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Abstract

Determining an appropriate sending rate when beginning
data transmission into a network with unknown character-
istics is a fundamental issue in best-effort networks. Tradi-
tionally, the slow-start algorithm has been used to probe the
network path for an appropriate sending rate. This paper
provides an initial exploration of the efficacy of an alter-
nate scheme calledQuick-Start, which is designed to allow
transport protocols to explicitly request permission fromthe
routers along a network path to send at a higher rate than
allowed by slow-start. Routers may approve, reject or re-
duce a sender’s requested rate. Quick-Start is not a general
purpose congestion control mechanism, but rather ananti-
congestion control scheme; Quick-Start does not detect or
respond to congestion, but instead, when successful, gets
permission to send at a high sending rate on an underuti-
lized path. Before deploying Quick-Start there are many
questions that need answered. However, before tackling
all the thorny engineering questions we need to understand
whether Quick-Start provides enough benefit to even bother.
Therefore, our goal in this paper is to start the process of
determining the efficacy of Quick-Start, while also high-
lighting some of the issues that will need to be addressed
to realize a working Quick-Start system.

1 Introduction

A fundamental aspect of communication in general-
purpose, best-effort packet-switched networks is determin-
ing an appropriatesending rate. The appropriate sending
rate depends on the characteristics of the network path be-
tween the two peers (bandwidth, propagation delay, etc.),
as well as the amount of load being placed on the network
by competing traffic at the given time. Traditionally, TCP
[21] has used a set of congestion control algorithms for de-
termining an appropriate sending rate [11]. The rate is con-
trolled using a congestion window (cwnd), which is an up-
per bound on the amount of unacknowledged data that can
be injected into the network.

TCP’s traditional method for determining the capacity of

a network path with unknown characteristics is to use the
slow start algorithm [11], which initializescwnd to 1–4 seg-
ments and then increasescwnd exponentially during each
subsequent round-trip time (RTT) of the connection. In
the best case slow-start takeslog2N − 1 RTTs and requires
sendingN−3 packets before reaching acwnd of N packets
[11]. When there is contention for resources along the net-
work path, slow start is a reasonable procedure. However,
over underutilized paths that could support large congestion
windows, possibly allowing an entire data transfer to be sent
in one RTT, slow start can take much time, and require much
data to be transmitted before achieving the desired sending
rate.

In this paper we provide an initial investigation of the ef-
ficacy of setting the initial sending rate usingQuick-Start,
a mechanism that allows a sender to advertise a desired
sending rate, while the network can approve, reject or re-
duce the requested rate. While Quick-Start is designed to
be used with a range of transport protocols, in this paper we
consider its use with TCP. When using Quick-Start, a TCP
sender may advertise a desire to transmit atX bytes/second
in the SYN packet. Each hop along the path may (i) ex-
plicitly approve the rate request in the SYN, (ii) explicitly
reject the connection’s use of a higher-than-standard initial
sending rate, (iii) reduce the rate fromX to someX ′ or
(iv) do nothing, which implicitly prevents the connection’s
use of a higher-than-standard initial sending rate. Assuming
someX ′ arrives at the receiver, the approved rate is echoed
back to the sender in the ACK of the SYN. The sender can
then fairly safely transmit atX ′ bytes/second. If the re-
quest is rejected the sender will fall back to standard slow
start. As outlined in Section 3, routers supporting Quick-
Start are not required to reserve capacity promised during
the Quick-Start process. Rather, routers “allocate” aggre-
gate Quick-Start bandwidth, and this allocation is used by
the router only in deciding whether to grant future Quick-
Start requests. Connections are not guaranteed the capacity
“allotted”— though steps are taken in the allocation process
to try to make failure a rare event.

This paper makes a number of contributions, as follows.
(i) We present the first, if preliminary, well-rounded eval-
uation of the efficacy of Quick-Start. (ii) While alternate
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faster-than-slow-start schemes have been proposed, Quick-
Start is the first scheme to allow a large data transfer in the
first round-trip time after connection set-up, explicitly in-
volving all nodes along a network path in arriving at an ex-
plicit appropriate sending rate. (iii) We introduce the notion
of anti-congestion control. In other words, Quick-Start only
provides a quick check to determine whether a network with
unknown conditions is underutilized (uncongested) and per-
mits a large initial sending rate. Quick-Start does not at-
tempt to control the sending rate over the lifetime of a con-
nection, but rather yields to standard congestion control for
that task. (iv) We introduce and explore the notion of rate
requests for best-effort traffic. (v) Because Quick-Start is
so explicit and inclusive in choosing an initial sending rate,
the scheme can serve as a baseline for evaluating alternate
schemes.

This paper represents only a start to the evaluation of the
costs and benefits of Quick-Start. Before Quick-Start could
see wide use, a variety of questions need to be answered.
This paper makes some assumptions that could not be made
in the real world; for example, while Section 7 briefly dis-
cusses deployment issues such as interactions with middle-
boxes, IP tunnels, or non-IP queues, we do not address these
issues in this paper. We investigate web transfers, focus-
ing on medium-sized flows that are shown to get the most
benefit from using Quick-Start, and assume that the TCP
sender is able to determine the desired sending rate for the
Quick-Start request at the time when TCP connection is be-
ing established, based on the amount of data that is going
to be sent. We will discuss this issue in more detail later
in the paper. These assumptions are not made to minimize
the required effort needed to realize a working Quick-Start
system. Rather, the assumptions are used as part of the
process of understanding the efficacy of Quick-Start before
puzzling through the array of details that need nailed down
for a Quick-Start deployment.

While our conclusion is that Quick-Start’s benefits make
it an attractive area for future work we are not convinced
that Quick-Start would ever be feasible for the global Inter-
net. However, many smaller (but, not small) networks that
are within a single administrative domain—and therefore
are not subject to the same concerns present on the global
Internet—may find Quick-Start to be an attractive mecha-
nism. For instance, [19] shows that within one particular
enterprise typical network utilization is 2–3 orders of mag-
nitude less than the raw capacity of the network and there-
fore Quick-Start might be useful in better using these un-
tapped resources. Further, [2] notes that within long-delay
satellite networks faster slow start is desirable.

The rest of this paper is organized as follows. Section 2
compares and contrasts Quick-Start with related work. Sec-
tion 3 details the Quick-Start mechanism and discusses de-
sign issues. Section 4 describes the simulation setup used

in our study, and Section 5 illustrates the potential advan-
tages and disadvantages of Quick-Start. Section 6 discusses
the handling of Quick-Start Requests by routers. Section 7
briefly highlights deployment issues, while Section 8 out-
lines possible vulnerabilities of Quick-Start and discusses
potential mitigations to the vulnerabilities. Finally, Sec-
tion 9 offers conclusions and future work.

2 Related Work

Quick-Start was first proposed in an Internet-Draft [12].
The Internet-Draft provides a protocol specification such
that implementations can be built and experiments con-
ducted. In this paper we start the process of exploring the
efficacy of Quick-Start, concentrating more on the perfor-
mance and algorithmic design rather than on the details of
the protocol design required to implement Quick-Start.

Sundarrajan [25] added Quick-Start support to ns-2 and
conducted an unpublished investigation of Quick-Start as a
class project.

There have been a number of proposals for faster vari-
ants of TCP slow-start that do not use explicit feedback
from routers. These mechanisms generally fall into two cat-
egories: (i) using a small volley of data packets to measure
the available capacity over a network path or (ii) leveraging
the capacity found by previous or concurrent connections to
the same peer.

