto-
col design.

Sundarrajan [24] added Quick-Start support to ns-2 and
conducted an unpublished investigation of Quick-Start
as a class project, based on the proposal in the initial
Internet-Draft.

There have been a number of proposals for faster vari-
ants of TCP slow-start that do not use explicit feedback
from routers. These mechanisms generally fall into two
categories: (i) using a small volley of data packets to
measure the available capacity over a network path or (ii)
leveraging the capacity found by previous or concurrent
connections to the same peer.

SwiftStart [19] calls for starting slow-start as usual and
using packet-pair [14] with the first window of data pack-
ets to estimate the bottleneck bandwidth. That estimate is
then used to rapidly increase the congestion window be-
fore the second window of data is transmitted. While it
is not clear how accurate an estimate would need to be to
be useful, [4] suggests that using packet-pair to determine
an accurate estimate of the capacity within the first part of
a TCP connection is difficult. We also note that accurate
bandwidth estimation has been a popular recent research
topic and that the schemes to come out of this work have
largely required more than a small handful of packets to
obtain accurate estimates of the path capacity [21].

The second class of mechanisms for faster slow-start
uses an assessment of the network path by concurrent
or previous connections to the same peer. Assume that
some TCP connection has probed the network path and is
using a congestion window of X segments. The essen-
tial idea behind this class of mechanisms is that a sub-
sequent connection which starts right after the first con-
nection might leverage this information and use an initial
congestion window of X segments as well. Further, if the
connections are running in parallel then the connections
can share some global congestion window. TCP Fast Start
[17] and the Congestion Manager [5] are examples of this
class of mechanisms. Clearly, if a connection starts and

there is no history about the peer this mechanism is of no
benefit.

XCP (Explicit Control Protocol) [13] is a proposal for a
new congestion control mechanism based on explicit and
fine-grained per-packet feedback from the routers over the
course of the entire transfer. XCP is similar to Quick-
Start in that the routers are explicitly involved in feedback
on the senders’ allowed transmission rates, but the goals
of the two schemes are different. While XCP provides a
full-fledged congestion control mechanism, Quick-Start,
in some sense, provides just the opposite; Quick-Start
provides for a brief check to determine whether a higher
sending rate is allowed. Quick-Start also requires less new
state in routers than XCP (which makes sense given the
magnitude of the tasks each performs). Also, XCP faces
some of the same challenges as Quick-Start (e.g., deter-
mining if all routers along some path support the given
mechanism). Quick-Start can also be viewed as com-
plimentary to XCP in that Quick-Start could be used as
part of the startup phase for XCP, allowing a large initial
sending rate and then transferring control to XCP. Finally,
Quick-Start could provide useful data in the investigation
of new, fine-grained congestion control mechanisms.

Measurement-based admission control research has in-
vestigated various algorithms at network nodes for ad-
mitting or rejecting flows, when given some Quality-of-
Service requirements (see for example [8]). Quick-Start
solves a somewhat similar problem in terms of the router
algorithms for approving Quick-Start requests. However,
while measurement-based admission control algorithms
are designed for implementing soft Quality-of-Service
based on some target parameters such as bandwidth or
packet loss rate, Quick-Start is a light-weight mechanism
specifically intended for resolving the appropriate sending
rate for a best-effort flow on an underutilized path.

There are several mechanisms for reserving per-
connection bandwidth along a network path (e.g.,
RSVP [7]). Quick-Start is lighter-weight in that it does
not guarantee a connection a certain amount of bandwidth
and does not consider requests for bandwidth to be used
over an extended period of time. However, Quick-Start
tries to make sure that Quick-Start rate requests are only
approved when bandwidth is actually available (e.g., fail-
ures are rare events). The Quick-Start approach is sim-
plier than an explicit reservation system, and we believe it
is more appropriate for Quick-Start’s goal of rate requests

3



for best-effort traffic in underutilized environments.
Other mechanisms for explicit congestion-related feed-

back from routers to end-nodes include Explicit Conges-
tion Notifications (ECN) [22], the only current mech-
anism in the IP protocol suite for explicit congestion-
related feedback from routers to end-nodes. Routers use
the ECN field in the IP header to indicate congestion ex-
plicitly, instead of relying on packet drops. In contrast,
the Anti-ECN [15] and VCP [25] proposals would allow
the sender to increase as fast as slow-start over an uncon-
gested path, even in the middle of a transfer, with routers
setting a bit in the packet header to indicate an under-
utilized link.

3 Quick-Start

Quick-Start is a collaborative effort between end hosts and
routers. This section describes the details of Quick-Start,
and discusses the Quick-Start requirements.

3.1 Quick-Start Processing in End-Hosts

The Quick-Start Rate Request is initialized by the sender
to the desired sending rate in bytes per second (Bps).
The sender also initializes a Quick-Start TTL to a ran-
dom value and saves the difference between the initial
Quick-Start TTL and the initial IP TTL as TTLDiff. The
requested rate and the Quick-Start TTL are encoded in
packet headers and constitute the host’s request to the net-
work. As discussed in the next subsection, the routers
along the network path between the sender and receiver
alter the Request, as appropriate (see Section 3.2 for de-
tails on this process). When the Quick-Start Request ar-
rives at the transport receiver, the receiver echoes the rate
request back to the sender along with TTLDiff ′, the dif-
ference between the Quick-Start TTL and the IP TTL, in
an option in the transport header. Upon reception of an
echoed Quick-Start Rate Request the sender verifies that
all routers along the path have approved the Quick-Start
Request by comparing TTLDiff and TTLDiff ′. If these
two values are the same then the request was approved by
all routers in the network path; otherwise, data transmis-
sion will continue using TCP’s standard algorithms.

When TTLDiff and TTLDiff ′ match, the TCP sender
calculates the appropriate cwnd in bytes based on the ap-

proved sending rate and measured round-trip time as fol-
lows:

cwnd = Rate ∗RTT ∗
MSS

MSS + H
(1)

where Rate is the approved rate request in Bps, RTT is the
recently measured round-trip time in seconds, MSS is the
maximum segment size for the TCP connection in bytes
and H is the estimated header overhead for the connec-
tion in bytes. The TCP sender paces out the Quick-Start
packets at the approved sending rate over the next RTT1.
Upon receipt of an acknowledgment for the first Quick-
Start packet, the TCP sender returns to ACK-paced trans-
mission.

One of the problems of Quick-Start is that unnec-
essary or unnecessarily-large Quick-Start Requests can
“waste” potential Quick-Start bandwidth—even though
routers do not make guaranteed reservations for the “allo-
cated” bandwidth. Routers must keep track of the aggre-
gate bandwidth represented by recently-approved Quick-
Start requests so that the router is not overly optimistic
in approving future requests. As a result, each approved
request reduces the chances of approval for subsequent
requests. Ideally, a sender should not use Quick-Start for
data streams that are not expected to benefit from it, such
as those with only a few packets of data to send. The
TCP sender should, in theory, also avoid requesting an
unnecessarily high sending rate. However, it can be diffi-
cult for the TCP sender to determine how much data will
ultimately be transmitted and therefore to form a reason-
able rate request. For example, in request-response pro-
tocols such as HTTP [6], the server does not know the
size of the requested object during the TCP handshake; it
hasn’t yet received the data request. Once the web server
does know the requested object, the application can try to
determine the size of the object, and then tell TCP how
many bytes will be sent; the objects are rarely written to
the TCP socket buffers in a single atomic call. Even if
the web server went to all of this trouble, with persistent
HTTP connections there may still be more data that the
web server does not yet know about. Finally, sometimes
the application cannot even determine the size of an ob-
ject because the object is being read from a pipe or some
live source. In Section 5.2 we illustrate the problems of

1Note that a TCP connection using Quick-Start needs to use a timer
for paced transmission. The granularity of the timer will control the
burstiness of the sender’s transmission.

4



not making a reasonably accurate rate request and offer
some strategies for coping.

