
Evaluating Quick-Start for TCP

Pasi Sarolahti, Mark Allman, and Sally Floyd, February 18, 2005∗

Abstract– This paper explores the Quick-Start mechanism,
designed to allow transport protocols to explicitly request
permission from the routers along the path to send at a
higher rate than normally allowed by traditional congestion
control mechanisms. If the routers are underutilized, they
may approve the sender’s request for a higher sending rate;
otherwise the sender uses the default congestion control al-
gorithms. This paper discusses some of the design issues
of Quick-Start, and evaluates the potential benefits, costs
and implications of Quick-Start in different networking en-
vironments. Using simulations, we evaluate several differ-
ent algorithms that routers could use to process a Quick-
Start Request. This evaluation explores tradeoffs between
the fraction of Quick-Start requests that are approved and
the fraction of approved Quick-Start requests that result in
increasing network congestion. In addition, the paper dis-
cusses the security implications of using Quick-Start and
some possible mitigations for the vulnerabilities.

1 Introduction
A fundamental aspect of communication in general-
purpose, best-effort packet-switched networks is determin-
ing an appropriatesending rate. The appropriate sending
rate depends on the characteristics of the network path be-
tween the two peers (bandwidth, propagation delay, etc.), as
well as the amount of load being placed on the network by
others at the given time. Traditionally, TCP has used a set
of congestion control algorithms for determining this rate
[10]. The problem we tackle in this paper is how a partic-
ular connection that is under-utilizing (or, even not using)
a network path can rapidly increase its transmission rate to
take advantage of the available capacity more rapidly than
allowed by TCP’s traditional congestion control algorithms.

The first place the issue of determining an appropriate
sending rate occurs is when choosing aninitial rate. The
current method for choosing an initial sending rate in the
Internet is to use TCP’s [19] slow start algorithm [10, 3].
TCP controls the sending rate using a congestion window
(cwnd), which bounds the amount of data that can be trans-
mitted into the network before receiving an ACK. Slow start
initializescwnd to a small value (1–4 segments, per [3, 2])
that is assumed to be an appropriate starting point for the

∗This material is based in part upon work supported by the National
Science Foundation under Grant No. 0205519. Any opinions, findings,
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

vast majority of situations. In each subsequent congestion-
free round-trip time (RTT),cwnd is increased exponentially
by 50–100% (depending on whether the receiver uses de-
layed acknowledgments [8, 3] and whether the sender uses
packet or byte counting [4] to increasecwnd). Slow start
is terminated when either (i) the sender exhausts the data
to be transmitted, (ii) congestion is detected or (iii) cwnd
reaches the receiver’s advertised window. After slow start
has probed for an appropriate operating point, additive-
increase, multiplicative-decrease (AIMD) congestion con-
trol governs the remaining transmission [10, 3].

In many environments, slow-start can require a signifi-
cant number of RTTs and require a large amount of data to
opencwnd sufficiently to fully use the available bandwidth.
For example, even in the best case with byte-counting and
an initial window of four packets, slow-start takeslog2N−2
round-trip times and requires sendingN − 3 packets before
reaching a congestion window ofN packets.

Probing for the available bandwidth makes sense when
there is general contention for the resources at a congested
point in the network path. However, when a network path is
uncongested and largely under-utilized, this slow probing
process introduces unnecessary delay for the application.
For a connection over an under-utilized path, there might
be enough bandwidth for the connection to complete its en-
tire data transfer in one round-trip time. In this paper we
examine Quick-Start, a proposed mechanism for end nodes
to request permission from routers along the path to use a
higher sending rate [11]. Quick-Start has the potential to
alleviate the delay of slow-start for connections in under-
utilized environments.

Although Quick-Start could be used with a number of
transport protocols, in this paper we mainly consider its use
with TCP. Quick-Start is described in detail in Section 3,
but the process is generally that a TCP connection sends
a packet that includes a Quick-Start Request in an IP op-
tion containing the requested sending rate, sayX bytes/sec.
Each router along the path either indicates agreement with
the request, lowers the requested sending rate or implicitly
signals that the Quick-Start option was not processed (and,
hence, the request will not be approved). The data receiver
reports the information received in the Quick-Start Request
back to the sender using a Quick-Start Response in a TCP
option, and the data sender determines if all of the routers
along the path have agreed to the request and sets the send-
ing rate appropriately.

The assumption behind Quick-Start is that routers will

1



only approve Quick-Start requests when they are under-
utilized. Thus, Quick-Start should be generally safe to de-
ploy in general purpose networks, with a negligible risk
of causing network congestion. However, because Quick-
Start requires support from all routers along the path, this
could present a high bar to deployment in the general Inter-
net. Possible initial deployments could come in (i) those In-
tranets and operator networks with large amounts of under-
utilized bandwidth and (ii) cellular wireless networks (such
as GPRS/EDGE [21]) with bandwidth of up to 384 Kbps,
but with long round-trip delays. Based on the investigation
presented in this paper, Quick-Start is expected to be of ben-
efit in both these cases.

As noted above, Quick-Start is, broadly speaking, use-
ful any time a connection is significantly under-utilizing the
network path and has the data required to considerably in-
crease the transmission rate. The path from broad notion
to mechanism is not clear-cut and future work in this area
is required. However, there are a few concrete cases where
the connection is likely to be significantly under-utilizing
the capacity and could benefit from Quick-Start. As dis-
cussed above, at the beginning of a TCP connection when
little if any knowledge about the network path exists the end
hosts may be able to use Quick-Start to transmit at a higher
initial rate. Similarly, after an explicit message informsa
TCP connection of a change in network attachment point
(e.g., due to the use of Mobile IP), the connection again has
little information about the (new) network path and might
be able to use Quick-Start to use a higher sending rate than
would otherwise be appropriate. In addition, after “idle” pe-
riods in a connection, TCP’s understanding of the available
bandwidth is stale and Quick-Start may be helpful in re-
establishing a higher sending rate when data transmission
begins again. This last case starts down the path of trying
to assess when a connection is in fact “under-utilizing” the
network path. Questions that pop to mind are: What does
“idle” mean? Silent or mostly silent with low-rate control
messages? How long does the “idle” period have to be be-
fore Quick-Start is again appropriate? Is it appropriate to
use Quick-Start when a connection is not idle at all but just
transmitting at a low rate due to an application limitation,
followed by a spike in the amount of data to be transmit-
ted? In this paper we concentrate on the first order question
of Quick Start’s efficacy in the clear-cut case of determin-
ing an initial sending rate, leaving the thornier questionsof
precisely when Quick-Start should be employed to future
work.

While Quick-Start is a component of congestion control,
Quick-Start is not a complete congestion control mecha-
nism, and it is not intended as a replacement for TCP’s stan-
dard congestion control. Quick-Start is also not a Quality of
Service (QoS) or resource reservation mechanism. Quick-
Start is in fact most effective in those under-utilized envi-
ronments where congestion control is not the overriding is-
sue, and where QoS mechanisms are needed the least. In

the subsequent sections we show this via simulation.
The rest of this paper is organized as follows. Section 2

discusses related work. Section 3 details the Quick-Start
mechanism and discusses design issues. Section 4 discusses
the potential costs and benefits of using Quick-Start. Sec-
tion 5 describes the simulation setup used our study. Sec-
tion 6 illustrates the potential advantages and disadvantages
of Quick-Start and shows its performance in specific situa-
tions. Section 7 discusses the handling of Quick-Start Re-
quests in the routers and evaluates several algorithms that
could be employed by routers. Section 8 outlines the pos-
sible vulnerabilities of Quick-Start to denial-of-service at-
tacks and potential coping techniques. Finally, Section 9
offers conclusions and future work.

2 Related Work
There have been a number of proposals for faster variants
of TCP slow-start that do not use explicit feedback from
routers. For example, SwiftStart [17] would use the first
volley of packets sent during slow start to estimate the bot-
tleneck bandwidth, and then use that estimate as the basis
for a rapid increase in the congestion window.

There are also proposals for sharing information about
network conditions between connections, ranging from
TCP Fast Start [16] to the Congestion Manager [5], that
would allow a new connections to start with a largercwnd,
based on the assessment of the network path conducted by
previous connections.