SwiftStart [20] calls for starting slow start as usual and
using packet-pair [15] with the first window of data packets
to estimate the bottleneck bandwidth. That estimate is then
used to rapidly increase the congestion window before the
second window of data is transmitted. While it is not clear
how accurate an estimate would need to be to be useful,
[4] suggests that using packet-pair to determine an accurate
estimate of the capacity within the first part of a TCP con-
nection is difficult. We also note that accurate bandwidth
estimation has been a popular recent research topic and that
the schemes to come out of this work have largely required
more than a small handful of packets to obtain accurate es-
timates of the path capacity [22].

The second class of mechanisms to reduce the length of
the slow start phase of a connection bases the increase on
the assessment of the network path by concurrent or previ-
ous connections to the same peer. Assume that some TCP
connection has probed the network path and is using a con-
gestion window ofX segments. The essential idea behind
this class of mechanisms is that a subsequent connection
which starts right after the first connection might as well
leverage this information and use an initial congestion win-
dow of X segments, as well. Further, if the connections
are running in parallel then the connections can share some
global congestion window. TCP Fast Start [18] and the
Congestion Manager [5] are examples of this class of mech-
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anisms. Clearly, if a connection starts and there is no history
about the peer this mechanism is of no benefit.

XCP (Explicit Control Protocol) [14] is a proposal for a
new congestion control mechanism based on explicit and
fine-grained per-packet feedback from the routers over the
course of the entire transfer. XCP is similar to Quick-Start
in that the routers are explicitly involved in feedback on the
senders’ allowed transmission rates, but the goals of the two
schemes are different. While XCP provides a full-fledged
congestion control mechanism, Quick-Start, in some sense,
provides just the opposite; Quick-Start provides for a brief
check to determine whether a higher sending rate is allowed.
Quick-Start also requires less new state in routers than XCP
(which makes sense given the magnitude of the tasks each
performs). Also, XCP faces some of the same challenges
as Quick-Start (e.g., determining if all routers along some
path support the given mechanism). Quick-Start can also be
viewed as complimentary to XCP in that Quick-Start could
be used as part of the startup phase for XCP, allowing a large
initial sending rate and then transferring control to XCP. Fi-
nally, Quick-Start could provide useful data in the investi-
gation of new, fine-grained congestion control mechanisms.

Measurement-based admission control research has in-
vestigated various algorithms at network nodes for admit-
ting or rejecting flows, when given some Quality-of-Service
requirements (see for example [8]). Quick-Start solves a
somewhat similar problem regarding router algorithms for
approving Quick-Start requests so that the network uti-
lization stays within acceptable limits. However, while
measurement-based admission control algorithms are de-
signed for implementing soft Quality-of-Service based on
some target parameters, such as bandwidth or packet loss
rate, Quick-Start is a light-weight mechanism specifically
intended for resolving the appropriate sending rate for a
best-effort flow on an underutilized path.

There are several mechanisms for reserving per-
connection bandwidth along a network path (e.g.,
RSVP [7]). Quick-Start is lighter weight in that it
does not guarantee a connection a certain amount of
bandwidth, and does not consider requests for bandwidth
to be used over an extended period of time. However,
Quick-Start tries to make sure that Quick-Start rate requests
are only approved when bandwidth is actually available
(e.g., failures are rare events). The Quick-Start approachis
simplier than an explicit reservation system, and we believe
it is more appropriate for Quick-Start’s goal of rate requests
for best-effort traffic in underutilized environments.

Other mechanisms for explicit congestion-related feed-
back from routers to end-nodes include Explicit Conges-
tion Notifications (ECN) [23], the only current mechanism
in the IP protocol for explicit congestion-related feedback
from routers to end-nodes. Routers use the ECN field in
the IP header to indicate congestion explicitly, instead of

relying on packet drops. In contrast, the Anti-ECN [16]
and VCP [26] proposals would allow the sender to increase
as fast as slow-start over an uncongested path, even in the
middle of a transfer, with routers setting a bit in the packet
header to indicate an under-utilized link.

3 Quick-Start

Quick-Start is a collaborative effort between end hosts and
routers. This section describes the details of Quick-Start,
and discusses the Quick-Start requirements.

3.1 Quick-Start Processing in End-Hosts

The Quick-StartRate Request is initialized by the sender
to the desired sending rate in bytes per second (Bps). The
sender also initializes aQuick-Start TTL to a random value
and saves the difference between the initial Quick-Start
TTL and the initial IP TTL asTTLDiff. The requested
rate and the Quick-Start TTL are encoded in packet headers
and constitute the host’s request to the network. As dis-
cussed in the next subsection, the routers along the net-
work path between the sender and receiver alter the Re-
quest, as appropriate (see Section 3.2 for details on this pro-
cess). When the Quick-Start Request arrives at the trans-
port receiver, the receiver echoes the rate request back to
the sender along withTTLDiff ′, the difference between
the Quick-Start TTL and the IP TTL, in an option in the
transport header. Upon reception of an echoed Quick-Start
Rate Request the sender verifies that all routers along the
path have approved the Quick-Start Request by comparing
TTLDiff and TTLDiff ′. If these two values are the same
then the request was approved by all routers in the net-
work path; otherwise, data transmission will continue using
TCP’s standard algorithms.

When TTLDiff and TTLDiff ′ match, the TCP sender
then calculates the appropriatecwnd based on the approved
sending rate and measured round-trip time as follows:

cwnd =
Rate ∗RTT

MSS + H
(1)

whereRate is the approved rate request in Bps,RTT is the
recently measured round-trip time in seconds,MSS is the
maximum segment size for the TCP connection in bytes and
H is the estimated header overhead for the connection in
bytes. The TCP sender paces out the Quick-Start packets at
the approved sending rate over the next RTT1. Upon receipt
of an acknowledgment for the first Quick-Start packet, the
TCP sender returns to ACK-paced transmission.

One of the problems of Quick-Start is that unnecessary
or unnecessarily-large Quick-Start Requests can “waste”

1Note that a TCP connection using Quick-Start needs to use a timer for
paced transmission.
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potential Quick-Start bandwidth—even though routers do
not make guaranteed reservations for the “allocated” band-
width. Routers must keep track of the aggregate bandwidth
represented by recently-approved Quick-Start requests so
that the router does not over-subscribe the available ca-
pacity. As a result, each approved request reduces the
chances of approval for subsequent requests. Ideally, a
sender should not use Quick-Start for data streams that are
not expected to benefit from it, such as those with only a few
packets of data to send. The TCP sender should, in theory,
also avoid requesting an unnecessarily high sending rate.
However, it can be difficult for the TCP sender to determine
how much data will ultimately be transmitted and therefore
to form a reasonable rate request. For example, in request-
response protocols such as HTTP [6], the server does not
know the size of the requested object during the TCP hand-
shake; it hasn’t yet received the data request. Once the web
server does know the requested object, the application can
try to determine the size of the object, and then tell TCP
how many bytes will be sent; the objects are rarely written
to the TCP socket buffers in a single atomic call. Even if the
web server went to all of this trouble, with persistent HTTP
connections there may still be more data that the web server
does not yet know about. Finally, sometimes the applica-
tion cannot even determine the size of an object because the
object is being read from a pipe or some live source. In
Section 5.2 we illustrate the problems of not making a rea-
sonably accurate rate request and offer some strategies for
coping.

3.2 Quick-Start Processing at Routers

A router that receives a packet with a Quick-Start Rate Re-
quest has several options. Routers that do not understand
the Quick-Start Request option simply leave the option un-
touched, ultimately causing the Quick-Start Request to be
rejected becauseTTLDiff ′ will not matchTTLDiff. Routers
that do not approve the request can either leave the Quick-
Start Request option untouched, zero the Rate Request, or
delete the option from the IP header. Routers that approve
the rate in the request decrement the Quick-Start TTL and
forward the packet. Finally, a router can approve a rate that
is less than the rate in the request by reducing the rate, as
well as decrementing the Quick-Start TTL.