3.2 Quick-Start Processing at Routers

A router that receives a packet with a Quick-Start Rate
Request has several options. Routers that do not under-
stand the Quick-Start Request option simply leave the op-
tion untouched, ultimately causing the Quick-Start Re-
quest to be rejected because TTLDiff ′ will not match
TTLDiff. Routers that understand Quick-Start but do not
approve the request can leave the Quick-Start Request op-
tion untouched, zero the Rate Request, or delete the op-
tion from the IP header. Routers that approve the rate in
the request decrement the Quick-Start TTL and forward
the packet. Finally, a router can approve a rate that is less
than the rate in the request by reducing the rate and decre-
menting the Quick-Start TTL.

Routers should only approve a Quick-Start Request
when the output link has been underutilized over some
recent time period. In order to approve a Quick-Start rate
request, a router generally should know the bandwidth of
the outgoing link and the utilization of the link over a re-
cent period of time. At a minimum, the router also must
keep track of the aggregate bandwidth recently approved
for Quick-Start Requests, to avoid approving too many
requests when many Quick-Start Requests arrive within
a small window of time. Section 6 discusses algorithms
that could be used by routers in approving or denying a
Quick-Start request.

Finally, as we have alluded to previously, we discuss
router algorithms in terms of “allocating” capacity, but
our notion of an “allocation” is quite informal. Quick-
Start routers do not in fact reserve capacity for a particu-
lar flow and then police the usage to ensure that the given
flow is able to use the granted capacity. Rather, the router
simply tracks the aggregate amount of promised capacity
in the recent past, in an effort not to promise more than
the output link can absorb. If, however, a burst of unex-
pected traffic arrives, the Quick-Start “allocations” may
prove to be empty promises when the end hosts attempt
to use the granted bandwidth and detect congestion. Be-
cause the “allocations” are not hard guarantees that re-
quire enforcement, routers implementing Quick-Start are
not required to keep a burdensome amount of Quick-Start
state. The required additional state at routers consists of

only a handful of aggregate measurements.

4 Simulation Setup

In the following sections we use the ns-2 simulator [1]
to explore Quick-Start. Unless otherwise noted, the sim-
ulations presented in the remainder of the paper use the
scenario described here.

We use a network comprised of three routers, R1 to
R3, arranged in a chain. The two links between the
routers each have bandwidth of Lbw and a one-way link
delay of Ld. Unless otherwise noted, Lbw=10 Mbps and
Ld=20 msec. The routers use drop-tail queuing with a
maximum queue size of 150 packets.

For most simulations, web clients and servers are con-
nected to the ends of the network (to R1 and R3) with ded-
icated 1000 Mbps links with a mean one-way link delay
of 12 msec and a maximum delay of 110 msec. The actual
link delays are chosen to give a range of round-trip times
that roughly matches those from measurements, using the
process from [10]. A varying number of web servers, N ,
are connected to R1 with a corresponding number of web
clients connected to R3. The measurements presented in
the subsequent sections refer to the traffic from the web
servers connected to R1. We also attach N

2 web clients to
R1 and N

2 web servers to R3 to provide background traffic
on the return path. When Quick-Start is enabled, all traf-
fic attempts to use Quick-Start. The standard web traffic
generator included with ns-2 is used in our simulations,
with the following parameter settings: an average of 30
web pages per session, an inter-page parameter of 0.8, an
average page size of 10 objects. The web object sizes are
generated using a ParetoII distribution with an average pa-
rameter of 400 packets and shape parameter of 1.002. We
use HTTP/1.0-like transactions, with one web object per
TCP connection. These parameters, particularly the av-
erage object size, are not picked to match realistic traffic
distributions, but rather to explore Quick-Start’s impact
on a wide swatch of connection sizes, as Quick-Start is
only effective on connections that are larger than TCP’s
initial window. We also ran simulations with other web
traffic and network parameters, and the observations were
similar as discussed in Sections 5 and 6. Our web traf-
fic simulations are run for 150 seconds, and they were
repeated 12 times (with means reported in this paper).

5



A few simulations make use of a single transfer at a
time. These simulations use FTP to transfer a file of a
given size over the network given above with no other
traffic present.

Finally, all TCP connections use ns-2’s SACK TCP
with an initial cwnd of 3 segments (per [3]), an MSS of
1460 bytes, an advertised window of 10,000 segments2,
and the receiver acknowledging each segment.

Our simulation scripts will be released with the final
version of the paper.

5 Connection Performance

In this section we explore when Quick-Start is and is not
of benefit. We also consider how to choose the Quick-
Start request size, and explore the implications of Quick-
Start on aggregate network traffic.

5.1 Ideal Behavior

In an ideal Quick-Start scenario over an under-utilized
network path, the TCP sender would be able to transmit
much of its data in the initial congestion window. Fig-
ure 1 illustrates the ideal Quick-Start behavior by dis-
playing time-sequence plots of two connections3. In each
case, the first connection is a standard TCP connection
that uses slow-start to begin transmission (with an initial
cwnd of 3 segments after the three-way handshake). In
the top graph, the second connection shows a connection
where an approved Quick-Start Request allows the sender
to transmit 25 of its 30 data packets in the initial win-
dow. When the first acknowledgment for data arrives at
the TCP sender, the data transmission continues in slow-
start, sending two packets for each acknowledgment. The
connection using Quick-Start completes in just over half
the time required by the non-Quick-Start connection.

In the bottom graph, an approved Quick-Start Request
for 1 Gbps in a 10 Gbps network allows the TCP sender
in the second connection to send all of its 10,000-packet
transfer in the initial window. The connection using
Quick-Start completes the data transfer in one round-trip

2This is high enough to make the advertised window a non-issue in
our simulations.

3The top scenario was motivated by a GPRS/EDGE wireless sce-
nario [23].

0 2 4 6 8 10

0
5

10
15

20
25

30

Time (s)

P
ac

ke
t N

um
be

r

Data
Acks

1A: a 384 Kbps link and 1-second RTT.

0 1 2 3 4

0
20

00
40

00
60

00
80

00
10

00
0

Time (s)

P
ac

ke
t n

um
be

r

1B: a 10 Gbps link and 0.16-second RTT.

Figure 1: TCP Slow-Start (left) vs. Quick-Start (right).

time, compared to the 12 round-trip times required by
the non-Quick-Start connection. This graph shows both
the potential power and potential danger of Quick-Start.
On the one hand, the increase in performance is tremen-
dous. On the other hand, even though the Quick-Start traf-
fic is paced out over an RTT, the burst of traffic could
potentially have a large impact on competing traffic if
the approval of the Quick-Start request was overly opti-
mistic. However, when repeating this simulation with 20
additional regular TCP flows starting at 20 ms intervals
and each sending 5000 packets, the completion times for
the regular TCP flows were similar with and without the
use of Quick-Start by the 10,000-packet TCP connection.
Section 6 investigates Quick-Start’s effect on competing

6



traffic in the network in further detail.

Transfer Length (KB)

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

0
10

0
20

0
30

0
40

0

10K 100K 1M 10M

1000 ms RTT
500 ms RTT
100 ms RTT
20 ms RTT

Figure 2: Relative improvement with Quick-Start, for a
single flow over a 100 Mbps link, with a range of round-
trip times.

Figure 2 shows the performance improvement from us-
ing Quick-Start across a range of file sizes, in terms of the
transfer time of a single TCP connection. The simulations
involve a simple scenario with capacity set at 100 Mbps,
various link delays, routers with unlimited buffers, routers
willing to allocate 90% of their capacity to Quick-Start
requests, and TCP making large enough Quick-Start Re-
quests to cover the whole link bandwidth. In each sim-
ulation, only a single flow is active. The results show
that using Quick-Start aids performance — especially for
medium-sized transfers that are not much larger than the
approved Quick-Start request. The plot shows that Quick-
Start is less beneficial for short transfers (e.g., small web
objects), because the transfer time is already short with-
out Quick-Start. In addition, Quick-Start’s benefits drop
off for long transfers, where the initial startup phase is
transient and steady state behavior dictates the overall per-
formance. These results are similar to earlier results from
Sundarrajan [24]. In general, the optimal Quick-Start be-
havior occurs when the Quick-Start request results in an
initial window N that covers the entire transfer. In this
case, a data transfer of log2(N + 2)− 1 round-trip times
without Quick-Start (with an initial window of two pack-
ets) is reduced to a data transfer of a single round-trip time
with Quick-Start.