Additional proposals call for other new mechanisms for
explicit congestion-related feedback from routers to end-
nodes. In Explicit Congestion Notifications (ECN) [20], the
only current mechanism in the IP protocol for explicit feed-
back from routers to end-nodes, routers use the ECN field
in the IP header to indicate congestion explicitly, insteadof
relying on packet drops. In contrast, the Anti-ECN proposal
[14] would allow the sender to increase as fast as slow-start
over an uncongested path, even in the middle of a transfer,
with routers setting a bit in the packet header to indicate an
under-utilized link.

XCP (Explicit Control Protocol) [13] is a proposal for a
new congestion control mechanism based on explicit and
fine-grained per-packet feedback from the routers over the
course of the entire transfer. XCP is similar to Quick-Start
in that the routers are explicitly involved in feedback on the
senders’ allowed transmission rates, but the goals of the two
schemes are different. While XCP provides a full-fledged
congestion control mechanism, Quick-Start, in some sense,
provides just the opposite. Quick-Start provides for a brief
check to determine whether the path is underutilized, allow-
ing the sender to start or move to a high sending rate.

3 Quick-Start

Quick-Start is a collaborative effort between end hosts and
routers. This section describes the details of Quick-Start,

2



and discusses the Quick-Start requirements. [11] gives a
detailed specification of Quick-Start.

3.1 Quick-Start Processing at the Sender

The Quick-StartRate Request is initialized by the sender
to the desired sending rate in bytes per second (Bps). The
sender also initializes aQuick-Start TTL to a random value
and saves the difference between the initial Quick-Start
TTL and the initial IP TTL asTTLDiff. As discussed in
the next subsection, the routers along the network path be-
tween the sender and receiver alter the Request, as appro-
priate. When the Quick-Start Request arrives at the trans-
port receiver, the receiver echoes the rate request back to
the sender along with the difference between the Quick-
Start TTL and the IP TTL,TTLDiff ′, in an option in the
transport header. Upon reception of an echoed Quick-Start
Rate Request the sender verifies that all routers along the
path have approved the Quick-Start Request by comparing
TTLDiff andTTLDiff ′. If these two values are not the same
then the request was not approved by all routers in the net-
work path and data transmission will continue using TCP’s
standard algorithms.

When TTLDiff and TTLDiff ′ match, the TCP sender
then calculates the appropriatecwnd based on the approved
sending rate and measured round-trip time as follows:

cwnd =
Rate ∗RTT

MSS + H
, (1)

whereRate is the approved rate request in Bps,RTT is the
recently measured round-trip time in seconds,MSS is the
maximum segment size for the TCP connection andH is
the estimated header overhead for the connection in bytes.
The TCP sender paces out the Quick-Start packets at the ap-
proved sending rate over the next RTT1. Upon receipt of an
acknowledgment for the first Quick-Start packet, the TCP
sender returns to ACK-paced transmission.

3.1.1 Knowing the Rate to Request

One of the problems of Quick-Start is that unnecessary or
unnecessarily-large Quick-Start Requests can “waste” po-
tential Quick-Start bandwidth; because routers must keep
track of the aggregate bandwidth represented by recently-
approved Quick-Start requests (so that the router does not
over-subscribe the available capacity), each approved re-
quest reduces the chances of approval for subsequent re-
quests. Ideally, a sender should not use Quick-Start for
data streams that are not expected to benefit from it, such as
those that have only a few packets of data to send. The TCP
sender should, in theory, also avoid requesting an unnec-
essarily high sending rate. However, it can be difficult for
the TCP sender to determine how much data will ultimately

1Note that TCPs are required to implement an additional timerfor
paced transmission when using Quick-Start.

be transmitted and therefore to form a reasonable rate re-
quest. For example, in request-response protocols such as
HTTP [6], the server does not know the size of the requested
object during the TCP handshake; it hasn’t yet received the
data request. Once the web server does know the requested
object, the application would need to determine the size of
the object and then inform TCP as to how many bytes will
be sent, because the objects are rarely written to the TCP
socket buffers in a single atomic call. Even if the web server
went to all of this trouble with persistent HTTP connections
there may still be more data that the web server does not
yet know about. Finally, sometimes the application cannot
even obtain the size of an object because the object is be-
ing read from a pipe or some live source. In Section 6.2 we
illustrate the problems of not making a reasonably accurate
rate request and offer some strategies for coping.

3.2 Quick-Start Processing at Routers

A router that receives a packet with a Quick-Start Rate Re-
quest has several options. Routers that do not understand
the Quick-Start Request option simply leave the option un-
touched, ultimately causing the Quick-Start Request to be
rejected becauseTTLDiff ′ will not matchTTLDiff. Routers
that do not approve the request can either leave the Quick-
Start Request option untouched, zero the Rate Request, or
delete the option from the IP header. Routers that approve
the rate in the request decrement the Quick-Start TTL and
forward the packet. Finally, a router can approve a rate that
is less than the rate in the request by reducing the rate, as
well as decrementing the Quick-Start TTL.

Routers should only approve a Quick-Start Request when
the output link has been underutilized over some recent time
period. In order to approve a Quick-Start rate request, a
router generally should know the bandwidth of the outgo-
ing link and the utilization of the link over a recent period
of time. At a minimum, the router also must keep track
of the aggregate bandwidth recently approved for Quick-
Start Requests, to avoid approving too many requests when
many Quick-Start Requests arrive within a small window of
time. Section 7 discusses in more detail the range of algo-
rithms that could be used by routers in approving or denying
a Quick-Start request.

Finally, we note that in this paper we discuss router algo-
rithms in terms of “allocating” capacity, but that our notion
of an “allocation” is quite informal. Quick-Start routers do
not in fact reserve capacity for a particular flow and then
police the usage to ensure that the given flow is able to use
the granted capacity. Rather, the router simply tracks the
aggregate amount of promised capacity (in the recent past)
in an effort not to promise more than the output link can
absorb. If, however, a burst of unexpected traffic arrives the
Quick-Start “allocations” may prove to be empty promises
when the end hosts attempt to use the granted bandwidth
and detect congestion.

3



4 Costs, Benefits and Implications

This section discusses some of the potential costs, benefits
and implications of adding Quick-Start to a network.
Increased Periods of Congestion: The general notion of
Quick-Start is that it should be approved only in situations
where the network path is under-utilized, thus allowing a
connection to quickly use spare capacity. Therefore, the
correct use of Quick-Start should not result in increased
packet drop rates in the network. In other words, Quick-
Start should notcause congestion, but rather should allow a
connection to quickly use thespare capacity in the path. In
Section 6 we show that proper use of Quick-Start does not
increase the aggregate drop rate in a network. The flip-side
is that bugs in the Quick-Start process could introduce in-
appropriate traffic to congested situations. To mitigate this,
the drop of a Quick-Start packet causes the TCP sender to
make a full reset to standard slow start.
Misbehaving Nodes and Routers:Quick-Start may pro-
vide new ways for two types of misbehavior. First, mis-
behaving receivers or routers could try to “game” Quick-
Start to benefit the connections using Quick-Start. Non-
conformant routers or hosts might try to modify the Quick-
Start messages to benefit particular connections. For in-
stance, a receiver may increase the rate given in an arriving
Quick-Start Request before echoing it back to the sender in
an effort to increase the connection’s performance. Simi-
larly, a router close to the sender and acting on the sender’s
behalf (a “performance booster”) could increase the ap-
proved sending rate and/or adjust the reportedTTLDiff ′

from the receiver to match the originalTTLDiff in an ef-
fort to mask the network’s lack of Quick-Start savvy. While
it is possible to attempt to game Quick-Start, it is not with-
out risk of lower performance, since TCP reverts to stan-
dard slow start if overzealousness results in packet drops
in the Quick-Start window — effectively slowing the data
transmission (as illustrated in Section 6). A second type of
misbehavior comes from attackers attempting to prevent le-
gitimate use of Quick-Start. This aspect of Quick-Start is
further discussed in Section 8.
Added complexity at routers and end-nodes:One of the
main costs of Quick-Start is that the required changes to
both end-hosts and routers may moderately increase imple-
mentation complexity. For end-hosts the additional com-
plexity may be justified by (i) the possible benefits of
Quick-Start and (ii) that end hosts often have spare pro-
cessing capability (although, this is not universally true—
especially for busy servers). However, the additional com-
plexity at routers can be a difficult issue, since performance
and scalability requirements in routers have to be carefully
balanced. Packets containing a Quick-Start Request repre-
sent an extra burden for routers and could result in extra
delay for end-hosts. Of course, all packets would not con-
tain Quick-Start Requests. Additionally, Quick-Start should
only be approved in times of under-utilization and therefore