Routers should only approve a Quick-Start Request when
the output link has been underutilized over some recent time
period. In order to approve a Quick-Start rate request, a
router generally should know the bandwidth of the outgo-
ing link and the utilization of the link over a recent period
of time. At a minimum, the router also must keep track of
the aggregate bandwidth recently approved for Quick-Start
Requests, to avoid approving too many requests when many
Quick-Start Requests arrive within a small window of time.
Section 6 discusses algorithms that could be used by routers

in approving or denying a Quick-Start request in more de-
tail.

Finally, as we have alluded to previously, we discuss
router algorithms in terms of “allocating” capacity, but our
notion of an “allocation” is quite informal. Quick-Start
routers do not in fact reserve capacity for a particular flow
and then police the usage to ensure that the given flow is
able to use the granted capacity. Rather, the router sim-
ply tracks the aggregate amount of promised capacity in
the recent past, in an effort not to promise more than the
output link can absorb. If, however, a burst of unexpected
traffic arrives, the Quick-Start “allocations” may prove to
be empty promises when the end hosts attempt to use the
granted bandwidth and detect congestion. Because the “al-
locations” are not hard guarantees that require enforcement,
routers implementing Quick-Start are not required to keep
a burdensome amount of Quick-Start state. The required
additional state at routers consists of only a handful of ag-
gregate measurements.

4 Simulation Setup

In the following sections we use the ns-2 simulator [1] to ex-
plore Quick-Start. Unless otherwise noted, the simulations
presented in the remainder of the paper use the scenario de-
scribed here.

We use a network comprised of three routers,R1–R3,
arranged in a chain. The two links between the routers each
have bandwidth ofLbw and a one-way link delay ofLd.
Unless otherwise noted,Lbw=10 Mbps andLd=20 msec.
The routers use drop-tail queuing with a maximum queue
size of 150 packets.

For most simulations, web clients and servers are con-
nected to the ends of the network (toR1 andR3) with ded-
icated 1000 Mbps links with a mean one-way link delay of
12 msec and a maximum delay of 110 msec. The actual
link delays are chosen to give a range of round-trip times
that roughly matches those from measurements, using the
process from [10]. A varying number of web servers,N ,
are connected toR1 with a corresponding number of web
clients connected toR3. The measurements presented in
the subsequent sections refer to the traffic from the web
servers connected toR1. We also attachN

2
web clients to

R1 and N

2
web servers toR3 to provide background traf-

fic on the return path. When Quick-Start is enabled, all
traffic attempts to use Quick-Start. The standard web traf-
fic generator included with ns-2 is used in our simulations,
with the following parameter settings: an average of 30 web
pages per session, an inter-page parameter of 0.8, an aver-
age page size of 10 objects. The web object sizes are gen-
erated using a ParetoII distribution with an average param-
eter of 400 packets and shape parameter of 1.002. We use
HTTP/1.0-like transactions, with one web object per TCP
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connection. These parameters, particularly the average ob-
ject size, are not picked to match realistic traffic distribu-
tions, but rather to explore Quick-Start’s impact on a wide
swatch of connection sizes, as Quick-Start is only effective
on connections that are larger than TCP’s initial window.
We also ran simulations with other web traffic and network
parameters, and the observations were similar as discussed
in Sections 5 and 6. Our web traffic simulations are run for
150 seconds, and they were repeated 12 times (with means
reported in this paper).

A few simulations make use of a single transfer at a time.
These simulations use FTP to transfer a file of a given size
over the network given above with no other traffic present.

Finally, all TCP connections use ns-2’s SACK TCP
with an initial cwnd of 3 segments (per [3]), an MSS of
1460 bytes, an advertised window of 10,000 segments2, and
the receiver acknowledging each segment.

Our simulation scripts will be released with the final ver-
sion of the paper.

5 Connection Performance

In this section we explore when Quick-Start is and is not of
benefit. In particular, we consider how to choose the Quick-
Start request size, and the implications of Quick-Start on
aggregate network traffic.

5.1 Ideal Behavior

In an ideal Quick-Start scenario over an under-utilized net-
work path, the TCP sender would be able to transmit much
of its data in the initial congestion window. Figure 1 il-
lustrates the ideal Quick-Start behavior by displaying time-
sequence plots of two connections3. In each case, the first
connection is a standard TCP connection that uses slow-
start to begin transmission (with an initialcwnd of 3 seg-
ments after the three-way handshake). In the top graph, the
second connection shows a connection where an approved
Quick-Start Request allows the sender to transmit 25 of its
30 data packets in the initial window. When the first ac-
knowledgment for data arrives at the TCP sender, the data
transmission continues in slow-start, sending two packets
for each acknowledgment. The connection using Quick-
Start completes in just over half the time required by the
non-Quick-Start connection.

In the bottom graph, an approved Quick-Start Request for
1 Gbps in a 10Gbps network allows the TCP sender in the
second connection to send all of its 10,000-packet trans-

2This is high enough to make the advertised window a non-issuein our
simulations.

3The top scenario was motivated by a GPRS/EDGE wireless sce-
nario [24].
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Figure 1: TCP Slow-Start (left) vs. Quick-Start (right).

fer in the initial window.4 The connection using Quick-
Start completes the data transfer in one round-trip time,
compared to the 12 round-trip times required by the non-
Quick-Start connection. This graph shows both the poten-
tial power and potential danger of Quick-Start. On the one
hand, the increase in performance is tremendous. On the
other hand, the burst of traffic (even if spread over an RTT)
is also tremendous and could potentially have a large impact
on the network.

Figure 2 shows the performance improvement from using
Quick-Start across a range of file sizes. These simulations
involve a simple scenario with capacity set at 100 Mbps,
various link delays, routers with unlimited buffers, routers
willing to allocate 90% of their capacity to Quick-Start re-
quests and TCP making large enough Quick-Start Requests
to cover the whole link bandwidth. In each simulation,
only a single flow is active. The results show that using
Quick-Start aids performance — especially for medium-
sized transfers that are not much larger than the approved
Quick-Start request. The plot shows that Quick-Start is less
beneficial for short transfers (e.g., small web objects), be-
cause the transfer time is already short without Quick-Start.

4For clarity, the connections in these simulations do not useLimited
Slow-Start [9], which can help high-bandwidth connectionsby limiting
the number of segments by which the congestion window is increased for
one window of data during slow-start.
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In addition, Quick-Start’s benefits drop off for long trans-
fers, where the initial startup phase is transient and steady
state behavior dictates the overall performance. These re-
sults are similar to earlier results from Sundarrajan [25].
In general, the optimal Quick-Start behavior occurs with
a transfer of N packets, and an initial congestion window
from Quick-Start of N packets as well. In this case, a data
transfer oflog2(N +2)− 1 round-trip times (with an initial
window of two packets) is reduced to a data transfer of a
single round-trip time.
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Figure 2: Relative improvement with Quick-Start, for a sin-
gle flow over a 100 Mbps link, with a range of propagation
delays.

5.2 The Size of the Quick-Start Request

We next consider how the sender chooses the Quick-Start
request size, and how the size of Quick-Start requests af-
fects the aggregate usefulness of Quick-Start. An ideal
Quick-Start request would contain the precise sending rate
the connection could use. However, determining such a
sending rate is non-trivial and depends on a number of fac-
tors. A simple Quick-Start implementation for TCP could
send a fixed Quick-Start request each time a request is trans-
mitted. This would not be unreasonable for initial Quick-
Start requests, since in many cases the TCP sender has no
knowledge about the application or the network path when
the TCP SYN segment is sent.