Figure 3 shows a similar graph, but with an analyti-
cal estimate of the performance improvement provided by
Quick-Start. The number of round-trip times R required
to transmit N packets of data is approximated using equa-

Transfer Length (bytes)

R
el

at
iv

e 
im

pr
ov

em
en

t (
%

) 100 ms RTT
50 ms RTT
10 ms RTT
1 ms RTT

0
20

0
40

0
60

0

10K 100K 1M 10M 100M 1G

Figure 3: Upper bound for relative improvement with
Quick-Start, for a single flow over a 10 Gbps link, with
a range of round-trip times.

tion 2, where W is the size of the initial congestion win-
dow (from either Quick-Start or from the default initial
window), and M is the delay-bandwidth product of the
path. The number of round-trips R includes one round-
trip for the initial TCP SYN/SYN-ACK handshake. For
Equation 2, we assume that the connection is the only traf-
fic, and that the routers each include a delay-bandwidth
product of buffering. As a result, once the congestion
window reaches the delay-bandwidth product, the TCP
connection continues to keep the pipe full, transferring a
delay-bandwidth product of data for each time unit equal
to the initial round-trip time.

M = bandwidth ∗RTT/packet size

R = log2

(

max
(

min(N,M)
W

+ 1, 2
))

+
⌈

N
M

⌉ (2)

Figure 3 assumes a packet size of 1500 bytes, an initial
congestion window W of three segments without Quick-
Start, and an approved Quick-Start request of 1.3 Gbps,
the maximum request size allowed by the specification
[9]. Thus, Figure 3 illustrates an upper bound on possible
improvement with Quick-Start - it is not recommended
that routers approve Quick-Start requests equal to the en-
tire link bandwidth.

7



5.2 The Size of the Quick-Start Request

We next consider how the sender chooses the Quick-Start
request size, and how the size of Quick-Start requests af-
fects the aggregate usefulness of Quick-Start. An ideal
Quick-Start request would contain the precise sending
rate the connection could use. However, determining such
a sending rate is non-trivial and depends on a number of
factors. A simple Quick-Start implementation for TCP
could send a fixed Quick-Start request each time a request
is transmitted. This would not be unreasonable for initial
Quick-Start requests, since in many cases the TCP sender
has no knowledge about the application or the network
path when the TCP SYN segment is sent.

To illustrate the problems caused by overly large
Quick-Start requests in environments with frequent
Quick-Start requests, we simulate two scenarios of a web
traffic session, where a new TCP connection is used for
each web object transferred, and each TCP connection
sends a Quick-Start request. In the Greedy scenario,
all TCP connections use a static Quick-Start request of
2 MB/sec, one-fifth of the available bandwidth on the
path. In contrast, in the Ideal scenario, which is admit-
tedly unrealistic, each request is optimal for the amount
of data its connection has to transmit. In addition, Quick-
Start is not used in the Ideal scenario if the connection is
able to send all data in the standard three-segment initial
cwnd. The simulations use an average web object size of
60 packets.

In the Greedy scenario, because all connections use
a large, fixed-size Rate Request requests are generally
granted for only the first connection in each web session.
The router is generally unable to approve requests of later
connections in each session, because the first connection
is granted all of the available Quick-Start bandwidth even
though the first connection cannot use such a large allo-
cation. As a result, the extra allocation is “wasted”, in
that subsequent Quick-Start requests are denied unneces-
sarily. In this scenario, 9% of Quick-Start requests are ap-
proved and 220 KBps of data is transmitted during Quick-
Start. In the Ideal scenario connections use ideal sizes for
their Rate Requests and requests are approved more of-
ten since there are fewer wasted approvals. For the Ideal
scenario, 40% of Quick-Start requests are approved and
769 KBps are transmitted during Quick-Start, showing
the increased overall effectiveness of appropriately-sized

Quick-Start requests.
While the Ideal scenario above is preferable, TCP con-

nections do not, in general, have enough information to
make ideal requests. However, there are several ways
systems can cope. First, if an end-host is configured to
understand the maximum capacity of its last-mile hop4,
C bytes/sec, requests could be chosen to be no larger than
C. Going even further, large web servers could make pol-
icy decisions to disallow a single TCP connection from
requesting more than some fraction of the access link
bandwidth in a Quick-Start request. In addition, a sender
could take into account the size of the local socket buffer,
S bytes, and the receiver’s advertised window, W bytes,
when choosing a request size5. Given an RTT of R sec,6

TCP can send no faster than min (S, W ) / R bytes/sec
(assuming W is non-zero and using S otherwise). Fi-
nally, and more speculatively, if an application informs
the sender of the size of a particular object (when known),
say O bytes, the sender could request precisely the rate
required to transmit the object in a single RTT, with a re-
quest of (O + (O/MSS) ∗ H)/R bytes/sec for a given
MSS size and estimated header size of H bytes. In our
simulations of the Ideal scenario, TCP senders use this
method to determine the size of the Quick-Start request.
While these techniques do not necessarily provide for an
ideal Quick-Start request, they could well provide a more
reasonable request than simply picking a static rate for all
cases.

When a packet sent as the result of an approved Quick-
Start Request is lost, we call this a Quick-Start failure.
This situation can arise for a number of reasons, for in-
stance because a burst of traffic arrives at a router imme-
diately after the router approves a Quick-Start Request,
or because a buggy or broken router simply approves all
Quick-Start requests or mis-calculates the rate that should
be approved. After a Quick-Start failure, the TCP sender
disregards the cwnd determined using Quick-Start, and
uses slow-start to open cwnd just as would have happened
without Quick-Start.

4A number of operating systems and applications already ask users
to configure such information (at least in broad terms) and so this does
not seem like an onerous expectation.

5When sending a request in the initial SYN segment of a connection
the sender will not know the peer’s advertised window.

6Or, an approximation if the connection has not yet taken an RTT
measurement.

8



5.3 Aggregate Impact of Quick-Start

Because Quick-Start requests are only approved when
the output link is significantly underutilized, Quick-Start
should have little effect on the long-term aggregate uti-
lization and drop rates on a link. In particular, when link
utilization is high, routers should not approve Quick-Start
requests; thus, Quick-Start is not a mechanism designed
to help a router maintain a high-throughput low-delay
state on the output link. In Section 6 we study methods
for routers for deciding whether to approve Quick-Start
requests and how much capacity to grant each request. We
also illustrate the implications of using Quick-Start when
the router is not significantly under-utilized.

For the traffic models used in this paper, the amount
of data requested by a user is independent of whether
Quick-Start is used, and independent of the fate of the
Quick-Start requests. While the use of Quick-Start or par-
ticular allocations from the routers will have an impact
on the time required for particular transfers, the aggre-
gate amount of data requested is not affected. Given this
model, although the use of Quick-Start might be of great
benefit to the individual user, Quick-Start should have lit-
tle effect on the long-term aggregate link utilization or
packet drop rates.

However, an alternate traffic model is possible, where
the successful use of Quick-Start would increase the
amount of data sent and received by each user. For ex-
ample, users could have a fixed amount of time avail-
able for using the network, rather than a fixed amount of
data to send and receive. In this case, the use of Quick-
Start could result in an increase in aggregate utilization in
under-utilized scenarios. Even in this case, however, the
use of Quick-Start should not affect the utilization and
loss rates over paths that are not under-utilized, because
in these scenarios Quick-Start requests should not be ap-
proved by the routers.

Figure 4 shows the overall utilization and aggregate
drop rates with and without Quick-Start, as a function of
traffic load on the 10 Mbps shared link. For each web ses-
sion, there are also ten FTP transfers of a hundred packets
each, starting at random times. This traffic mix was cho-
sen to have many large Quick-Start requests, as something
of a worst-case scenario, to increase the chances of find-
ing a scenario where Quick-Start packets interfere with
the throughput or loss rates of other traffic on the link.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

U
til

iz
at

io
n

Regular TCP
Quick−Start
QS Bandwidth

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

Web sessions

D
ro

p 
ra

te

Regular TCP
Quick−Start

Figure 4: Comparison of utilization and drop rates with
and without Quick-Start, with a 10 Mbps shared link.