the routers may be able to perform an efficient quick check
of the utilization and only act on Quick-Start requests when
the router is under-utilized (and, can likely better absorbthe
additional processing requirement). The practical implica-
tions for Quick-Start on real routers requires solid assess-
ment, but is beyond the scope of our initial study.
Interactions with Middleboxes: It is known that there are
middleboxes in the current network that drop packets con-
taining known or unknown IP options [15]. This could re-
sult in significant delay for connections using Quick-Start
requests, as packets using Quick-Start requests would have
to be retransmitted without the Quick-Start Request Option
(and if the option is transmitted on a SYN segment the ini-
tial retransmission timeout of 3 seconds [18] makes this a
lengthy process). One consequence is that initial deploy-
ments of Quick-Start may be in controlled environments,
where it is known that packets with Quick-Start options
would be forwarded.
Deployment: An additional downside of the Quick-Start
approach is that the scheme is not conducive to incremen-
tal deployment. Since both end systems and all the routers
along some path have to support Quick-Start for the mecha-
nism to work there is quite a high barrier to general use. We
expect that initial deployments of Quick-Start would hap-
pen within closed networks whereby hosts and routers both
have an interest in aiding performance.

5 Simulation Setup

In the following sections we use the ns-2 simulator to ex-
plore various facets of Quick-Start. We use a network
comprised of three routers,R1–R3, arranged in a chain.
The two links between the routers have bandwidth ofLbw

and a one-way link delay ofLd. Unless otherwise noted,
Lbw=10 Mbps andLd=20 msec. The routers employ drop-
tail queuing with a maximum queue size of 150 packets.

For most simulations, web clients and servers are con-
nected to the ends of the network (toR1 andR3) with ded-
icated 1000 Mbps links with a mean one-way link delay of
12 msec and a maximum delay of 110 msec. The actual
link delays are chosen to give a range of round-trip times
that roughly matches those from measurements, using the
process from [9]. A varying number of web servers,N ,
are connected toR1 with a corresponding number of web
clients connected toR3. The measurements presented in
the subsequent sections all refer to the traffic from the web
servers connected toR1. We also attachN

2
web clients to

R1 and N

2
web servers toR3 to provide background traf-

fic on the return path. When Quick-Start is enabled, all
web servers attempt to use Quick-Start. The standard web
traffic generator included with ns-2 is used in our simula-
tions, with the following parameter settings: an average of
30 web pages per session, an inter-page parameter of 0.8,
an average page size of 10 objects, an average object size of
400 packets and a ParetoII shape parameter of 1.002. We

4



use HTTP/1.0-like transactions, with one web object per
TCP connection. These parameters, particularly the average
object size, are not picked to match realistic traffic distribu-
tions, but rather to explore Quick-Start’s impact on a wide
swatch of connection sizes. Our web traffic simulations are
run for 150 seconds.

A few simulations make use of a single transfer at a time.
These simulations use FTP to transfer a file of a given size
over the network given above with no reverse traffic present.

Finally, all TCP connections use ns-2’ssack1 TCP vari-
ant with an initialcwnd of 3 segments (per [2]), an MSS of
1460 bytes, an advertised window of 10,000 segments2, and
the receiver acknowledging each segment.

All simulations presented in the remainder of the paper
use this setup unless otherwise noted. Simulation scripts
will be on-line on the Quick-Start web page [1].

6 Connection Performance

In this section we explore when Quick-Start is and is not of
benefit. In addition, we consider how to choose the Quick-
Start request size, the implications of Quick-Start on ag-
gregate network traffic and the implications of Quick-Start
failures.

6.1 Ideal Behavior

In an ideal Quick-Start scenario over an under-utilized net-
work path, the TCP sender would be able to transmit as
much of its data in the initial congestion window as the
spare network capacity can absorb. Figure 1 illustrates
the ideal Quick-Start behavior by displaying time-sequence
plots of two connections3. The first connection is a stan-
dard TCP connection that uses slow start to begin transmis-
sion (with an initialcwnd of 3 segments, per [2]). The sec-
ond connection on the plot shows a case where an approved
Quick-Start Request allows the sender to transmit 25 of its
30-packet transfer in the first round-trip time. When the
first acknowledgment for data arrives at the TCP sender, the
sender continues in slow-start, sending two packets for each
acknowledgment. The connection using Quick-Start com-
pletes in just over half the time required by the non-Quick-
Start connection.

Equation (2) gives the number of round-trip times,Num-
Rtts, required for transmittingN packets of data in TCP
slow-start assuming an ACK for each segment transmitted4,
in addition to the initial SYN exchange, given an initial con-
gestion window ofW packets (and whereN andW are both
at least one segment).

2This is high enough to make the advertised window a non-issuein our
simulations.

3In this scenario the link bandwidth was 384 Kbps and the round-
trip delay one second, roughly motivated by a GPRS/EDGE wireless sce-
nario [21].

4This assumes that there is no congestion in either directionand the
receiver’s advertised window does not constrain the congestion window.

0 2 4 6 8 10

0
5

10
15

20
25

30

Time (s)

S
eq

ue
nc

e 
N

um
be

r

Data
Acks

Figure 1: Normal TCP Slow-Start (left) vs. Quick-Start
(right).

NumRtts =

⌈

log2

(

N

W
+ 1

)⌉

(2)

From this equation we note the clear attraction to maximiz-
ing W as much as is appropriate over a given network path.

Next we use the ns-2 simulator to investigate the ideal im-
pact of Quick-Start. We use a simple scenario with capacity
set at either 384 Kbps or 100 Mbps, various link delays,
routers with unlimited buffers, routers willing to allocate
90% of their capacity to Quick-Start requests and TCP mak-
ing Quick-Start Requests of 20 MB/sec. Figure 2 shows the
results of the simulations. Although the simulation scenario
is not necessarily realistic, it illustrates the potentialim-
pact of using Quick-Start. The results confirm the theoreti-
cal analysis above, showing that increasing the initialcwnd
aids performance — especially for medium-sized transfers
that are close to the delay-bandwidth product of the network
path. In addition, the plots show that Quick-Start is less ben-
eficial for excessively short or long transfers. Short trans-
fers leave little room for improvement since they take little
time. The performance of the long transfers in these sim-
ulations is dictated by the bottleneck link rate. Therefore,
the longer the connection lasts the less impact the startup
scheme has on overall performance since the connections
perform identically after the startup phase. Our results are
similar to earlier results from Sundarrajan [22].

6.2 The Size of the Quick-Start Request

We next consider how the sender chooses the Quick-Start
request size, and how the size of Quick-Start requests af-
fects the aggregate usefulness of Quick-Start. As discussed
in Section 3.1.1, an ideal Quick-Start request would con-
tain the precise sending rate the connection would like to
use. However, knowing such a sending rate is non-trivial
and depends on a number of factors. A simple Quick-Start
implementation for TCP could send a fixed Quick-Start re-
quest each time a request is transmitted. This would not be
unreasonable for initial Quick-Start requests, since in many
cases the TCP sender has no knowledge about the appli-
cation or the network path when the TCP SYN segment is

5



5 10 50 100 500 5000

0
10

0
20

0
30

0
40

0

Transfer Length (KB)

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

1000ms
500ms
200ms
100ms

5 10 50 100 500 5000

0
20

60
10

0
14

0

Transfer Length (KB)

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

1000ms
500ms
200ms
100ms

100 Mbps

384 Kbps

Figure 2: Relative improvement with Quick-Start, for a
384 Kbps link and a 100 Mbps link with a range of propa-
gation delays.

sent. For Quick-Start requests sent in the middle of a con-
nection, e.g., after an idle period, the sender may be able to
make a more informed Quick-Start Request.

To illustrate the problem with overly large Quick-Start re-
quests we simulate two scenarios involving web traffic that
uses one TCP connection for each web object transferred.
Figure 3 shows the results. Each vertical line on the plots
represents a separate TCP connection’s length, and each cir-
cle indicates the quantity of Quick-Start data transmitted
over the given connection. In the first case (top plot), TCP
connections use a static Quick-Start request of 2 MB/sec
for each connection. In the second scenario (bottom plot)
the requests are ideal (even if unrealistic) for the amount of
data the given connection will ultimately transmit. In addi-
tion, Quick-Start is not used if the connection is able to send
all data in 3 segments (per the initialcwnd allowed by [2]).
This example uses an average web object size of 60 packets.