To illustrate the problems caused by overly large Quick-
Start requests, we simulate two scenarios of web traffic,
where a new TCP connection is used for each web object
transferred. In the Greedy scenario, all TCP connections
use a static Quick-Start request of 2 MB/sec. In contrast,
in the Ideal scenario, which is admittedly unrealistic, each
request is optimal for the amount of data its connection has
to transmit. In addition, Quick-Start is not used in the Ideal
scenario if the connection is able to send all data in the stan-
dard three-segment initialcwnd. The simulations use an av-
erage web object size of 60 packets.

In the Greedy scenario, because all connections use
a large, fixed-size Rate Request requests are generally
granted for only the first connection in each web session.
The router is generally unable to approve requests of later
connections in each session, because the first connection

is granted all of the available Quick-Start bandwidth even
though the first connection cannot use such a large alloca-
tion. As a result, the extra allocation is “wasted”, in that
subsequent Quick-Start requests are denied unnecessarily.
In this scenario, 9% of Quick-Start requests are approved
and 220 KBps of data is transmitted during Quick-Start. In
the Ideal scenario connections use ideal sizes for their Rate
Requests and requests are approved more often since there
are fewer wasted approvals. For the Ideal scenario, 40% of
Quick-Start requests are approved and 769 KBps are trans-
mitted during Quick-Start, showing the increased overall ef-
fectiveness of appropriately-sized Quick-Start requests.

While the Ideal scenario above is preferable, TCP con-
nections do not, in general, have enough information to
make ideal requests. However, there are several ways
systems can cope. First, if an end-host is configured to
understand the maximum capacity of its last-mile hop5,
C bytes/sec, requests could be chosen to be no larger than
C. Going even further, large web servers could make policy
decisions to disallow a single TCP connection from request-
ing more than some fraction of the access link bandwidth in
a Quick-Start request. In addition, a sender could take into
account the size of the local socket buffer,S bytes, and the
receiver’s advertised window,W bytes, when choosing a re-
quest size6. Given an RTT ofR sec,7 TCP can send no faster
thanmin (S, W ) / R bytes/sec (assumingW is non-zero
and usingS otherwise). Finally, and more speculatively, if
an application informs the sender of the size of a particular
object (when known), sayO bytes, the sender could request
precisely the rate required to transmit the object in a single
RTT, with a request of(O+(O/MSS)∗H)/R bytes/sec for
a given MSS size and estimated header size ofH bytes. In
our simulations TCP sender uses this method to determine
the size of the Quick-Start request. While these techniques
do not necessarily provide for an ideal Quick-Start request,
they could well provide a more reasonable request than sim-
ply picking a static rate for all cases.

When a packet is lost after an approved Quick-Start Re-
quest, we call this aQuick-Start failure. This situation can
arise for a number of reasons, for instance because a burst
of traffic arrives at a router immediately after the router ap-
proves a Quick-Start Request, or because a buggy or bro-
ken router simply approves all Quick-Start requests or mis-
calculates the rate that should be approved. After a Quick-
Start failure, the TCP sender disregards thecwnd deter-
mined using Quick-Start, and uses slow-start to opencwnd
just as would have happened without Quick-Start.

5A number of operating systems and applications already ask users to
configure such information (at least in broad terms) and so this does not
seem like an onerous expectation.

6When sending a request in the initial SYN segment of a connection
the sender will not know the peer’s advertised window.

7Or, an approximation if the connection has not yet taken an RTT mea-
surement.
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5.3 Aggregate Impact of Quick-Start

Because Quick-Start requests are only approved when
the output link is significantly underutilized, Quick-Start
should have little effect on the long-term aggregate utiliza-
tion and drop rates on a link. In particular, when link uti-
lization is high, routers should not approve Quick-Start re-
quests; thus, Quick-Start is not a mechanism designed to
help a router maintain a high-throughput low-delay state on
the output link. In Section 6 we study methods for routers
for choosing whether to approve Quick-Start requests, and
how much capacity to grant each request. We also illustrate
the implications of using Quick-Start when the router is not
significantly under-utilized.
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Figure 3: Comparison of utilization and drop rates with and
without Quick-Start, with a 10 Mbps shared link.

For the traffic models used in this paper, the amount of
data requested by a user is independent of whether Quick-
Start is used, and independent of the fate of the Quick-Start
requests. While the use of Quick-Start or particular allo-
cations from the routers will have an impact on the time
required for particular transfers, the aggregate amount of
data requested is not affected. Given this model, although
the use of Quick-Start might be of great benefit to the in-
dividual user, Quick-Start should have little effect on the
long-term aggregate link utilization or packet drop rates.

However, an alternate traffic model is possible, where the
successful use of Quick-Start would increase the amount of
data sent and received by each user. For example, users
could have a fixed amount of time available for using the
network, rather than a fixed amount of data to send and re-
ceive. In this case, the use of Quick-Start could result in an
increase in aggregate utilization in under-utilized scenarios.

Even in this case, however, the use of Quick-Start should
not affect the utilization and loss rates over paths that are
not under-utilized, because in these scenarios Quick-Start
requests should not be approved by the routers.

Figure 3 shows the overall utilization and aggregate drop
rates with and without Quick-Start, as a function of traffic
load on the 10 Mbps shared link. For each web session,
there are also ten ftp tranfers of a hundred packets each,
starting at random times. This traffic mix was chosen to give
many large Quick-Start requests, as something of a worst-
case scenario, to increase the chances of finding a scenario
where Quick-Start packets interfere with the throughput or
loss rates of other traffic on the link. As shown in the fig-
ure, the link utilization and drop rates are largely indepen-
dent of whether or not Quick-Start is employed. The line
labeled “QS Bandwidth” in the top graph of Figure 3 shows
the bandwidth used by Quick-Start packets in the simula-
tions using Quick-Start — indicating that Quick-Start is in
fact being used in the scenarios with less overall traffic. For
the scenario shown, the web traffic generator uses a Pare-
toII distribution with an average parameter of 60 packets
for web object size.
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Figure 4: Comparison of drop rates of regular TCP flows
when half of the flows either has Quick-Start enabled or
disabled, with a 10 Mbps shared link.

Figure 4 shows packet loss rates for a scenario using
only web traffic, for the following three simulations: (i)
all TCP flows use Quick-Start, (ii) 50 % of the TCP flows
use Quick-Start and (iii) none of the flows use Quick-Start.
For simulation (ii) the plot shows the drop rate for the
Quick-Start and non-Quick-Start flows separately. Addi-
tionally, the graph shows the fraction of approved Quick-
Start requests for simulation (i) to give a feel for the actual
Quick-Start usage. The figure shows that the use of Quick-
Start does not have a significant effect on the packet loss
rates regardless of the amount of traffic attempting to use
Quick-Start. The packet loss rates have a clearly increasing
trend as the number of web sessions is increased. In addi-
tion, as the loss rates increase we note that the likelihood
of Quick-Start requests being approved decreases (as ex-
pected, since Quick-Start is to be used in non-congested net-
works). Based on these simulations, Quick-Start does not
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seem to be harmful to competing traffic in the network (re-
gardless of whether the competing traffic uses Quick-Start).

Figure 5 shows per-connection performance of all traf-
fic in a simulation with three web servers. Each point on
the plot represents the duration of a single connection, with
the point type indicating whether Quick-Start is used. The
top plot shows the results from a simulation run over a
10 Mbps link while the bottom plot uses a 100 Mbps link.
For medium to large transfers the plots show that Quick-
Start improves performance — by a factor of 2–3 in many
cases, with larger savings over the higher bandwidth path.
The transfer duration shown in the figure includes the time
for the SYN exchange. These plots show that even though
the overall bandwidth usage and drop rates are similar with
and without Quick-Start, the use of Quick-Start increases
per-connection performance.