As shown in the figure, the link utilization and drop rates
are largely independent of whether or not Quick-Start is
employed. The line labeled “QS Bandwidth” in the top
graph of Figure 4 shows the bandwidth used by Quick-
Start packets in the simulations using Quick-Start — in-
dicating that Quick-Start is in fact being used in the sce-
narios with less overall traffic. For the scenario shown,
the web traffic generator uses a ParetoII distribution with
an average parameter of 60 packets for web object size.

Figure 5 shows packet loss rates for a scenario using
only web traffic, for the following three simulations: (i)
all TCP flows use Quick-Start, (ii) 50% of the TCP flows
use Quick-Start and (iii) none of the flows use Quick-
Start. For simulation (ii) the plot shows the drop rate
for the Quick-Start and non-Quick-Start flows separately.
Additionally, the graph shows the fraction of approved
Quick-Start requests for simulation (i) to give a feel for
the actual Quick-Start usage. The figure shows that the
use of Quick-Start does not have a significant effect on

9



2 5 10 20 50 100

0.
00

0.
02

0.
04

0.
06

0.
08

Web sessions

Lo
ss

 r
at

e

0
0.

2
0.

4
0.

6
0.

8
1

F
ra

ct
io

n 
of

 Q
S

 R
eq

ue
st

s 
A

pp
ro

ve
d

100% QS
50% QS
50% not QS
100% not QS

Figure 5: Comparison of drop rates of regular TCP flows
when half of the flows either has Quick-Start enabled or
disabled, with a 10 Mbps shared link.

the packet loss rates regardless of the amount of traffic at-
tempting to use Quick-Start. The packet loss rates have
a clearly increasing trend as the number of web sessions
is increased. In addition, as the loss rates increase we
note that the likelihood of Quick-Start requests being ap-
proved decreases (as expected, since Quick-Start is to be
used in non-congested networks). Based on these simu-
lations, Quick-Start does not seem to be harmful to com-
peting traffic in the network (regardless of whether the
competing traffic uses Quick-Start).

Figure 6 shows per-connection performance of all traf-
fic in a simulation with three web servers. Each point
on the plot represents the duration of a single connection,
with the point type indicating whether Quick-Start is used.
The top plot shows the results from a simulation run over
a 10 Mbps link while the bottom plot uses a 100 Mbps
link. For medium to large transfers the plots show that
Quick-Start improves performance — by a factor of 2–3
in many cases, with larger savings over the higher band-
width path. The transfer duration shown in the figure in-
cludes the time for the SYN exchange. These plots show
that even though the overall bandwidth usage and drop
rates are similar with and without Quick-Start, the use of
Quick-Start increases per-connection performance.

2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

File size (KB)

D
ur

at
io

n 
(s

)

xx
x

x
x

x

x

xx

xx xxxxxxx xxxxxx x
x

x
x

xxxxx
x

x
x

x x
x

x xxx
x

x xx

x

xx x

x

x

x

x

x

xx

x x

xxx
x

xxx
x

xxxxxx
xx x x

x xxx x
x

xx
x x

x

x

xx
x x

x
x

xxx
x x

x
xx

x
x

x
x

x x
x

x
xxxxxxx

x
xx

x
xx xx

x
xxxxxx

xxxx
x

x
xx

x
x

x
xxxx xx

xx
xxxx

x
xxxx xxxx

x
x

x
x

x x
x

xx

xxxxxxx
x

xxx xx
x

xx

x x

x

x xx xx
x

xxxx

x

xx

x

x xxx x
xx x

x
x

xx
x

xxxxx
xx

xxx x
x

x
xx

x
x

x
x x xx

xx

x

xxxx xxxxx
x

xxxxx

x

x x

x

x

x xxx

x

x

x xxxx

x

xx x
x x

xx

x

xxx x
xx x

xx xx
x

xxx x
x

x xxxx
x xx

xxxx xx
x

xx xxxxx xxx
x

xxxxxx xxxx
x x x

xxxxx
x xx

xx
x

x
x x

xxx
xx

xx
x

xx x
x

x xxxxxx xxxxxx x
x

xxxxx
x

xxx xxxxx xx
x

xx
x

xx
x x

xxxxxxx
x

xx
x

x
x

xxxxxx
x

x xx x
x

xx
x

xxxxxxxxx xx
x

xxxxxx
x

x
x

x
x

xx
x

xx
x x

x
x

xxxxxxxx xx
x

x
x

xx xx
x

xx xxxx
xx

xxxx
x

xxx
x

xxx
x

xx
x

xx
x

xx x

x

xxxxx x
x

x xx
xx

x

x x
x

x

x xx xxxxxxxxxx xx

x

xx xx
xxx xx
xx

x
x xxxx x

x
xxx

x
xxx x

x
xxx

x
x

xx
xxx

x
xxxx x

x
xxxxxxxxxx

x
xxx xxxxxx xxxx x

x
x xxx xx

x
x

x
xx x

x
xx

x
xx

x xx x
xx

x
x

x xx
x xxx

x
xx

x
x

x x
xxx

x
xx

x x
xxxxxx

x
xx

xxx
xxxx

xx
xxx xx

x
x

x x

x

x

x
x

x
x

xxxx

x

x xxx x
x

x xxx
x

x
x x

x
x

xx
x xx

x
x

xxxx
x

xxx x
x

xxxx
x

xxxxxxxx
x

xxx
x

x
xx

x xx
x

xxxx
xx

xx
x

x
x x

xx xx x
x

x xx
x

xxxx
xx

xx
x

xxx xxx xxxx
x

x xx xxxxxx
x

xxx xxx xxxx xxxx
x

x
x x

xx
x

xx
x

x
x

xxxxxxxx
x

x

xxxxxx

x

x x

x

xxx

x

x

x

x
x

xx
x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x
xx

xx
xx

xxx

x
Regular TCP
Quick−Start

10 Mbps

2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

File size (KB)

D
ur

at
io

n 
(s

)