As shown in the top plot, in this scenario Quick-Start
requests are generally granted for only the first connec-
tion in each group. The router is generally unable to ap-
prove requests of later connections in each group, because
the first connection is granted all of the available Quick-
Start bandwidth even though the first connection cannot use
such a large allocation. As a result, the extra allocation is
“wasted”, in that subsequent Quick-Start requests are de-
nied unnecessarily. The bottom plot shows that when mak-
ing ideal Quick-Start requests the Quick-Start requests are
approved more often because there are fewer wasted ap-
provals.

While the ideal case above is preferable, TCP connec-

95 100 105 110 115 120 125

0
20

40
60

80
10

0

Starting Time(s)

C
on

ne
ct

io
n 

si
ze

 (
K

B
)

95 100 105 110 115 120

0
20

40
60

80
10

0

Starting Time(s)

C
on

ne
ct

io
n 

si
ze

 (
K

B
)

Figure 3: TCP connection lengths and starting times. Con-
nections with Quick-Start packets are marked with a circle.

tions do not, in general, have enough information to make
ideal requests. However, there are several ways systems
can cope. First, if an end-host is configured to understand
the maximum capacity of its last-mile hop,C bytes/sec,
requests could be chosen to be no larger thanC. Go-
ing even further, a policy decision could be made to dis-
allow any one TCP connection from using more than some
fraction of the capacity and that could be used as an up-
per bound on the Quick-Start request (e.g., on a large web
server). In addition, a sender could leverage the size of
the local socket buffer,S bytes, and the receiver’s adver-
tised window,W bytes, when choosing a request size5.
Given an RTT ofR sec6 TCP can send no faster than
min (S, W ) / R bytes/sec (assumingW is non-zero and
usingS if it is). Finally, and more speculatively, if an appli-
cation informed the sender of the size of a particular object
(when known), sayO bytes, the sender could request pre-
cisely the rate required to transmit the object in a single RTT
as(O + (O/MSS) ∗H)/R bytes/sec for a given MSS size
and estimated header size ofH bytes. While these tech-
niques do not necessarily provide for an ideal Quick-Start
request they could well provide a more reasonable request
than simple picking a static rate for all cases.

6.3 Loss of Quick-Start Packets

We now consider the response of a TCP sender to the loss of
a Quick-Start packet, that is, a packet sent in the RTT after

5When sending a request in the initial SYN segment of a connection
the sender will not know the peer’s advertised window.

6Or, an approximation if the connection has not yet taken an RTT mea-
surement.

6



a Quick-Start Response triggers an increased sending rate.
Routers should only approve a Quick-Start Request when

the output link is significantly underutilized and therefore
there should be few congestion losses due to transmitting
at the rate prescribed by Quick-Start. However, it is pos-
sible for there to be losses of Quick-Start packets because
the allocations are not reservations. If a Quick-Start packet
is lost after an approved Quick-Start Request, we call this
a Quick-Start failure. This situation can arise for a num-
ber of reasons, for instance because a burst of traffic arrives
at a router immediately after the router approves a Quick-
Start Request, or because a buggy or broken router simply
approves all Quick-Start requests or mis-calculates the rate
that should be approved.

Generally, after detecting a lost packet, the TCP sender
halves its congestion window and transmission continues
using the congestion avoidance algorithm [10, 3], increas-
ing the congestion window by roughly one segment each
round-trip time. However, when a Quick-Start failure oc-
curs, the sender cannot make strong assumptions about the
current path capacity; in particular, the sender cannot fall
back on the fact that a congestion window of half the current
size was successfully transmitted in the previous round-trip
time, as is the case during slow-start. As a result, halving
the congestion window would not necessarily be an appro-
priate response to a Quick-Start failure. Instead, as specified
in [11], after a Quick-Start failure the TCP sender returns to
slow-start, using the default initial window, as it would have
done if Quick-Start had not been approved.

Figure 4 shows time-sequence plots of several differ-
ent TCP variants to illustrate TCP’s response to a loss of
a Quick-Start packet. The top plot in the figure shows a
Quick-Start failure followed by fast retransmit and fast re-
covery (i.e., a simple halving of the congestion window).
The second figure shows a Quick-Start failure followed by
the proposed response of a slow start from the standard ini-
tial congestion window. Finally, the bottom plot shows a
connection using standard slow start without Quick-Start.
Because after fast recovery the congestion window in-
creases in a linear fashion while Slow-Start increasescwnd
exponentially, the Slow-Start response may find the appro-
priate sending rate faster than congestion avoidance, and
hence offer better performance (as is illustrated in the fig-
ure). In addition, depending on the size of the congestion
window used by Quick-Start, a simple halving may not be
enough to alleviate congestion within the network and so
several multiplicative decreases could be required before
TCP finds an appropriate value forcwnd. With a Slow-Start
response to a Quick-Start failure, the sender loses roughly
two round-trip times because of the Quick-Start failure,7

compared to a transfer without Quick-Start (shown in the

7This assumes SACK-based loss recovery that can detect and repair
multiple losses within one RTT [7]. More generally, the connection is
lengthened by one Quick-Start RTT and the time required by the loss re-
covery operation when compared to standard TCP.

0 2 4 6 8 10

0
20

40
60

80

Time (s)

P
ac

ke
ts

Data
Acks

0 2 4 6 8 10

0
20

40
60

80

Time (s)
P

ac
ke

ts

Data
Acks

0 2 4 6 8 10

0
20

40
60

80

Time (s)

P
ac

ke
ts

Data
Acks

Figure 4: The TCP Response to a Quick-Start Failure.
- Top: Halving the window after a loss.
- Middle: Slow-Start after a loss.
- Bottom: Slow-Start without Quick-Start, without losses.

bottom graph of Figure 4). While a Quick-Start failure
should be a rare event, Figure 4 shows that standard slow
start without Quick-Start can be a better choice over a path
with a badly behaving or buggy router.

Finally, we note that ECN [20] can be used with Quick-
Start. As is always the case with ECN, the sender’s conges-
tion control response to an ECN-marked Quick-Start packet
is the same as the response to a dropped Quick-Start packet,
thus reverting to slow start in the case of Quick-Start pack-
ets marked as experiencing congestion.

6.4 Aggregate Impact of Quick-Start

Because Quick-Start requests are only approved when
the output link is significantly underutilized, Quick-Start
should have little effect on the long-term aggregate utiliza-
tion and drop rates on a link. In particular, when link uti-
lization is high, routers should not approve Quick-Start re-

7



quests; thus, Quick-Start is not a mechanism designed to
help a router maintain a high-throughput low-delay state on
the output link. In Section 7 we study various methods for
routers to use to choose whether to approve Quick-Start re-
quests and how much capacity to grant each request. In
addition, we illustrate the implications of using Quick-Start
when the router is not significantly under-utilized.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web nodes

U
til

iz
at

io
n

Regular TCP
Quick−Start
QS Bandwidth

0 10 20 30 40 50

0.
00

0.
02

0.
04

Web sessions

D
ro

p 
ra

te

Regular TCP
Quick−Start

Figure 5: Comparison of utilization and drop rates with and
without Quick-Start, with a 10 Mbps shared link.

For the traffic models used in this paper, the amount of
data requested by a user is independent of whether Quick-
Start is used, and independent of the fate of the Quick-Start
requests. While the use of Quick-Start or particular allo-
cations from the routers will have an impact on the time
required for particular transfers, the aggregate amount of
data requested is not effected. Given this model, although
the use of Quick-Start might be of great benefit to the in-
dividual user, Quick-Start should have little effect on the
long-term aggregate link utilization or packet drop rates.

However, it is possible that the successful use of Quick-
Start would increase the amount of data sent and received
by each user. For example, some users could have a fixed
amount of time available for web browsing, rather that a
fixed amount of data to send and receive. In this case, the
use of Quick-Start could result in an increase in aggregate
utilization in under-utilized scenarios. Even in this case,
however, the use of Quick-Start should not affect the uti-
lization and loss rates over paths that are not under-utilized,
because in these scenarios Quick-Start requests should not
be approved by the routers.