2000 5000 10000 20000 50000 100000 200000

0.
0

0.
2

0.
4

0.
6

File size (Bytes)

D
ur

at
io

n 
(s

)

x
xxx xx

x
x

x x
xxxxxx

x
x

x
xx xx

x x
xxx

x
x x

x
xx

x
xxxxxxx xx

x
xxxx

x
x

xx
xx xxx

x
x

x x
xx

x
x

x
x xxx

x
x

x x
x xx

xx
x xxx

x
xx

x
xx x

x
xxxx

x
xx xxx

x
xxx

x
x

xx
x

x
xx

x
x

xx x xx
xx x

x
x

x
xx xx

x
xx xxxxxxx xxxxx

x x
xxxxxx x

x x
xxxxxxx x

x
x

x
xx

xx
xxx

xx
xx

x
x

xx
xxxxx

x
xxx x

x
xxxxxxxx xxx xxxxx

x
xxxx

x
xx

xx
xxxx

x
xx

x x
xx

x
x

x
xxx xxx

x
x xxx xx

x
x xx xx

x
x

x
xxxxxxx

x
xx xxx

x
x xxxxx

x
xx

x
xx

x
xxx

xx
xxxxxx xxx

x
xx

x
xx

x
x

x
x

x
xxx xxxx

x
x xxxx x

x
xxxxxx

x
xx

xx
xxxxxx xxxxx xxx

x
xx xxx

x
x

x
xxxxx

xx
xxx

x
xxxx x

x
xxxxxx

x
xxxx

x
x

x
x xx

x
xxx

x x
xxxx

x
xx

xx
xxxxxx xxxxx xxx

x
xx

x
x

x x
xx xxx

x
xxx

xx
xx

x
x x

x
x

x
xxxx xxx x

x
x x

x
xxx

x
x xx xxxxxxxx xx xxxx

x
x

x
xx x

x
xxx xxxx

xx x
x

x
x xxxxx x

x
xx xx

x
xx

x
xx

x
xx xxx

x
x

x
x xxx

x
xxxxx

xx
x xxx

xx
xxxxxx

x
xxxx xxx xxx

x xx
x

x
x

x
x

x
x

x
x

x
x

x x
x xx xxxxxx

x x
xx xxx

x
x

x
xxxx

x
xx xxx

x
x

x
x

xx
xxxxx

x
xx

x
xxx xxx

x
xxxxx

x
x

x
xx

x x
x x

x
xxxx

x
x

x
x xx

x
xx

x x
xx xxx

x
xx

x
xx xxx x

x
xx

x
xxx

x
xxx

x
x

x
xx

x x
x

xx x
xxxxx

x x
xxxxx x

x
xx x

x
x

x
xx

x
xx

x
x

x x
xx

x
x

xx
x

x
x

x
xx

x
xx

x
x

xx
x

x
x

x x
x

xx
x

xx
xxx

x
x

x
xx xxx xxxxxx x

x
xxxxxxxxx xxxxxxx xxxxx

x
xx

x
x

x
x

x xx
x

x
x

x
xx

xx
xxxx x

x
xx

x
xxxx

x
xxxxxx

x
xx

x
xx xxxx

x
xx x

xx
xx

x
xxxxxx xx

x
xx

xxx x
x

x
xxxx xxxxx

x
xxxx

x
x xxxx

x
x

x
x

x
x

x
xxxx

x
Regular TCP
Quick−Start

2000 5000 10000 20000 50000 100000 200000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

File size (Bytes)

D
ur

at
io

n 
(s

)

xx
x

x
x

x

xx

xx xxxxxxx xxxxxx x
x

x
x

xxxxx
x

x
x

x x
x

x xxx
x

x xx

x

xx x

x

x

x

x

x

xx

x x

xxx
x

xxx
x

xxxxxx
xx x x

x xxx x
x

xx
x x

x

x

xx
x x

x
x

xxx
x x

x
xx

x
x

x
x

x x
x

x
xxxxxxx

x
xx

x
xx xx

x
xxxxxx

xxxx
x

x
xx

x
x

x
xxxx xx

xx
xxxx

x
xxxx xxxx

x
x

x
x

x x
x

xx

xxxxxxx
x

xxx xx
x

xx

x x

x

x xx xx
x

xxxx

x

xx

x

x xxx x
xx x

x
x

xx
x

xxxxx
xx

xxx x
x

x
xx

x
x

x
x x xx

xx

x

xxxx xxxxx
x

xxxxx

x

x x

x

x

x xxx

x

x

x xxxx

x

xx x
x x

xx

x

xxx x
xx x

xx xx
x

xxx x
x

x xxxx
x xx

xxxx xx
x

xx xxxxx xxx
x

xxxxxx xxxx
x x x

xxxxx
x xx

xx
x

x
x x

xxx
xx

xx
x

xx x
x

x xxxxxx xxxxxx x
x

xxxxx
x

xxx xxxxx xx
x

xx
x

xx
x x

xxxxxxx
x

xx
x

x
x

xxxxxx
x

x xx x
x

xx
x

xxxxxxxxx xx
x

xxxxxx
x

x
x

x
x

xx
x

xx
x x

x
x

xxxxxxxx xx
x

x
x

xx xx
x

xx xxxx
xx

xxxx
x

xxx
x

xxx
x

xx
x

xx
x

xx x

x

xxxxx x
x

x xx
xx

x

x x
x

x

x xx xxxxxxxxxx xx

x

xx xx
xxx xx
xx

x
x xxxx x

x
xxx

x
xxx x

x
xxx

x
x

xx
xxx

x
xxxx x

x
xxxxxxxxxx

x
xxx xxxxxx xxxx x

x
x xxx xx

x
x

x
xx x

x
xx

x
xx

x xx x
xx

x
x

x xx
x xxx

x
xx

x
x

x x
xxx

x
xx

x x
xxxxxx

x
xx

xxx
xxxx

xx
xxx xx

x
x

x x

x

x

x
x

x
x

xxxx

x

x xxx x
x

x xxx
x

x
x x

x
x

xx
x xx

x
x

xxxx
x

xxx x
x

xxxx
x

xxxxxxxx
x

xxx
x

x
xx

x xx
x

xxxx
xx

xx
x

x
x x

xx xx x
x

x xx
x

xxxx
xx

xx
x

xxx xxx xxxx
x

x xx xxxxxx
x

xxx xxx xxxx xxxx
x

x
x x

xx
x

xx
x

x
x

xxxxxxxx
x

xxxxxx

x

x x

x

xxx

x

x

x

x
x

xx
x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x
xx

xx
xx

xxx

x
Regular TCP
Quick−Start

100 Mbps

10 Mbps

Figure 5: Per-connection performance with and without
Quick-Start, with 10 Mbps and 100 Mbps shared links and
three web sessions.

6 Router Algorithms

This section discusses several possible Quick-Start algo-
rithms for routers to use when considering Quick-Start re-
quests. We start with a basic algorithm that requires mini-
mal state, and proceed to an extreme Quick-Start algorithm
that keeps per-flow state for approved Quick-Start requests.
It is desirable for routers to be able to process Quick-Start
requests efficiently. At the same time, the Extreme Quick-
Start algorithm explores the ability of anideal router to
selectively approve Quick-Start requests in order to maxi-

mize the use of Quick-Start bandwidth by the end-nodes.
Extreme Quick-Start is introduced as a point of compari-
son and not as a proposal for the way routers should handle
Quick-Start.