x
xxx xx

x
x

x x
xxxxxx

x
x

x
xx xx

x x
xxx

x
x x

x
xx

x
xxxxxxx xx

x
xxxx

x
x

xx
xx xxx

x
x

x x
xx

x
x

x
x xxx

x
x

x x
x xx

xx
x xxx

x
xx

x
xx x

x x
xxxx

x
xx xxx

x
xxx

x
x

xx
x

x
xx

x
x

xx x xx
xx x

x
x

x
xx xx

x
xx xxxxxxx xxxxx

x x
xxxxxx x

x x
xxxxxxx x

x
x

x
xx

xx
xxx

xx
xx

x
x

xx
xxxxx

x
xxx x

x
xxxxxxxx xxx xxxxx

x
xxxx

x
xx

xx
xxxx

x
xx

x x
xx

x
x

x
xxx xxx

x
x xxx xx

x
x xx xx

x
x

x
xxxxxxx

x
xx xxx

x
x xxxxx

x
xx

x
xx

x
xxx

xx
xxxxxx xxx

x
xx

x
xx

x
x

x
x

x
xxx xxxx

x
x xxxx x

x
xxxxxx

x
xx

xx
xxxxxx xxxxx xxx

x
xx xxx

x
x

x
xxxxx

xx
xxx

x
xxxx x

x
xxxxxx

x
xxxx

x
x

x
x xx

x
xxx

x x
xxxx

x
xx

xx
xxxxxx xxxxx xxx

x
xx

x
x

x x
xx xxx

x
xxx

xx
xx

x
x x

x
x

x
xxxx xxx x

x
x x

x
xxx

x
x xx xxxxxxxx xx xxxx

x
x

x
xx x

x
xxx xxxx

xx x
x

x
x xxxxx x

x
xx xx

x
xx

x
xx

x
xx xxx

x
x

x
x xxx

x
xxxxx

xx
x xxx

xx
xxxxxx

x
xxxx xxx xxx

x xx
x

x
x

x
x

x
x

x
x

x
x

x x
x xx xxxxxx

x x
xx xxx

x
x

x
xxxx

x
xx xxx

x
x

x
x

xx
xxxxx

x
xx

x
xxx xxx

x
xxxxx

x
x

x
xx

x x
x x

x
xxxx

x
x

x
x xx

x
xx

x x
xx xxx

x
xx

x
xx xxx x

x
xx

x
xxx

x
xxx

x
x

x
xx

x x
x

xx x
xxxxx

x x
xxxxx x

x
xx x

x
x

x
xx

x
xx

x
x

x x
xx

x
x

xx
x

x
x

x
xx

x
xx

x
x

xx
x

x
x

x x
x

xx
x

xx
xxx

x
x

x
xx xx

x
x xxxxxx x

x
xxxxxxxxx xxxxxxx xxxxx

x
xx

x
x

x
x

x xx
x

x
x

x
xx

xx
xxxx x

x
xx

x
xxxx

x
xxxxxx

x
xx

x
xx xxxx

x
xx x

xx
xx

x
xxxxxx xx

x
xx

xxx x
x

x
xxxx xxxxx

x
xxxx

x
x xxxx

x
x

x
x

x
x

x
xxxx

x
Regular TCP
Quick−Start

100 Mbps

Figure 6: Per-connection performance with and without
Quick-Start, with 10 Mbps and 100 Mbps shared links
and three web sessions.

6 Router Algorithms

This section discusses several possible router algorithms
for considering Quick-Start requests. We start with a ba-
sic algorithm that requires minimal state, and proceed
to an Extreme Quick-Start algorithm that keeps per-flow
state for approved Quick-Start requests. It is desirable
for routers to be able to process Quick-Start requests effi-
ciently. At the same time, the Extreme Quick-Start algo-
rithm explores the ability of an ideal router to selectively
approve Quick-Start requests in order to maximize the use
of Quick-Start bandwidth by end-nodes. Extreme Quick-
Start is introduced as a point of comparison and not as a
proposal for the way routers should handle Quick-Start.

10



6.1 Basic router algorithms

Quick-Start requests represent an increased packet pro-
cessing burden for routers, and this could result in an in-
creased end-to-end delay for packets with Quick-Start re-
quests. Therefore, it is important that the algorithm for
processing the Quick-Start requests at routers be as effi-
cient as possible, with a small memory footprint.

To know if there is sufficient bandwidth available on
the output link to approve a Quick-Start request, the router
needs to know the raw bandwidth and have an estimate of
the current utilization of the link. The router also has to
remember the aggregate bandwidth approved for use by
end hosts in the recent past to avoid approving too many
requests and over-subscribing the available capacity. That
is, the router has to keep a small amount of new state about
the aggregate traffic (with no per-flow state). In this sec-
tion we consider the algorithms used by routers to process
Quick-Start requests for point-to-point links; algorithms
for multi-access links are left as future work.

The first router design choice concerns the router’s
method for estimating the recent link utilization. There
are a range of measurement and estimation algorithms
from which to choose, including alternatives for the
length of the measurement period. We discuss two meth-
ods for estimating the link utilization, the moving average
and measuring the peak utilization. Developing and as-
sessing alternate algorithms is an area for future work.

The moving average estimation technique uses a stan-
dard exponentially weighted moving average to assess the
utilization over the recent past. This scheme was origi-
nally used for Quick-Start in [24]. We define U(t) as the
utilization estimate at time t, M(t) as the link utilization
measurement at time t, δ as the interval between utiliza-
tion measurements, and w as the weight for the moving
average. The utilization is defined as:

U(t + δ)← w ∗M(t + δ) + (1− w) ∗ U(t) (3)

We note that the weight w should depend on the interval δ,
so that the utilization is estimated over the desired interval
of time.

With peak utilization estimation, the router measures
the link utilization over the most recent N time intervals,
and takes the highest of the N measurements as the peak
utilization. Thus, if each time interval is s seconds, then
the peak utilization method takes the peak s-second link

util_bw = bandwidth * utilization;
util_bw += recent_qs_approvals;
if (util_bw < qs_thresh * bandwidth) {

// Approve Quick-Start Request
approved =

qs_thresh * bandwidth - util_bw;
if (rate_request < approved) {

approved = rate_request;
}
recent_qs_approvals += approved;

}

Figure 7: The Target algorithm for processing Quick-Start
requests.

utilization measurement over the most recent N ∗ s sec-
onds. The peak utilization method reacts quickly to a sud-
den increase of link utilization, but also remembers a pe-
riod of high utilization in the recent past. Unless other-
wise noted, we use N = 5 intervals with interval length
of s = 150 msec, which covers most of the RTTs in our
simulated network.

In addition to the two methods for estimating link uti-
lization, we consider how to decide whether to approve
a given Quick-Start request and how much capacity to
grant in an approval. This process relies on knowing re-
cent qs approvals, the aggregate bandwidth promised in
recently-approved Quick-Start requests — ideally over a
time interval at least as long as typical round-trip times
for the traffic on the link. If the time interval for this
assessment is too small, then the router forgets recent
Quick-Start approvals too quickly, and could approve too
many requests, thus over-subscribing the available band-
width. On the other hand, if the time interval is too
large, the router errs on the conservative side and re-
members recent Quick-Start approvals for too long. In
this case the router counts some of the Quick-Start band-
width twice, in the remembered request and also in the
measured utilization, and as a result may deny subse-
quent Quick-Start requests unnecessarily. Unless other-
wise noted, we compute recent qs approvals as the ag-
gregate Quick-Start bandwidth approved in the most re-
cent two 150-ms intervals, including the current interval.

The Target algorithm, given in Figure 7, approves
Quick-Start requests only when the link utilization, in-

11



cluding the potential bandwidth use of recently-granted
Quick-Start requests, is less than some configured per-
centage of the link’s bandwidth, denoted qs thresh. This
gives a router direct control over the notion of “signif-
icantly under-utilized”. When a Quick-Start request is
approved, the approved rate is reduced, if necessary, so
that the total projected link utilization does not exceed
qs thresh.

Figure 8 shows simulations with the Target algorithm.
The simulations use a range of values for the qs thresh
parameter in the Target algorithm. In these simulations,
the Target algorithm uses the peak utilization method for
estimating link utilization. The top graph of Figure 8
shows the overall link utilization for each simulation. The
middle graph shows the fraction of Quick-Start Requests
approved. Finally, the bottom plot shows the fraction of
Quick-Start failures. We note that the fraction of failures
for the Target algorithm is relatively small (less than 1%
in all cases tested).

Figure 9 compares the moving average and peak uti-
lization methods for estimating link utilization. The sim-
ulations use the Target algorithm with a 10 Mbps shared
link and a qs thresh of 90%. The top graphs show the
fraction of Quick-Start requests approved, and the bottom
graphs show the fraction of approved Quick-Start requests
with dropped packets. The moving average simulations
were run with a range of values for the weight w, and the
peak utilization simulations were run with a range of val-
ues for the number N of 150-msec intervals over which
the peak utilization was chosen. The legend in each fig-
ure shows the overall time interval for the estimation; for
the moving average graph, this is estimated as the time
needed for −1/ln(1 − w) measurements, where a mea-
surement is taken for each departure from the queue [26].

As Figure 9 shows, the approval rate of Quick-Start
requests can be slightly higher with the moving average
method, but the failure rate is higher also, regardless of the
value for the weight w. The weight controls the time in-
terval over which the link utilization is estimated, but the
moving average method still estimates the average utiliza-
tion. The moving average does not take into account the
variance of traffic intensity that can be present. A router
that does not want even transient congestion should not
estimate the average link utilization since this will likely
lead to Quick-Start failures.