Figure 5 shows the overall utilization and aggregate drop
rates with and without Quick-Start as a function of the num-
ber of web sessions, for a simulation scenario with web traf-
fic with an average object size of 400 packets (as described
in Section 5) on a 10 Mbps shared link. As shown in the

2000 5000 10000 20000 50000 100000 200000

0.
0

0.
2

0.
4

0.
6

File size (Bytes)

D
ur

at
io

n 
(s

)

x
xxx xx

x
x

x x
xxxxxx

x
x

x
xx xx

x x
xxx

x
x x

x
xx

x
xxxxxxx xx

x
xxxx

x
x

xx
xx xxx

x
x

x x
xx

x
x

x
x xxx

x
x

x x
x xx

xx
x xxx

x
xx

x
xx x

x
xxxx

x
xx xxx

x
xxx

x
x

xx
x

x
xx

x
x

xx x xx
xx x

x
x

x
xx xx

x
xx xxxxxxx xxxxx

x x
xxxxxx x

x x
xxxxxxx x

x
x

x
xx

xx
xxx

xx
xx

x
x

xx
xxxxx

x
xxx x

x
xxxxxxxx xxx xxxxx

x
xxxx

x
xx

xx
xxxx

x
xx

x x
xx

x
x

x
xxx xxx

x
x xxx xx

x
x xx xx

x
x

x
xxxxxxx

x
xx xxx

x
x xxxxx

x
xx

x
xx

x
xxx

xx
xxxxxx xxx

x
xx

x
xx

x
x

x
x

x
xxx xxxx

x
x xxxx x

x
xxxxxx

x
xx

xx
xxxxxx xxxxx xxx

x
xx xxx

x
x

x
xxxxx

xx
xxx

x
xxxx x

x
xxxxxx

x
xxxx

x
x

x
x xx

x
xxx

x x
xxxx

x
xx

xx
xxxxxx xxxxx xxx

x
xx

x
x

x x
xx xxx

x
xxx

xx
xx

x
x x

x
x

x
xxxx xxx x

x
x x

x
xxx

x
x xx xxxxxxxx xx xxxx

x
x

x
xx x

x
xxx xxxx

xx x
x

x
x xxxxx x

x
xx xx

x
xx

x
xx

x
xx xxx

x
x

x
x xxx

x
xxxxx

xx
x xxx

xx
xxxxxx

x
xxxx xxx xxx

x xx
x

x
x

x
x

x
x

x
x

x
x

x x
x xx xxxxxx

x x
xx xxx

x
x

x
xxxx

x
xx xxx

x
x

x
x

xx
xxxxx

x
xx

x
xxx xxx

x
xxxxx

x
x

x
xx

x x
x x

x
xxxx

x
x

x
x xx

x
xx

x x
xx xxx

x
xx

x
xx xxx x

x
xx

x
xxx

x
xxx

x
x

x
xx

x x
x

xx x
xxxxx

x x
xxxxx x

x
xx x

x
x

x
xx

x
xx

x
x

x x
xx

x
x

xx
x

x
x

x
xx

x
xx

x
x

xx
x

x
x

x x
x

xx
x

xx
xxx

x
x

x
xx xxx xxxxxx x

x
xxxxxxxxx xxxxxxx xxxxx

x
xx

x
x

x
x

x xx
x

x
x

x
xx

xx
xxxx x

x
xx

x
xxxx

x
xxxxxx

x
xx

x
xx xxxx

x
xx x

xx
xx

x
xxxxxx xx

x
xx

xxx x
x

x
xxxx xxxxx

x
xxxx

x
x xxxx

x
x

x
x

x
x

x
xxxx

x
Regular TCP
Quick−Start

2000 5000 10000 20000 50000 100000 200000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

File size (Bytes)

D
ur

at
io

n 
(s

)

xx
x

x
x

x

xx

xx xxxxxxx xxxxxx x
x

x
x

xxxxx
x

x
x

x x
x

x xxx
x

x xx

x

xx x

x

x

x

x

x

xx

x x

xxx
x

xxx
x

xxxxxx
xx x x

x xxx x
x

xx
x x

x

x

xx
x x

x
x

xxx
x x

x
xx

x
x

x
x

x x
x

x
xxxxxxx

x
xx

x
xx xx

x
xxxxxx

xxxx
x

x
xx

x
x

x
xxxx xx

xx
xxxx

x
xxxx xxxx

x
x

x
x

x x
x

xx

xxxxxxx
x

xxx xx
x

xx

x x

x

x xx xx
x

xxxx

x

xx

x

x xxx x
xx x

x
x

xx
x

xxxxx
xx

xxx x
x

x
xx

x
x

x
x x xx

xx

x

xxxx xxxxx
x

xxxxx

x

x x

x

x

x xxx

x

x

x xxxx

x

xx x
x x

xx

x

xxx x
xx x

xx xx
x

xxx x
x

x xxxx
x xx

xxxx xx
x

xx xxxxx xxx
x

xxxxxx xxxx
x x x

xxxxx
x xx

xx
x

x
x x

xxx
xx

xx
x

xx x
x

x xxxxxx xxxxxx x
x

xxxxx
x

xxx xxxxx xx
x

xx
x

xx
x x

xxxxxxx
x

xx
x

x
x

xxxxxx
x

x xx x
x

xx
x

xxxxxxxxx xx
x

xxxxxx
x

x
x

x
x

xx
x

xx
x x

x
x

xxxxxxxx xx
x

x
x

xx xx
x

xx xxxx
xx

xxxx
x

xxx
x

xxx
x

xx
x

xx
x

xx x

x

xxxxx x
x

x xx
xx

x

x x
x

x

x xx xxxxxxxxxx xx

x

xx xx
xxx xx
xx

x
x xxxx x

x
xxx

x
xxx x

x
xxx

x
x

xx
xxx

x
xxxx x

x
xxxxxxxxxx

x
xxx xxxxxx xxxx x

x
x xxx xx

x
x

x
xx x

x
xx

x
xx

x xx x
xx

x
x

x xx
x xxx

x
xx

x
x

x x
xxx

x
xx

x x
xxxxxx

x
xx

xxx
xxxx

xx
xxx xx

x
x

x x

x

x

x
x

x
x

xxxx

x

x xxx x
x

x xxx
x

x
x x

x
x

xx
x xx

x
x

xxxx
x

xxx x
x

xxxx
x

xxxxxxxx
x

xxx
x

x
xx

x xx
x

xxxx
xx

xx
x

x
x x

xx xx x
x

x xx
x

xxxx
xx

xx
x

xxx xxx xxxx
x

x xx xxxxxx
x

xxx xxx xxxx xxxx
x

x
x x

xx
x

xx
x

x
x

xxxxxxxx
x

xxxxxx

x

x x

x

xxx

x

x

x

x
x

xx
x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x
xx

xx
xx

xxx

x
Regular TCP
Quick−Start

100 Mbps

10 Mbps

Figure 6: Per-connection performance with and without
Quick-Start, with 10 Mbps and 100 Mbps shared links and
three web sessions.

figure, the utilization and drop rates are largely independent
of whether or not Quick-Start is employed. The line labeled
“QS Bandwidth” in the top graph of Figure 5 shows the
bandwidth used by Quick-Start packets in the simulations
using Quick-Start — indicating that Quick-Start is being
put to use at the beginning of transmission. We also con-
ducted simulations with a smaller average web object size
(of 60 packets) and obtained similar results.

Figure 6 shows per-connection performance of all traf-
fic involved in a simulation of 3 web servers. Each point
on the plot represents the duration of a single connection,
with the point type indicating whether Quick-Start is used.
The top plot shows the results from a simulation run over
a 10 Mbps link while the bottom plot uses a 100 Mbps
link. For medium to large transfers the plots show Quick-
Start improves performance — by a factor of 2–3 in many
cases, with larger savings over the higher bandwidth path.
The transfer duration shown in the figure includes the time
for the SYN exchange. These plots show that even though
the overall bandwidth usage and drop rates are similar with
and without Quick-Start, per-connection performance is in-
creased when using Quick-Start.

7 Router Algorithms

This section discusses several possible Quick-Start algo-
rithms for routers to use to choose when to approve Quick-
Start requests and how much capacity should be allocated
when approving requests. We start with a basic algorithm
that requires minimal state, and proceed to an extreme

8



Quick-Start algorithm that keeps per-flow state for approved
Quick-Start requests. It is desirable for routers to be ableto
process Quick-Start requests efficiently. At the same time,
the Extreme Quick-Start algorithm explores the ability of
the router to selectively approve Quick-Start requests in or-
der to maximize the use of Quick-Start bandwidth by the
end-nodes. A final consideration, that of attackers wishing
to leverage Quick-Start in denial-of-service attacks, is in-
vestigated in the next section.