6.1 Basic router algorithms

Quick-Start requests represent an increased packet process-
ing burden for routers, and this could result in an increased
end-to-end delay for packets with Quick-Start requests.
Therefore, it is important that the algorithm for processing
the Quick-Start requests at routers be as efficient as possi-
ble, with a small memory footprint.

To know if there is sufficient bandwidth available on the
output link to approve a Quick-Start request, the router
needs to know the raw bandwidth and have an estimate of
the current utilization of the link. The router also has to re-
member the aggregate bandwidth approved for use by end
hosts in the recent past to avoid approving too many re-
quests and over-subscribing the available capacity. That is,
the router has to keep a small amount of new state about
the aggregate traffic (and, no per-flow state). In this sec-
tion we consider the algorithms used by routers to process
Quick-Start requests for point-to-point links; algorithms for
multi-access links are left as future work.

The first router design choice concerns the router’s
method for estimating the recent link utilization. There
are a range of measurement and estimation algorithms from
which to choose, including alternatives for the length of the
measurement period. We discuss two methods for estimat-
ing the link utilization, the moving average and measuring
the peak utilization. Developing and assessing alternate al-
gorithms is an area for future work.

The moving average estimation technique uses a stan-
dard exponentially weighted moving average to assess the
utilization over the recent past. This scheme was originally
used for Quick-Start in [25]. We defineU(t) as the utiliza-
tion at timet, M(t) as the link utilization measurement at
time t, δ as the interval between utilization measurements
andw as the weight for the moving average. The utilization
is defined as:

U(t + δ)← w ∗M(t + δ) + (1− w) ∗ U(t) (2)

We note that the weightw should depend on the intervalδ,
so that the utilization is estimated over the desired interval
of time.

With peak utilization estimation, the router measures the
link utilization over the most recentN time intervals, and
takes the highest of theN measurements as the current link
utilization. Thus, if each time interval iss seconds, then the
peak utilization method takes the peaks-second link utiliza-
tion measurement over the most recentN ∗ s seconds. The
peak utilization method reacts quickly to a sudden increase
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util_bw = bandwidth * utilization;
util_bw += recent_qs_approvals;
if (util_bw < qs_thresh * bandwidth) {

// Approve Quick-Start Request
approved =

qs_thresh * bandwidth - util_bw;
if (rate_request < approved) {
approved = rate_request;

}
recent_qs_approvals += approved;

}

Figure 6: The Target algorithm for processing Quick-Start
requests.

of link utilization, but also remembers a period of high uti-
lization in the recent past. Unless otherwise noted, we use
N = 5 intervals with interval length ofs = 150 msec which
covers most of the RTTs in our simulated network.

In addition to the two methods for estimating link uti-
lization, we consider how to decide whether to approve
a given Quick-Start request and how much capacity to
grant in an approval. This process relies on knowingre-
cent qs approvals, the aggregate bandwidth promised in
recently-approved Quick-Start requests — ideally over a
time interval at least as long as typical round-trip times for
the traffic on the link. If the time interval for this assessment
is too small, then the router forgets recent Quick-Start ap-
provals too quickly, and could approve too many requests,
thus over-subscribing the available bandwidth. On the other
hand, if the time interval is too large, the router errs on
the conservative side and remembers recent Quick-Start ap-
provals for too long. In this case the router counts some
of the Quick-Start bandwidth twice, in the remembered re-
quest and also in the measured utilization, and as a result
may deny subsequent Quick-Start requests unnecessarily.
Unless otherwise noted, we computerecent qs approvals as
the aggregate Quick-Start bandwidth approved in the most
recent two 150-ms intervals, including the current interval.

TheTarget algorithm, given in Figure 6, approves Quick-
Start requests only when the link utilization, including the
potential bandwidth use of recently-granted Quick-Start re-
quests, is less than some configured percentage of the link’s
bandwidth, denotedqs thresh. This gives a router direct
control over the notion of “significantly under-utilized”.
When a Quick-Start request is approved, the approved rate
is reduced, if necessary, so that the total projected link uti-
lization does not exceedqs thresh.

Figure 7 shows simulations with the Target algorithm.
The simulations use a range of values for theqs thresh pa-
rameter in the Target algorithm. In these simulations, the
Target algorithm uses the peak utilization method for esti-
mating link utilization. The top graph of Figure 7 shows
the overall link utilization for each simulation. The middle
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Figure 7: Evaluation of Target algorithm.

graph shows the fraction of Quick-Start Requests approved.
Finally, the bottom plot shows the fraction of Quick-Start
failures. We note that the fraction of failures for the Tar-
get algorithm is relatively small (less than 1% in all cases
tested).

Figure 8 compares the moving average and peak utiliza-
tion methods for estimating link utilization. The simula-
tions use the Target algorithm with a 10 Mbps shared link
and aqs thresh of 90%. The top graphs show the fraction of
Quick-Start requests approved, and the bottom graphs show
the fraction of approved Quick-Start requests with dropped
packets. The moving average simulations were run with a
range of values for the weightw, and the peak utilization
simulations were run with a range of values for the number
N of 150-msec intervals over which the peak utilization was
chosen. The legend in each figure shows the overall time
interval for the estimation; for the moving average graph,
this is estimated as the time needed for−1/ln(1−w) mea-
surements, where a measurement is taken for each departure
from the queue [27].
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Figure 8: Comparison of moving average and peak utilizationmechanisms.

As Figure 8 shows, the approval rate of Quick-Start
requests can be slightly higher with the moving average
method, but the failure rate is higher also, regardless of the
value for the weightw. The weight controls the time in-
terval over which the link utilization is estimated, but the
moving average method still estimates theaverage utiliza-
tion. The moving average does not take into account the
variance of traffic intensity that can be present. A router
that does not want even transient congestion should not es-
timate the average link utilization since this will likely lead
to Quick-Start failures.

For the simulations with the peak utilization method, on
the other hand, the Quick-Start failure ratio is generally
lower than with the moving average method. However, the
performance is sensitive to the numberN of intervals used.
Larger values ofN lead to lower acceptance rates, but also
to lower failure rates in congested environments. This illus-
trates a potentially tricky balancing act in determining the
larger time period over which link utilization is measured,
and in determining the interval for assessing peak utilization
within the larger time period.

6.2 Extreme Quick-Start in routers

We use the termExtreme Quick-Start for a Quick-Start
router that maintains per-flow state about Quick-Start re-
quests, and the termBasic Quick-Start for a Quick-Start
router that does not maintain per-flow state, but follows the
algorithms in the section above. While not necessarily real-
istic in practice, with Extreme Quick-Start we can analyze
how much Quick-Start performance could be improved if

router efficiency was not a limiting factor. For example, an
Extreme Quick-Start router could perform the following ac-
tions:
• A router could keep track of individual approved

Quick-Start requests, and note when the Quick-Start band-
width resulting from that request begins to arrive at the
router (if in fact it does). This allows the router to more ac-
curately estimate the potential Quick-Start bandwidth from
Quick-Start requests that have been approved but not yet
used at the end nodes.
• A router could keep track on the fairness of Quick-

Start request approvals. If it appears that there are a number
of requests that are not approved because earlier requests
have allocated all of the available Quick-Start bandwidth,
the router could reduce the rate approved for individual re-
quests in order to achieve better fairness between flows.

It is useful for an Extreme Quick-Start router to know the
RTTs of flows, in order to set the length of the interval for
measuring the arrival rate of packets from a flow after an
approved Quick-Start request. There are a number of tech-
niques for routers to estimate flows’ RTTs [13]. In the anal-
ysis below, we assume that the Extreme Quick-Start router
implements a reliable method for evaluating RTTs.