For the simulations with the peak utilization method, on

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions
U

til
iz

at
io

n

TARGET: 0.95
TARGET: 0.90
TARGET: 0.85
TARGET: 0.65
No QS

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

Q
S

 R
eq

ue
st

s 
A

pp
ro

ve
d 

(f
ra

ct
io

n)

TARGET: 0.95
TARGET: 0.90
TARGET: 0.85
TARGET: 0.65

0 20 40 60 80 100 120

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Web sessions

Q
S

 F
ai

lu
re

s 
(f

ra
ct

io
n)

TARGET: 0.95
TARGET: 0.90
TARGET: 0.85
TARGET: 0.65

Figure 8: Evaluation of Target algorithm.

12



Moving Average Peak Utilization

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

Q
S

 R
eq

ue
st

s 
A

pp
ro

ve
d 

(f
ra

ct
io

n)

w: 0.05 (~40 ms)
w: 0.005 (~400 ms)
w: 0.002 (~1000 ms)
w: 0.001 (~2000 ms)

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

Q
S

 R
eq

ue
st

s 
A

pp
ro

ve
d 

(f
ra

ct
io

n)

3 slots (450 ms)
5 slots (750 ms)
10 slots (1500 ms)
20 slots (3000 ms)

0 20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

Web sessions

Q
S

 F
ai

lu
re

s 
(f

ra
ct

io
n)

w: 0.05 (~40 ms)
w: 0.005 (~400 ms)
w: 0.002 (~1000 ms)
w: 0.001 (~2000 ms)

0 20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

Web sessions

Q
S

 F
ai

lu
re

s 
(f

ra
ct

io
n)

3 slots (450 ms)
5 slots (750 ms)
10 slots (1500 ms)
20 slots (3000 ms)

Figure 9: Comparison of moving average and peak utilization mechanisms.

the other hand, the Quick-Start failure ratio is generally
lower than with the moving average method. However,
the performance is sensitive to the number N of intervals
used. Larger values of N lead to lower acceptance rates,
but also to lower failure rates in congested environments.
This illustrates a potentially tricky balancing act in deter-
mining the larger time period over which link utilization
is measured, and in determining the interval for assessing
peak utilization within the larger time period.

6.2 Extreme Quick-Start in routers

We use the term Extreme Quick-Start for a Quick-Start
router that maintains per-flow state about Quick-Start re-
quests, and the term Basic Quick-Start for a Quick-Start
router that does not maintain per-flow state, but follows
the algorithms in the section above. While Extreme
Quick-Start is not necessarily realistic in practice, it al-
lows us to analyze how much Quick-Start performance

could be improved if router efficiency was not a limiting
factor. For example, a single Extreme Quick-Start router
could perform the following actions, even if it was the
only Extreme Quick-Start router in the network:
• A router could keep track of individual approved

Quick-Start requests, and note when the Quick-Start
bandwidth resulting from that request begins to arrive at
the router (if in fact it does). This allows the router to
more accurately estimate the potential Quick-Start band-
width from Quick-Start requests that have been approved
but not yet used at the end nodes.
• A router could keep track on the fairness of Quick-

Start request approvals. If it appears that there are a num-
ber of requests that are not approved because earlier re-
quests have been granted all of the available Quick-Start
bandwidth, the router could reduce the rate approved for
individual requests in order to achieve better fairness be-
tween flows.

It is useful for an Extreme Quick-Start router to know

13



the RTTs of flows, in order to set the length of the interval
for measuring the arrival rate of packets from a flow after
an approved Quick-Start request. There are a number of
techniques for routers to estimate flows’ RTTs [12]. In the
analysis below, we assume that the Extreme Quick-Start
router implements a reliable method for evaluating RTTs.

For each flow, an Extreme Quick-Start router estimates
the number of bytes expected to arrive in the Quick-Start
phase, based on the approved rate request and the esti-
mated RTT. The Extreme Quick-Start router also checks
the reports of approved rate from senders, and maintains
the number of received bytes for each flow. From this in-
formation the router can compose a detailed estimate of
currently unused Quick-Start bandwidth, more accurately
establishing how much bandwidth is available for new
rate requests. As Basic Quick-Start does not track per-
flow state but only maintains aggregate information, Basic
Quick-Start is more conservative in its estimation of the
available bandwidth. After the initial window of Quick-
Start data has arrived at a router, there is a period of time
where some data is counted twice; recent qs approvals
accounts for bandwidth that has been promised for Quick-
Start requests, while the packets that have arrived are also
accounted for in the link utilization. Extreme Quick-Start
aims to remove this overlap, resulting in both a higher ac-
ceptance rate for the Quick-Start requests, and approvals
of higher Quick-Start bandwidth.

We use two examples to illustrate the difference be-
tween Basic Quick-Start and Extreme Quick-Start. Fig-
ure 10 compares Basic Quick-Start and Extreme Quick-
Start for scenarios with a small range of RTTs (80–
120 msec), with the assumption in this scenario that the
RTTs are known (or easily guessed) by the router, and the
router can accurately set recent qs approvals to roughly
match the round-trip time (100 msec). In these simula-
tions, Basic Quick-Start uses the Target algorithm with
the peak utilization method. From the top plot we see
that the link utilization is nearly the same regardless of
whether the routers use Basic or Extreme Quick-Start.
However, the bottom figure shows that the fraction of
bytes transmitted using Quick-Start is slightly greater
when Extreme Quick-Start is used by the router to track
each allocation in detail. This scenario is certainly not
typical, but there could be some initial Quick-Start de-
ployment scenarios, such as in limited Intranets, where
there is a limited range of RTTs, and also where the traf-

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

U
til

iz
at

io
n

Extreme QS
QS

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Web sessions

Q
S

 B
yt

es
 / 

A
ll 

B
yt

es

Extreme QS
QS

Figure 10: Basic Quick-Start and Extreme Quick-Start
with a highly-tuned recent qs approvals parameter.

fic and network characteristics could be accurately con-
figured. The figure shows that in such conditions, with
carefully tuned parameters, it is possible to achieve nearly
the same performance with basic Quick-Start as with Ex-
treme Quick-Start.

As a point of contrast we changed the computation of
recent qs approvals to include the most recent two 1.5-
second intervals, to compare Extreme Quick-Start with a
basic Quick-Start router that does not have a “typical”
RTT and chooses a very conservative setting (i.e., this
setting results in few Quick-Start failures, but also fewer
Quick-Start request approvals). Figure 11 shows Quick-
Start traffic as a fraction of the total amount of data trans-
mitted. The figure shows that the fraction of bytes sent
during the Quick-Start phase of the connections is greater
when using Extreme Quick-Start. This illustrates Extreme
Quick-Start’s power in terms of more closely tracking re-
sources so that more requests can be approved. Therefore,
Quick-Start involves less wasted capacity, allowing more

14



0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Web sessions

Q
S

 B
yt

es
 / 

A
ll 

B
yt

es

Extreme QS
QS

Figure 11: Basic Quick-Start and Extreme Quick-Start
with a conservative recent qs approvals parameter.

Quick-Start requests to be approved. The difference be-
tween basic Quick-Start and Extreme Quick-Start in this
figure is larger than the difference shown in Figure 10
due to the more conservative setting for the length of re-
cent qs approvals. In this simulation the link utilization
with Basic Quick-Start and Extreme Quick-Start was also
nearly identical.

7 Deployment Issues

The previous sections have shown that Quick-Start has
some potential to increase performance without signifi-
cantly impacting competing traffic. We next turn our at-
tention to several practical issues that must be addressed
before a working Quick-Start system could be realized.
Although we discuss the issues from Quick-Start’s per-
spective, many of the issues are more broadly applicable.

Chickens and Eggs. Quick-Start is only of use when it
is supported by both end systems and all the routers along
the path. This leads to the “chicken-and-egg” deploy-
ment problem, that there is little incentive to being the first
node to deploy Quick-Start. Because of the incremental-
deployment problems, we expect that initial deployments
of Quick-Start would happen within networks or Intranets
with centralized control, where hosts and routers both
have an interest in aiding performance.