7.1 Basic router algorithms

Quick-Start requests represent an increased packet process-
ing burden for routers that may also result in an increased
end-to-end delay for packets with Quick-Start requests.
Therefore, it is important that the algorithm for processing
the Quick-Start requests at routers be as efficient as possi-
ble, with a small memory footprint.

To know if there is sufficient bandwidth available on the
output link to approve a Quick-Start request, the router
needs to know the raw bandwidth and have an estimate
of the current utilization of the link. The router also has
to remember the aggregate bandwidth approved for use by
end hosts in the recent past to avoid approving too many
requests and over-subscribing the available capacity. In
this section we consider the algorithms used by routers to
process Quick-Start requests for point-to-point links; algo-
rithms for multi-access links are left as future work.

The first router design choice concerns the router’s
method for estimating the recent link utilization. There
are a range of measurement and estimation algorithms from
which to choose, including alternatives for the length of the
measurement period. We discuss two methods for estimat-
ing the link utilization, the moving average and measuring
the peak utilization. We also note that assessing alternate
algorithms is an area for future work.

The moving averageestimation technique uses a stan-
dard exponentially weighted moving average to assess the
utilization over the recent past. This scheme was originally
used for Quick-Start in [22]. We defineU(t) as the utiliza-
tion at timet, M(t) as the link utilization measurement at
time t, δ as the interval between utilization measurements
andw as the weight for the moving average. The utilization
is defined as:

U(t + δ)← w ∗M(t + δ) + (1 − w) ∗ U(t) (3)

We note that the weightw should depend on the intervalδ,
so that the utilization is estimated over the desired interval
of time.

The peak utilization estimation technique records the
link utilization measurements over the most recentN time
intervals, and uses the highest of theN measurements as the
utilization. Thus, if each time interval iss seconds, then the
peak utilization method takes the peaks-second link utiliza-
tion measurement over the most recentN ∗ s seconds. The

avail_bw = bandwidth * (1 - utilization);
avail_bw = avail_bw - recent_qs_approvals;
approved = avail_bw * ALLOC_RATE;
if (rate_request < approved) {
approved = rate_request;

}
recent_qs_approvals += approved;

Figure 7: The Share algorithm for processing Quick-Start
requests.

util_bw = bandwidth * utilization;
util_bw = util_bw + recent_qs_approvals;
if (util_bw < qs_thresh * bandwidth) {
// Approve Quick-Start Request
approved =

qs_thresh * bandwidth - util_bw;
if (rate_request < approved) {

approved = rate_request;
}
recent_qs_approvals += approved;

}

Figure 8: The Target algorithm for processing Quick-Start
requests.

peak utilization method reacts quickly to a sudden increase
of link utilization, but also remembers a period of high uti-
lization in the recent past. Unless otherwise noted, we use
N = 5 intervals of 150 msec each.

In addition to the two methods for estimating link uti-
lization, we consider two different algorithms for deciding
whether to approve a given Quick-Start request and how
much capacity to grant in an approval. Both these algo-
rithms rely on knowingrecent qs approvals, the aggregate
bandwidth promised in recently-approved Quick-Start re-
quests — ideally over a time interval at least as long as
typical round-trip times for the traffic on the link. If the
time interval for this assessment is too small, then the router
forgets recent Quick-Start approvals too quickly, and could
approve too many requests, thus over-subscribing the avail-
able bandwidth. On the other hand, if the time interval is
too large, the router errs on the conservative side and re-
members recent Quick-Start approvals for too long. In this
case the router counts some of the Quick-Start bandwidth
twice, in the remembered request and also in the measured
utilization, and as a result may deny subsequent Quick-
Start requests unnecessarily. Unless otherwise noted, we
use 150 ms as the length ofrecent qs approvals.

The Share algorithm is introduced in [22] and given in
Figure 7. The algorithm uses the output link’s raw band-
width and the recent utilization estimate to allocate up to
a pre-set fraction ALLOCRATE of the unused bandwidth
for each arriving request. Therate request variable repre-
sents the incoming request andapproved represents the ap-
proved rate request that will be forwarded with the packet.
TheShare algorithm does not follow the design criteria we

9



0 20 40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

Web sessions

Q
S

 F
ai

lu
re

s

ALLOC: 0.95
ALLOC: 0.75
ALLOC: 0.65
ALLOC: 0.50

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

Q
S

 R
eq

ue
st

s 
A

pp
ro

ve
d 

(f
ra

ct
io

n)

ALLOC: 0.95
ALLOC: 0.75
ALLOC: 0.65
ALLOC: 0.50

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web nodes

U
til

iz
at

io
n

ALLOC: 0.95
ALLOC: 0.75
ALLOC: 0.65
ALLOC: 0.50
No QS

0 20 40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

Web sessions

Q
S

 F
ai

lu
re

s

TARGET: 0.95
TARGET: 0.90
TARGET: 0.85
TARGET: 0.65

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions
Q

S
 R

eq
ue

st
s 

A
pp

ro
ve

d 
(f

ra
ct

io
n)

TARGET: 0.95
TARGET: 0.90
TARGET: 0.85
TARGET: 0.65

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web nodes

U
til

iz
at

io
n

TARGET: 0.95
TARGET: 0.90
TARGET: 0.85
TARGET: 0.65
No QS

SHARE TARGET

Figure 9: Comparison ofShare andTarget algorithms.

have sketched thus far in this paper that Quick-Start requests
should only be approved when a given link is significantly
under-utilized; theShare algorithm approves a request for
up to a fixed fraction of the available bandwidth, regardless
of the levels of utilization. We include an assessment of the
Share algorithm in this paper in order to (i) compare the
router algorithms we introduce with previous work and (ii)
to validate our design criteria that Quick-Start should in fact
only be used when all routers along a path are significantly
under-utilized.

TheTarget algorithm, given in Figure 8, approves Quick-
Start requests only when the link utilization, including
the potential bandwidth of recently-granted Quick-Start re-
quests, is less than some configured percentage of the link’s
bandwidth, denotedqs thresh. This gives a router direct
control over the notion of “significantly under-utilized”.
When a Quick-Start request is approved, the approved rate
is reduced, if necessary, so that the total projected link uti-
lization does not exceedqs thresh.

Figure 9 shows simulations with the Share and Target al-
gorithms. The simulations use a range of values for the AL-

LOC RATE parameter in theShare algorithm and a range of
values for theqs thresh parameter in theTarget algorithm.
Both the Share and the Target algorithms use the peak uti-
lization method for estimating link utilization.

The top graph of Figure 9 shows the overall link utiliza-
tion for each simulation. The middle graph shows the frac-
tion of Quick-Start Requests approved. Finally, the bottom
plot shows the fraction of Quick-Start failures. The main
difference between the two algorithms is that the Share
algorithm approves more Quick-Start requests and experi-
ences a larger number of Quick-Start failures than theTar-
get algorithm as the network becomes more congested. We
note that the ALLOCRATE parameter does not control
whether the Share router approves a Quick-Start request;
it only controls thesize of the approved request. The Share
algorithm approves Quick-Start Requests even at high uti-
lization levels. Even though the approved requests are for
progressively smaller portions of the bandwidth the rate of
failure increases. Finally, we note that the fraction of fail-
ure for both algorithms is relatively small. However, given
that both algorithms have roughly the same complexity the

10



0 20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

Web sessions

Q
S

 F
ai

lu
re

s

w: 0.05
w: 0.01
w: 0.005

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

Q
S

 R
eq

ue
st

s 
A

pp
ro

ve
d 

(f
ra

ct
io

n)
w: 0.05
w: 0.01
w: 0.005

0 20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

Web sessions
Q

S
 F

ai
lu

re
s

3 slots
5 slots
10 slots
20 slots

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web sessions

Q
S

 R
eq

ue
st

s 
A

pp
ro

ve
d 

(f
ra

ct
io

n)

3 slots
5 slots
10 slots
20 slots

Moving Average Peak Utilization

Figure 10: Comparison of moving average and peak utilization mechanisms.

Target algorithm would be preferred given the results in Fig-
ure 9.