For each flow, an Extreme Quick-Start router estimates
the number of bytes expected to arrive in the Quick-Start
phase, based on the approved rate request and the estimated
RTT. The Extreme Quick-Start router also maintains the
number of received bytes for each flow. From this infor-
mation the router can compose a detailed estimate of cur-
rently unused Quick-Start bandwidth, and therefore is able
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Figure 9: Basic Quick-Start and Extreme Quick-Start with
a highly-tunedrecent qs approvals parameter.
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Figure 10: Basic Quick-Start and Extreme Quick-Start with
a conservativerecent qs approvals parameter.

to more accurately establish how much bandwidth is avail-
able for new rate requests. As Basic Quick-Start does not
track per-flow state but only maintains aggregate informa-
tion, Basic Quick-Start is more conservative in its estima-
tion of the available bandwidth. After the initial window
of data has arrived at a router, there is a period of time
where some data is counted twice;recent qs approvals ac-
counts for bandwidth that has been promised for Quick-
Start requests, while the packets that have arrived are also
accounted for in the link utilization. Extreme Quick-Start
aims to remove this overlap, resulting in both a higher ac-
ceptance rate for the Quick-Start requests, and approvals of
higher Quick-Start bandwidth.

We use two examples to illustrate the difference between
Basic Quick-Start and Extreme Quick-Start. Figure 9 com-
pares Basic Quick-Start and Extreme Quick-Start for sce-
narios with a small range of RTTs (80–120 msec), with
the assumption in this scenario that the RTTs are known

(or easily guessed) by the router, and the router can accu-
rately setrecent qs approvals to roughly match the round-
trip time (100 msec). In these simulations, Basic Quick-
Start uses the Target algorithm with the peak utilization
method. From the top plot we see that the link utilization
is nearly the same regardless of whether basic Quick-Start
or Extreme Quick-Start is employed. However, the bot-
tom figure shows that the fraction of bytes transmitted using
Quick-Start is slightly greater when Extreme Quick-Start is
used by the router to track each allocation in detail. This
scenario is certainly not typical, but there could be some
initial Quick-Start deployment scenarios, such as in limited
Intranets, where there is a limited range of RTTs, and also
where the traffic and network characteristics could be accu-
rately configured. The figure shows that in such conditions,
with carefully tuned parameters, it is possible to achieve
nearly the same performance with basic Quick-Start as with
Extreme Quick-Start.

As a point of contrast we changed the computation of
recent qs approvals to include the most recent two 1.5-
second intervals, to investigate Extreme Quick-Start in the
context of a basic Quick-Start router that does not have
a “typical” RTT and therefore chooses a conservative set-
ting (i.e., this setting results in few Quick-Start failures,
but also fewer Quick-Start request approvals). Figure 10
shows Quick-Start traffic as a fraction of the total amount
of data transmitted. The figure shows that the fraction
of bytes sent during the Quick-Start phase of the connec-
tions is greater when using Extreme Quick-Start. This illus-
trates Extreme Quick-Start’s power in terms of more closely
tracking resources so that more requests can be approved.
Therefore, Quick-Start involves less wasted capacity, allow-
ing more Quick-Start requests to be approved. The differ-
ence between basic Quick-Start and Extreme Quick-Start in
this figure is larger than the difference shown in Figure 9
due to the more conservative setting for the length ofre-
cent qs approvals. In this simulation the link utilization
with Basic Quick-Start and Extreme Quick-Start was also
nearly identical.

7 Deployment Issues

The previous sections have shown that Quick-Start has
some potential to increase performance without signifi-
cantly impacting competing traffic. We next turn our atten-
tion to several practical issues that must be addressed before
a working Quick-Start system could be realized. Although
we discuss the issues from Quick-Start’s perspective, many
of the issues are more broadly applicable.

Chickens and Eggs. Quick-Start is only of use when it is
supported by both end systems and all the routers along the
path. This leads to the “chicken-and-egg”deployment prob-
lem, that there is little incentive to being the first node to de-
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ploy Quick-Start. Because of the incremental-deployment
problems, we expect that initial deployments of Quick-Start
would happen within networks or Intranets with centralized
control, where hosts and routers both have an interest in aid-
ing performance.

Interactions with Middleboxes. There are middleboxes
in the current network that drop packets containing known
or unknown IP options [17]. This could cause delays
for connections using Quick-Start, as packets containing
Quick-Start requests would have to be retransmitted without
the request. Again, one consequence is that initial deploy-
ments of Quick-Start may be in controlled environments,
where it is known that packets with Quick-Start options
would be forwarded.

Non-IP Queues. A further deployment issue concerns
the possibility of non-IP queues along a path. A router
should not approve Quick-Start requests if it cannot reli-
ably determine the link utilization all the way to the next
IP hop. What this would mean, in practice, when there is
an Ethernet switch, an ATM cloud, or other non-IP queue
between the IP router and the next-hop IP router is left as
future work.

Tunnels. IP tunnels are a challenge for a mechanism that
requires processing at every router. Some tunnel implemen-
tations that do not know about Quick-Start might encapsu-
late a packet without decrementing the inner IP TTL field
first at the tunnel ingress. As a result, a seemingly-valid
Quick-Start Request with an unchangedTTLDiff is carried
in the inner header, while the outer header most likely does
not carry a Quick-Start Rate Request. If the tunnel egress
decapsulates the packet without modifying the inner IP TTL
field or otherwise rejecting Quick-Start, it is possible that
the Quick-Start Request would be falsely approved. This
problem would be shared by any protocol that requires pro-
cessing at every router (e.g., XCP), and also presents a con-
sideration in the design of future tunnel protocols.

The difficulties of incremental deployment and the prob-
lems of middleboxes, coupled with the potential prob-
lem of attacks on Quick-Start bandwidth discussed in Sec-
tion 8, suggest that Quick-Start could remain in controlled
networks for quite some time, where the incremental-
deployment barriers are reduced, the range of middleboxes
is under more control, and attack traffic can more easily be
monitored and controlled. In addition, in such a controlled
environment, it is likely that all of the routers along a path
would support Quick-Start, reducing the problem of Quick-
Start requests that are denied simply because of routers that
are not Quick-Start capable. It is even possible that Quick-
Start would remain a mechanism largely for use in con-
trolled environments, and would never see ubiquitous de-
ployment in the global Internet.

8 Attacks on Quick-Start

8.1 Threats

Quick-Start is vulnerable to denial-of-service attacks along
two vectors: (i) increasing the router’s processing and state
load and (ii) using bogus Quick-Start requests to tem-
porarily reduce the available Quick-Start bandwidth. Since
Quick-Start requests represent a potential processing bur-
den for routers, a storm of requests may cause a router’s
load to increase enough to affect legitimate traffic. Given
the processing burden imposed by Quick-Start, this could
well be worse than a simple packet flooding attack. A sim-
ple limit on the rate at which Quick-Start requests are con-
sidered (with a policy of ignoring requests sent in excess
of this rate) mitigates this attack on the router itself. In the
case of Extreme Quick-Start another problematic aspect of
a storm of packets is the memory requirement to track bo-
gus “connections”.