Interactions with Middleboxes. There are middle-
boxes in the current network that drop packets contain-
ing known or unknown IP options [16]. This could cause

delays for connections using Quick-Start, as packets con-
taining Quick-Start requests would have to be retransmit-
ted without the request. Again, one consequence is that
initial deployments of Quick-Start may be in controlled
environments, where it is known that packets with Quick-
Start options would be forwarded.

Non-IP Queues. A further deployment issue concerns
the possibility of non-IP queues along a path. A router
should not approve Quick-Start requests if it cannot reli-
ably determine the link utilization all the way to the next
IP hop. What this would mean, in practice, when there is
an Ethernet switch, an ATM cloud, or other non-IP queue
between the IP router and the next-hop IP router is left as
future work.

Tunnels. IP tunnels are a challenge for a mecha-
nism that requires processing at every router. Some tun-
nel implementations that do not know about Quick-Start
might encapsulate a packet without decrementing the in-
ner IP TTL field first at the tunnel ingress. As a result, a
seemingly-valid Quick-Start Request with an unchanged
TTLDiff is carried in the inner header, while the outer
header most likely does not carry a Quick-Start Rate Re-
quest. If the tunnel egress decapsulates the packet with-
out modifying the inner IP TTL field or otherwise reject-
ing Quick-Start, it is possible that the Quick-Start Request
would be falsely approved. This problem would be shared
by any protocol that requires processing at every router
(e.g., XCP), and also presents a consideration in the de-
sign of future tunnel protocols.

The difficulties of incremental deployment and the
problems of middleboxes, coupled with the potential
problem of attacks on Quick-Start bandwidth discussed
in Section 8, suggest that Quick-Start could remain
in controlled networks for quite some time, where the
incremental-deployment barriers are reduced, the range
of middleboxes is under more control, and attack traffic
can more easily be monitored and controlled. In addition,
in such a controlled environment, it is likely that all of
the routers along a path would support Quick-Start, re-
ducing the problem of Quick-Start requests that are de-
nied simply because of routers that are not Quick-Start
capable. It is possible that Quick-Start would remain a
mechanism largely for use in controlled environments,
and would never see ubiquitous deployment in the global
Internet.

15



8 Attacks on Quick-Start

8.1 Threats

Quick-Start is vulnerable to denial-of-service attacks
along two vectors: (i) increasing the router’s processing
and state load and (ii) using bogus Quick-Start requests to
temporarily reduce the available Quick-Start bandwidth.
Since Quick-Start requests represent a potential process-
ing burden for routers, a storm of requests may cause a
router’s load to increase enough to affect legitimate traffic.
Given the processing burden imposed by Quick-Start, this
could well be worse than a simple packet flooding attack.
A simple limit on the rate at which Quick-Start requests
are considered (with a policy of ignoring requests sent in
excess of this rate) mitigates this attack on the router it-
self. In the case of Extreme Quick-Start another problem-
atic aspect of a storm of packets is the memory require-
ment to track bogus “connections”.

The second type of attack, an attack on the available
Quick-Start bandwidth, is more difficult to defend against.
In this attack arbitrarily large Quick-Start requests are sent
by the attacker through the network without any further
data transmission. With a relatively low-rate stream of
packets, this can cause a router to allocate capacity to
the attacker and thus temporarily reduce the amount of
capacity that can be allocated to legitimate Quick-Start
users. Note that the attack does not actually consume
the requested bandwidth and therefore the performance of
competing connections is no worse than connections that
simply don’t make use of Quick-Start. However, these at-
tacks are particularly difficult to defend against, for two
reasons. First, the attack packets do not have to belong to
an existing connection to do damage. And, second, since
the attack just involves a Quick-Start request traversing
the network path in one direction only to trigger bogus al-
locations, a response is not required. Therefore, spoofed
source addresses are a possible aggravating factor for both
hiding the origination of the attack and causing a simple
blacklisting defense to fail.

An additional problem with Quick-Start is that legiti-
mate requests could well cause the same impact as attack
packets. Consider a Quick-Start request for rate R that
is approved, and therefore considered “allocated”, by the
first router in the path. Now assume the same request hits
a downstream router that reduces the rate to some R′ less

than R (maybe even to zero) for whatever reason. In this
case, the first router has needlessly allocated some amount
of Quick-Start capacity that cannot be given to subsequent
Quick-Start users because of the conditions elsewhere in
the network. From the vantage point of the first router,
this is similar to the attack described above in that ca-
pacity allocated for Quick-Start goes unused, while the
router’s ability to approve further Quick-Start requests is
reduced.7 One possible use of Extreme Quick-Start to al-
low routers to reduce Quick-Start requests from senders
that have in the past used only a fraction of their approved
Quick-Start bandwidth.

In addition to Denial of Service attacks, a simple imple-
mentation of Quick-Start could be vulnerable to cheating
by routers or by end-nodes. Non-conformant routers or
hosts might try to modify Quick-Start messages to bene-
fit particular connections. For instance, a receiver could
increase the rate given in an arriving Quick-Start Request
before echoing it back to the sender, in an effort to in-
crease the connection’s performance. Similarly, a router
close to the sender and acting on the sender’s behalf (a
“performance booster”) could increase the approved send-
ing rate and/or adjust the reported TTLDiff ′ from the re-
ceiver to match the original TTLDiff in an effort to mask
the network’s lack of Quick-Start savvy. Mitigations for
these and other attacks are discussed in the next section.
We also note that such cheating would risk hurting in-
stead of helping performance; lying about the size of the
approved rate request could end up causing packet drops
for Quick-Start packets, resulting in a slow-start for the
connection in question.

8.2 Mitigations

In some sense, a number of the problems described above
are fundamental to a lightweight system that does not re-
quire authentication of requests or per-flow state at all
nodes in the network path. For instance, when a router
observes a SYN packet with a Rate Request, how is that
router to know if this is a spoofed packet or a legitimate re-

7At first glance, allowing the router to watch the Quick-Start re-
sponses offers more information. However, due to asymmetric routing
we cannot assume that a router will see the Quick-Start responses. In
addition, an arbitrary router has no way to tell if the TTLDiff ′ in the
response is valid and therefore whether the sender will ultimately make
use of the response.

16



quest to establish a connection with a larger-than-standard
sending rate?

A first mechanism to mitigate the problems is for
senders to advertise their sending rate during the round-
trip time after a valid Quick-Start request, as specified in
[9]. With a small amount of per-flow state, this could al-
low routers to adjust their notion of the amount of Quick-
Start capacity that has been “allocated”. In other words, if
a flow requested and was approved for R1 bps at a given
router and then advertised some R2 bps as their sending
rate, the router could decrease its record of “allocated”
Quick-Start bandwidth by R1 − R2. This would mitigate
the problem of overly large requests consuming Quick-
Start resources they will not be able to use due to down-
stream limits.

Another possible addition would be of a “two pass”
structure. In this scheme, a first request would be sent
as usual. Assuming a valid rate R is returned, the sender
could then send a second request for rate R through the
network for verification (and tagged as such). During this
second pass the routers could not to reduce the rate, but
could reject the use of Quick-Start for the flow. Also,
during this second pass the routers could change a “pro-
visional” allocation into a “confirmed” allocation. As
above, this mechanism could be used to reduce the prob-
lem of downstream rate reductions that invalidate an up-
stream router’s estimate of allocated Quick-Start band-
width. In addition, this mechanism would reduce the im-
pact of spoofing senders; if the rate given in the second
pass is larger than the rate approved by the router from
the first pass then the request will not be confirmed by
the router, and the router could update its estimate of allo-
cated Quick-Start bandwidth. A malicious, non-spoofing
sender would still be able to request Quick-Start band-
width without using it. However, this is a more tractable
case since a non-spoofed sender would be identifiable,
and therefore policy could be applied to its traffic.