Figure 10 compares the moving average and peak utiliza-
tion methods for estimating link utilization. The simula-
tions use theTarget algorithm with a 10 Mbps shared link
and a target level of 90%. The top graphs show the fraction
of Quick-Start requests approved, and the bottom graphs
show the fraction of approved Quick-Start requests with
dropped packets. The moving average simulations were run
with a range of values for the weightw, and the peak uti-
lization simulations were run with a range of values for the
number of 150-msec intervals over which the peak utiliza-
tion was chosen. As Figure 10 shows, the method for esti-
mating the link utilization does not significantly affect the
approval rate of Quick-Start requests, but it does affect the
failure rate; simulations using the moving average link uti-
lization have a higher fraction of Quick-Start failures.

Figure 10 shows that the selection of the weightw in
the moving average equation does not have a strong effect
on the number of Quick-Start failures. The weight con-
trols the time interval over which the link utilization is esti-
mated, but the moving average method still estimates the
average utilization; it doesn’t take into account the vari-
ance of traffic intensity that can be present, particularly
on links with low to moderate levels of link utilization.
For Quick-Start, where the router doesn’t want to approve
Quick-Start requests that could result in even transient con-
gestion, tracking the average link utilization can result in
unwanted Quick-Start failures.

For the simulations with the peak utilization method, the
Quick-Start failure ratio is generally lower than with the

moving average method. When there are more than 50 web
servers, using only three recent measurements for peak uti-
lization causes more Quick-Start failures than when larger
number of intervals are used. With twenty intervals there
are hardly any Quick-Start failures. However, when ten
or more intervals are used, the approval algorithm is also
significantly more conservative, with fewer Quick-Start re-
quests being approved.

7.2 Extreme Quick-Start in routers

We use the termExtreme Quick-Start for a Quick-Start
router that maintains per-flow state about Quick-Start re-
quests. With Extreme Quick-Start we can analyze how
much Quick-Start performance could be improved if router
efficiency was not a limiting factor. For example, an Ex-
treme Quick-Start router could perform the following ac-
tions:
• A router could keep track of individual approved

Quick-Start requests, and note when the Quick-Start band-
width resulting from that request begins to arrive at the
router (if in fact it does). This allows the router to more ac-
curately estimate the potential Quick-Start bandwidth from
Quick-Start requests that have been approved but not yet
used at the end nodes.
• A router could keep track on the fairness of Quick-

Start request approvals. If it appears that there are a number
of requests that are not approved because earlier requests
have allocated all of the available Quick-Start bandwidth,
the router could reduce the rate approved for individual re-
quests in order to achieve better fairness between flows.

It is useful for an Extreme Quick-Start router to know the

11



RTTs of flows, in order to set the length of the interval for
measuring the arrival rate of packets from a flow after an
approved Quick-Start request. There are a number of tech-
niques for routers to estimate flows’ RTTs [12]. In the anal-
ysis below, we assume that the Extreme Quick-Start router
implements a reliable method for evaluating RTTs.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

Web nodes

Q
S

 B
yt

es
 / 

A
ll 

B
yt

es

Extreme QS
QS

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web nodes

U
til

iz
at

io
n

Extreme QS
QS

Figure 11: Basic Quick-Start and Extreme Quick-Start with
a highly-tunedrecent qs approvals parameter.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

Web nodes

Q
S

 B
yt

es
 / 

A
ll 

B
yt

es

Extreme QS
QS

Figure 12: Basic Quick-Start and Extreme Quick-Start with
a conservativerecent qs approvals parameter.

Figure 11 compares the basic Quick-Start algorithm and
the Extreme Quick-Start algorithm for scenarios with a
small range of RTTs, with the assumption in this scenario
that the RTTs are known (or easily guessed) by the router,
and the router can accurately setrecent qs approvals to
roughly match the round-trip time. In these simulations,
the basic Quick-Start variant uses theTarget algorithm with
the peak utilization method. The Extreme Quick-Start vari-
ant uses a router that keeps track of approved Quick-Start
requests separately for each flow, updating its state during
the transmission of the Quick-Start window as the packets
arrive, and achieving a more accurate estimate of the over-
all amount of Quick-Start traffic that is still expected to ar-
rive. Figure 11 shows a scenario with a range of round-

trip times from 80 to 120 msec, and with the length ofre-
cent qs approvals set to 100 msec for basic Quick-Start.
From the top plot we see that the utilization is nearly the
same regardless of whether basic Quick-Start or Extreme
Quick-Start is employed. However, the bottom figure shows
that the fraction of bytes transmitted using Quick-Start is
greater when Extreme Quick-Start is used by the router
to track each allocation in detail. This illustrates Extreme
Quick-Start’s power in terms of more closely tracking re-
sources so that more requests can be approved. This sce-
nario is certainly not typical, but there could be some ini-
tial Quick-Start deployment scenarios, such as in limited
Intranets, where there is a limited range of RTTs, and also
where the traffic and network characteristics could be accu-
rately estimated.

As a point of contrast we changed the length ofre-
cent qs approvals to 1.5 seconds to investigate Extreme
Quick-Start in the context of a basic Quick-Start router that
does not have a “typical” RTT and therefore chooses a con-
servative setting (i.e., this setting results in few Quick-Start
failures, but also fewer Quick-Start request approvals). Fig-
ure 12 shows Quick-Start traffic as a fraction of the total
amount of data transmitted. In this simulation we also found
the utilization of basic Quick-Start and Extreme Quick-Start
to be nearly identical (the plot is not shown due to space
constraints). Figure 12 shows that the fraction of bytes sent
during the Quick-Start phase of the connections is greater
when using Extreme Quick-Start. The reason for this is that
the Extreme Quick-Start router is able to keep track of the
unused allocation separately for each flow as the packets ar-
rive. Therefore, less wasted capacity is allocated by Quick-
Start which allows more connections to be approved to use
Quick-Start. The difference between basic Quick-Start and
Extreme Quick-Start in this figure is larger than the differ-
ence shown in Figure 11 due to the more conservative set-
ting for the length ofrecent qs approvals.

8 Attacks on Quick-Start

Quick-Start is vulnerable to denial-of-service attacks along
two vectors: (i) increasing the router’s processing and state
load and (ii) causing temporary bogus allocations of Quick-
Start capacity that will never be used but may prevent le-
gitimate flows from having their Quick-Start requests ap-
proved. Since Quick-Start requests represent a processing
burden on the routers involved, a storm of requests may
cause a router’s load to increase to the point of impacting
legitimate traffic. Given the processing burden imposed by
Quick-Start, this could well be worse than a simple packet
flooding attack. A simple limit on the rate Quick-Start re-
quests will be considered (with a policy of ignoring requests
sent in excess of this rate) mitigates this attack on the router
itself. In the case of Extreme Quick-Start another problem-
atic aspect of a storm of packets is the memory requirement
to track bogus “connections”.

12



The second type of attack is more difficult to defend
against. In this attack arbitrarily large Quick-Start requests
are sent by the attacker through the network without any
further data transmission. With a relatively low-rate stream
of packets, this can cause a router to allocate capacity
to the attacker’s connections and thus temporarily reduce
the amount of capacity that can be allocated to legitimate
Quick-Start users. Note that the attack does not actually
consume the requested bandwidth and therefore the perfor-
mance of connections competing with attacks is no worse
than connections that simply don’t make use of Quick-Start.
These attacks are particularly difficult to defend against for
two reasons. First, the attack packets do not have to be-
long to an existing connection to do damage. And, second,
since the attack just involves a Quick-Start request travers-
ing the network path in one direction only to trigger bogus
allocations, a response is not required. Therefore, spoofed
source addresses are a possible aggravating factor for both
hiding the location the attack is originating from and caus-
ing a simple blacklisting defense to fail.

An additional problematic aspect of Quick-Start is that
legitimate requests could well cause the same impact as
attack packets. Consider a Quick-Start request that is ap-
proved by the first router for some given rate,R, which the
router then marks as “allocated” for some period of time.
Now assume the same request hits a downstream router that
either does not understand Quick-Start requests, reduces the
rate to less thanR or decides it cannot approve any Quick-
Start request. In this case, the first router has allocated some
amount of capacity that will not be used because of the con-
ditions elsewhere in the network. From the vantage point of
the first router this is similar to the attack described above.
In other words, capacity allocated for Quick-Start goes un-
used and therefore reduces the router’s ability to approve
further Quick-Start requests8.