The second type of attack, an attack on the available
Quick-Start bandwidth, is more difficult to defend against.
In this attack arbitrarily large Quick-Start requests are sent
by the attacker through the network without any further data
transmission. With a relatively low-rate stream of packets,
this can cause a router to allocate capacity to the attacker
and thus temporarily reduce the amount of capacity that can
be allocated to legitimate Quick-Start users. Note that the
attack does not actually consume the requested bandwidth
and therefore the performance of competing connections is
no worse than connections that simply don’t make use of
Quick-Start. Hoever, these attacks are particularly difficult
to defend against, for two reasons. First, the attack packets
do not have to belong to an existing connection to do dam-
age. And, second, since the attack just involves a Quick-
Start request traversing the network path in one direction
only to trigger bogus allocations, a response is not required.
Therefore, spoofed source addresses are a possible aggra-
vating factor for both hiding the location the attack is orig-
inating from and causing a simple blacklisting defense to
fail.

An additional problem with Quick-Start is that legitimate
requests could well cause the same impact as attack packets.
Consider a Quick-Start request for rateR that is approved,
and therefore considered “allocated”, by the first router in
the path. Now assume the same request hits a downstream
router that reduces the rate to someR′ less thanR (maybe
even to zero) for whatever reason. In this case, the first
router has allocated some amount of Quick-Start capacity
that cannot be given to subsequent Quick-Start users be-
cause of the conditions elsewhere in the network. From the
vantage point of the first router, this is similar to the attack
described above in that capacity allocated for Quick-Start
goes unused, while the router’s ability to approve further
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Quick-Start requests is reduced.8 One possible use of Ex-
treme Quick-Start to allow routers to reduce Quick-Start re-
quests from senders that have in the past used only a fraction
of their approved Quick-Start bandwidth.

In addition to Denial of Service attacks, a simple imple-
mentation of Quick-Start could be vulnerable to cheating by
routers or by end-nodes. Non-conformant routers or hosts
might try to modify Quick-Start messages to benefit partic-
ular connections. For instance, a receiver could increase the
rate given in an arriving Quick-Start Request before echo-
ing it back to the sender, in an effort to increase the connec-
tion’s performance. Similarly, a router close to the sender
and acting on the sender’s behalf (a “performance booster”)
could increase the approved sending rate and/or adjust the
reportedTTLDiff ′ from the receiver to match the original
TTLDiff in an effort to mask the network’s lack of Quick-
Start savvy. Mitigations for these and other attacks are dis-
cussed in the next section. We also note that such cheating
would risk hurting instead of helping performance; lying
about the size of the approved rate request could end up
causing packet drops for Quick-Start packets, resulting ina
slow-start for the connection in question.

8.2 Mitigations

In some sense, a number of the problems described above
are fundamental to a lightweight system that does not re-
quire authentication of requests or per-flow state at all nodes
in the network path. For instance, when a router observes a
SYN packet with a Rate Request, how is that router to know
if this is a spoofed packet or a legitimate request to establish
a connection with a larger-than-standard sending rate?

A first mechanism to mitigate the problems might be for
senders to advertise their sending rate during the round-trip
time after a valid Quick-Start request. With a small amount
of per-flow state, this could allow routers to adjust their no-
tion of the amount of Quick-Start capacity that has been
“allocated”. In other words, if a flow requested and was ap-
proved forR1 bps at a given router and then advertised some
R2 bps as their sending rate, the router could decrease its
record of “allocated” Quick-Start bandwidth byR1 − R2.
This would mitigate the problem of overly large requests
consuming Quick-Start resources they will not be able to
use due to downstream limits.

Another possible addition would be of a “two pass” struc-
ture. In this scheme, a first request would be sent as usual.
Assuming a valid rateR is returned, the sender could then
send a second request for rateR through the network for
verification (and tagged as such). During this second pass

8At first glance, allowing the router to watch the Quick-Startresponses
offers more information. However, due to asymmetric routing we cannot
assume that a router will see the Quick-Start responses. In addition, an
arbitrary router has no way to tell if theTTLDiff ′ in the response is valid
and therefore whether the sender will ultimately make use ofthe response.

the routers could not to reduce the rate, but could reject the
use of Quick-Start for the flow. Also, during this second
pass the routers could change a “provisional” allocation into
a “confirmed” allocation. As above, this mechanism could
be used to reduce the problem of downstream rate reduc-
tions that invalidate an upstream router’s estimate of allo-
cated Quick-Start bandwidth. In addition, this mechanism
would reduce the impact of spoofing senders; if the rate
given in the second pass is larger than the rate approved
by the router from the first pass then the request will not
be confirmed by the router, and the router could update its
estimate of allocated Quick-Start bandwidth. A malicious,
non-spoofing sender would still be able to request Quick-
Start bandwidth without using it. However, this is a more
tractable case since a non-spoofed sender would be identi-
fiable, and therefore policy could be applied to its traffic.

Finally, a nonce can be used to catch receivers trying to
game Quick-Start. Suppose that the rate in each request is
encoded inN bits in the packet header, allowing for2N

−1
rates to be encoded. Now, suppose a nonce field of length
X × (2N

− 1) is included in the request and initialized
to a random value. For each decrement of the rate from
Y to Y − 1, a particular X-bit portion of the nonce would
be overwritten by a random value. As an example, a 4-
bit encoding of the rate request could take on 15 non-zero
rates. A minimum sized nonce would be 15 bits in length.
When a router decremented the request from 15 to 14, the
router would set the first bit in the nonce field to a random
value; similarly, a router decrementing the request from 14
to 12 would set the second and third bits of the nonce to
random values. The receiver would echo back the nonce
to the sender in its reply to the rate request. The sender
would then be able to verify that the reported rate request
corresponded to the unchanged portions of the nonce. The
nonce would largely prevent receivers from lying about the
rate that arrived. Even if the receiver knows the original rate
request (which is not a given), the chances of the receiver
correctly guessing the original nonce to “prove” that the rate
was not reduced below that in the network would be1

2X × S
for a rate that was reducedS steps in the network.

None of the above mechanisms remove the fundamental
tension between having a lightweight scheme to determine
if a network path can support an increased sending rate on
the one hand, and having a scheme that is immune from ma-
licious behavior on the other. However, some combination
of these schemes may well offer enough mitigation to make
Quick-Start practical in some production networks (even if
not in the Internet itself). The particulars of making the spe-
cific engineering tradeoffs to design these mechanisms are
left as future work.
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9 Conclusions and Future Work

In this paper, we explore a mechanism foranti-congestion
control, where the task is not to detect and respond to
congestion, but to determine when the sender can use a
higher sending rate than it would otherwise. We present
the first well-rounded study of Quick-Start, and show that
with only minimal additional router state and processing
and an additional request upon connection setup, transfer
times for medium-sized files can be reduced significantly in
an uncongested network. While Quick-Start can aid per-
connection performance, it does not lead to higher drop
rates in the network, because Quick-Start requests are only
approved when the network is underutilized. Thus, while
Quick-Start can help users in an underutilized network, it
should have little or no effect in a congested network.

We have also explored the downsides of Quick-Start,
including thorny deployment considerations and security
problems. We have sketched potential mitigations to some
of these problems in this paper, but much additional de-
sign and experimentation will be required before Quick-
Start will be useful in the global Internet (if it ever will
be). However, Quick-Start may be of use on networks un-
der the control of a single organization, which could benefit
from Quick-Start while at the same time shedding some of
the thorny problems (e.g., security threats) presented when
multiple administrative domains come into play.

While this paper only considers the use of Quick-Start
in determining a connection’sinitial sending rate, another
fruitful area of work is to explore the use of Quick-Start
after idle periods or mobility events, when a connection is
significantly under-utilizing the network path or has no un-
derstanding of the path’s characteristics. Other areas of fu-
ture work are to consider the use of Quick-Start with other
transport protocols, and to explore in more detail algorithms
for setting the size of Quick-Start requests at end-nodes and
processing Quick-Start requests at routers. We expect other
issues for future work to also arise with the experimental
deployment of Quick-Start in small controlled networks.
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