Finally, a nonce can be used to catch receivers trying
to game Quick-Start, as specified in [9]. Suppose that the
rate in each request is encoded in N bits in the packet
header, allowing for 2N − 1 rates to be encoded. Now,
suppose a nonce field of length X × (2N−1) is included
in the request and initialized to a random value. For each
decrement of the rate from Y to Y − 1, a particular X-bit
portion of the nonce would be overwritten by a random
value. As an example, a 4-bit encoding of the rate request

could take on 15 non-zero rates. A minimum sized nonce
would be 15 bits in length. When a router decremented
the request from 15 to 14, the router would set the first bit
in the nonce field to a random value; similarly, a router
decrementing the request from 14 to 12 would set the sec-
ond and third bits of the nonce to random values. The
receiver would echo back the nonce to the sender in its
reply to the rate request. The sender would then be able
to verify that the reported rate request corresponded to
the unchanged portions of the nonce. The nonce would
largely prevent receivers from lying about the rate that
arrived. Even if the receiver knows the original rate re-
quest (which is not a given), the chances of the receiver
correctly guessing the original nonce to “prove” that the
rate was not reduced below that in the network would be
1

2X × S for a rate that was reduced S steps in the network.
None of the above mechanisms remove the fundamen-

tal tension between having a lightweight scheme to de-
termine if a network path can support an increased send-
ing rate on the one hand, and having a scheme that is im-
mune from malicious behavior on the other. However, the
combination of several of these schemes may well offer
enough mitigation to make Quick-Start practical in some
production networks (even if not in the Internet itself).

9 Conclusions and Future Work

In this paper, we explore a mechanism for anti-congestion
control, where the task is not to detect and respond to
congestion, but to determine when the sender can use a
higher sending rate than it would otherwise. We present
the first well-rounded study of Quick-Start, and show that
with only minimal additional router state and processing
and an additional request upon connection setup, trans-
fer times for medium-sized files can be reduced signif-
icantly in an uncongested network. While Quick-Start
can aid per-connection performance, it does not lead to
higher drop rates in the network, because Quick-Start re-
quests are only approved when the network is underuti-
lized. Thus, while Quick-Start can help users in an un-
derutilized network, it should have little or no effect in a
congested network.

We have also explored the downsides of Quick-Start,
including thorny deployment considerations and security
problems. We have sketched potential mitigations to some

17



of these problems in this paper, but additional design and
experimentation will be required before Quick-Start will
be useful in the global Internet (if it ever will be). How-
ever, Quick-Start may be of use on networks under the
control of a single organization, which could benefit from
Quick-Start while at the same time shedding some of the
thorny problems (e.g., security threats) presented when
multiple administrative domains come into play.

In this paper we have not attempted a performance
comparison between Quick-Start and the other proposals
discussed the Related Work section. Some of the propos-
als are not suited for sending an entire transfer at 1Gbps
in the first round-time after connection set-up; we believe
that such behavior requires explicit permission from all of
the routers along the path.

We also have not attempted a comparison between
Quick-Start and the proposals for new congestion con-
trol mechanisms based on explicit feedback from routers
(Section 2). Quick-Start is simplier, and considerably less
powerful, than complete congestion control mechanisms.
Our expectation is that new congestion control mecha-
nisms such as XCP or VCP will encounter some of the
same deployment issues faced by Quick-Start in terms of
IP tunnels, middleboxes, attackers, and the like. There is
some literature on these issues, and we have not attempted
our own analysis. We consider a performance compari-
son between Quick-Start and some of the proposed mech-
anisms for congestion control with explicit feedback, as
well as the detailed analysis of deployment and security
issues in the different schemes, as a topic of future re-
search.

While this paper only considers the use of Quick-Start
in determining a connection’s initial sending rate, another
fruitful area of work is to explore the use of Quick-Start
after idle periods or mobility events, when a connection
is significantly under-utilizing the network path or has no
understanding of the path’s characteristics. Other areas of
future work are to consider the use of Quick-Start with
other transport protocols, and to explore in more detail
algorithms for setting the size of Quick-Start requests at
end-nodes and processing Quick-Start requests at routers.
We expect other issues for future work to also arise with
the experimental deployment of Quick-Start in small con-
trolled networks.

Acknowledgements

Amit Jain first presented the Quick-Start idea. Srikanth
Sundarrajan developed the initial Quick-Start implemen-
tation for ns-2 based on the first Internet-Draft. This work
has benefited from discussions with and reviews from a
list of people too long to enumerate. Our thanks to all!

This material is based in part upon work supported
by the National Science Foundation under Grant No.
0205519. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

References
[1] NS Simulator. URL http://www.isi.edu/nsnam/ns/.

[2] M. Allman, S. Dawkins, D. Glover, J. Griner, J. Heide-
mann, T. Henderson, H. Kruse, S. Ostermann, K. Scott,
J. Semke, J. Touch, and D. Tran. Ongoing TCP Research
Related to Satellites, Feb. 2000. RFC 2760.

[3] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s
Initial Window. RFC 3390, Oct. 2002.

[4] M. Allman and V. Paxson. On Estimating End-to-End Net-
work Path Properties. In SIGCOMM ’99, Sept. 1999.

[5] H. Balakrishnan and S. Seshan. The Congestion Manager.
RFC 3124, June 2001.

[6] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext
Transfer Protocol – HTTP/1.0. RFC 1945, May 1996.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.
Resource ReSerVation Protocol (RSVP) – Version 1 Func-
tional Specification. RFC 2205, Sept. 1997.

[8] L. Breslau, S. Jamin, and S. Shenker. Comments on the
Performance of Measurement-Based Admission Control
Algorithms. In Infocom 2000, Mar. 2000.

[9] S. Floyd, M. Allman, , A. Jain, and P. Sarolahti. Quick-
Start for TCP and IP. Internet-draft “draft-ietf-tsvwg-
quickstart-06.txt”, Aug. 2006. Work in progress.

[10] S. Floyd and E. Kohler. Internet Research Needs Better
Models. In HotNets-I, Oct. 2002.

[11] V. Jacobson. Congestion Avoidance and Control. In SIG-
COMM ’88, Aug. 1988.

[12] H. Jiang and C. Dovrolis. Passive Estimation of TCP
Round-Trip Times. ACM SIGCOMM Computer Commu-
nication Review, 32(3), July 2002.

18



[13] D. Katabi, M. Handley, and C. Rohrs. Congestion Con-
trol for High Bandwidth-Delay Product Networks. In SIG-
COMM 2002, Aug. 2002.

[14] S. Keshav. A Control-Theoretic Approach to Flow Con-
trol. In SIGCOMM ’91, pages 3–15, Sept. 1991.

[15] S. Kunniyur. AntiECN Marking: A Marking Scheme for
High Bandwidth Delay Connections. In IEEE ICC ’03,
May 2003.

[16] A. Medina, M. Allman, and S. Floyd. Measuring Interac-
tions Between Transport Protocols and Middleboxes. In
SIGCOMM/USENIX Internet Measurement Conference,
Oct. 2004.

[17] V. Padmanabhan and R. Katz. TCP Fast Start: A Tech-
nique For Speeding Up Web Transfers. In IEEE Globe-
com, Nov. 1998.

[18] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and
B. Tierney. A First Look at Modern Enterprise Traf-
fic. In SIGCOMM/USENIX Internet Measurement Con-
ference, Oct. 2005.

[19] C. Partridge, D. Rockwell, M. Allman, R. Krishnan, and
J. Sterbenz. A Swifter Start for TCP. Technical Report
8339, BBN Technologies, 2002.

[20] J. Postel. Transmission Control Protocol. RFC 793, Sept.
1981.

[21] R. Prasad, M. Murray, C. Dovrolis, and K. Claffy. Band-
width Estimation: Metrics, Measurement Techniques, and
Tools. IEEE Network, November/December 2005.

[22] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168,
Sept. 2001.

[23] E. Seurre, P. Savelli, and P.-J. Pietri. EDGE for Mobile
Internet. Artech House, 2003.

[24] S. Sundarrajan and J. Heidemann. Study of TCP Quick-
Start with NS-2. Unpublished report, University of South
California, 2002.

[25] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman.
One More Bit Is Enough. In SIGCOMM 2005, Aug. 2005.

[26] P. Young. In Recursive Estimation and Time-Series Anal-
ysis, pages 60–65, 1984.

19