Since Quick-Start is a loosely-connected distributed ap-
proach, routers have few options for dealing with alloca-
tions that are never used (or, not fully used). One approach
is to use the notions of Extreme Quick-Start to track a host’s
use of Quick-Start and to disallow Quick-Start for hosts
that have previously used less than their previous alloca-
tions. This approach is barely useful if an attacker can spoof
source addresses because each attack packet could simply
use a random source address. Further, it opens the door for
another attack type — namely, that an attacker can prevent
a particular host from ever using Quick-Start by making a
bogus request on the victim’s behalf, thereby getting the
victim blacklisted. In addition, using a blacklist approach
seems heavy-handed in the context of legitimate traffic that
does not fully use their Quick-Start allocation (as sketched
above).

8At first glance, allowing the router to watch the Quick-Startresponses
offers more information. However, due to asymmetric routing we cannot
assume that a router will see the Quick-Start responses. In addition, an
arbitrary router has way to tell if theTTLDiff ′ in the response is valid and
therefore whether the sender will ultimately make use of theresponse.

Another approach is for Extreme Quick-Start routers
to track the fraction of Quick-Start allocations hosts use
and then make this a factor in the approval of subsequent
requests. For instance, if some host requests a rate of
X bytes/sec but uses onlyX/2 bytes/sec because of a
downstream limitation, a router may decide to halve fu-
ture rate requests from that host. An Extreme Quick-Start
router has the required information to identify hosts that
frequently make Quick-Start requests for more bandwidth
than is actually consumed. Therefore, the Extreme Quick-
Start router can reduce subsequent rate requests approved
for these hosts.

We implemented the following algorithm in the Extreme
Quick-Start router. The router stores both the Quick-
Start allocation,A(F ), and the amount of bandwidth used,
B(F ), during the Quick-Start phase for each flow,F . Af-
ter the monitoring period has elapsed, the router calcu-
lates the fraction of the allocation actually consumed as
C = B(F )/A(F ), limiting the maximumC to 1. The
router maintains a scoreS(H) for each sending hostH as
follows:

S(H)← w∗max(C, S(H))+(1−w)∗min(C, S(H)) (4)

In our simulations we set the gainw to 0.2 and used a mea-
surement interval of 1.5 seconds. Instead of a pure mov-
ing average, we selected a function that reacts quickly to
hosts that often make larger requests than they end up us-
ing. When a new request arrives, the router decreases the
incoming rate request by the factorS(H) for the given host
H .

0 10 20 30 40 50

0.
00

0.
04

0.
08

Web nodes

Q
S

 B
yt

es
 / 

A
ll 

B
yt

es

Extreme QS
QS

Figure 13: Impact of large Quick-Start requests for all TCP
connections when accounting for abuse.

Figure 13 compares the performance of basic Quick-Start
and the variant of Extreme Quick-Start sketched above. The
web servers make static Quick-Start requests of 2 Mbps for
all TCP connections, regardless of the object size. As the
figure shows, when adjusting the allocation approved based
on previous usage, Extreme Quick Start is able to allow a
greater fraction of traffic to utilize Quick-Start comparedto
the case when the router does not track allocation usage.

Tracking per-host and per-connection state to mitigate
this problem may be a high barrier. However, we note that
(i) developing schemes based on aggregate traffic that do
not require fine-grained tracking may be possible and (ii)

13



even if fine-grained tracking is required a router that is able
to approve Quick-Start should be under-utilized and there-
fore may have some cycles to spare (and could simply turn
off all Quick-Start activity when busy). Due to space limi-
tations we defer an in-depth study of such schemes to future
work.

9 Conclusions and Future Work

In this paper we have discussed the potential costs and ben-
efits of Quick-Start on performance in an uncongested en-
vironment, the appropriate response to the loss or ECN-
marking of a Quick-Start packet, and the range of al-
gorithms for routers for processing Quick-Start requests.
However, there are many issues we could not thoroughly
study in this work, and we list some of the more significant
below.
• Effectiveness: How effective would Quick-Start be in

practice, in realistic scenarios of five or ten years from now?
Would Quick-Start be of great benefit to users who could
send an entire large transfer in a single round-trip time over
an under-utilized path? Or would most of the potential
Quick-Start bandwidth be “wasted” by legitimate requests
denied by downstream routers, by requests from aggressive
senders sending a request each round-trip time, and by ma-
licious requests whose sole purpose is to deny Quick-Start
bandwidth for other users?
• Incentives: Would routers have sufficient incentives to

implement Quick-Start, considering the potential benefits,
but also the additional processing costs and possible secu-
rity concerns Quick-Start may introduce? Our current be-
lief is that Quick-Start could be first deployed in networks
where the routers and the end-hosts have clear mutual inter-
est in speeding up connection startup.
• Extreme Quick-Start: What would be the minimal suf-

ficient implementation at the routers and would there be
sufficient benefit in deploying more complex algorithms in
routers?
• Security: How severe are the additional security issues

due to Quick-Start? What are the policing mechanisms that
could be deployed in end-nodes and in routers to address
these security issues?
• Non-IP queues: A router should not approve Quick-

Start requests if it cannot reliably determine the link utiliza-
tion all the way to the next hop. What would this mean, in
practice, when there is an Ethernet switch, an ATM cloud,
or some other non-IP queue between the router and the next-
hop IP router?

References

[1] The Quick-Start Web Page. URL http://www.icir.org/floyd/
quickstart.html.

[2] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s
Initial Window. RFC 3390, October 2002.

[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
Control. RFC 2581, April 1999.

[4] Mark Allman. TCP Congestion Control with Appropriate
Byte Counting (ABC), February 2003. RFC 3465.

[5] H. Balakrishnan and S. Seshan. The Congestion Manager,
June 2001. RFC 3124.

[6] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext
Transfer Protocol – HTTP/1.0. RFC 1945, May 1996.

[7] Ethan Blanton, Mark Allman, Kevin Fall, and Lili Wang.
A Conservative Selective Acknowledgment (SACK)-based
Loss Recovery Algorithm for TCP, April 2003. RFC 3517.

[8] R. Braden. Requirements for internet hosts – communication
layers. RFC 1122, October 1989.

[9] S. Floyd and E. Kohler. Internet Research Needs Better Mod-
els. InProc. of First Workshop on Hot Topics in Networks
(HotNets-I), Princeton, NJ, USA, October 2002. ACM SIG-
COMM.

[10] V. Jacobson. Congestion Avoidance and Control. InPro-
ceedings of ACM SIGCOMM ’88, pages 314–329, August
1988.

[11] A. Jain, S. Floyd, M. Allman, and P. Sarolahti. Quick-
Start for TCP and IP. Internet-draft ”draft-amit-quick-start-
03.txt”, September 2004. Work in progress.

[12] H. Jiang and C. Dovrolis. Passive Estimation of TCP Round-
Trip Times.ACM SIGCOMM Computer Communication Re-
view, 32(3), July 2002.

[13] D. Katabi, M. Handley, and C. Rohrs. Congestion Control
for High Bandwidth-Delay Product Networks. InProceed-
ings of ACM SIGCOMM 2002, Pittsburgh, PA, USA, August
2002.

[14] S. Kunniyur. AntiECN Marking: A Marking Scheme for
High Bandwidth Delay Connections. InProceedings of
IEEE ICC ’03, May 2003.

[15] A. Medina, M. Allman, and S. Floyd. Measuring Inter-
actions Between Transport Protocols and Middleboxes. In
ACM SIGCOMM/USENIX Internet Measurement Confer-
ence, Taormina, Sicily, Italy, October 2004.

[16] Venkata Padmanabhan and Randy Katz. TCP Fast Start: A
Technique For Speeding Up Web Transfers. InProceedings
of IEEE Globecom, November 1998.

[17] C. Partridge, D. Rockwell, M. Allman, R. Krishnan, and
J. Sterbenz. A Swifter Start for TCP. Technical Report 8339,
BBN Technologies, 2002.

[18] V. Paxson and M. Allman. Computing TCP’s Retransmission
Timer. RFC 2988, November 2000.

[19] J. Postel. Transmission Control Protocol. RFC 793, Septem-
ber 1981.

[20] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168,
September 2001.

[21] E. Seurre, P. Savelli, and P.-J. Pietri.EDGE for Mobile In-
ternet. Artech House, 2003.

[22] S. Sundarrajan and J. Heidemann. Study of TCP Quick-Start
with NS-2. Unpublished report, University of South Califor-
nia, 2002.

14


