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Abstract

Oneweaknes®f the FIFO schedulingtypical of routersin
the currentinternetis thatthereis no protectionagainstmis-
behaing flows that sendmorethantheir share or fail to use
conformantend-to-endcongestiorcontrol. This paperinves-
tigatesRED-PD(RED with PreferentiaDropping),a mech-
anismthatusesthe pacletdrophistoryattherouterto detect
high-bandwidthflows in times of congestionand preferen-
tially dropspaclketsfrom thesehigh-bandwidthlows to con-
trol the bandwidthreceved by theseflows at the congested
gueue.This paperdiscusseshe designdecisionsunderlying
RED-PD,andpresentsimulationsevaluatingRED-PDin a
rangeof ernvironments.

1 Intr oduction

The dominantcongestion-controparadigmin the Internet
is one of FIFO (First-In First-Out) schedulingat routers,in
combinationwith end-to-endcongestioncontrol. This ap-
proachis simpleto implementat the routers,and,becauset
involvesno requirementgor ary uniformity of paclet queu-
ing, dropping,andschedulingalgorithmsin theroutersalong
apath,it is well-suitedto the heterogeneitgnddecentralized
natureof thecurrentinternet.At thesametime, therearealso
seriousweaknessewm suchanapproachOnesuchweakness
is theinability to provide relative qualitiesof servicefor traf-
fic traversingcongestedoutersthisweaknesss currentlybe-
ing addressety the DifferentiatedServiceswWorking Group
in the IETF, andby otherapproacheaswell.

A secondweaknesf a network basedon FIFO schedul-
ing is thevulnerability of the routersto end-nodesvith non-
conformantend-to-endcongestioncontrol. This is coupled
with the intimaterole playedby a flow’s round-triptime and
paclet sizein the performanceof the end-to-endcongestion
control,resultingin aneffective allocationof bandwidththat
is inversely proportionto the round-trip time of the flow.
While thereis no universally-agreed-updiairnesametricfor
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best-efort traffic in thecurrentinternet, anunquestioninge-
lianceon the end-to-endcongestiorcontrolmechanismén-
plementedn theendnodess shalky atbest.

While all evidenceis that the vast majority of the traffic in
the currentinternetusesconformantend-to-endcongestion
control(e.g.,TCP),andwhile we know of no evidenceof se-
riousoperationaproblemsresultingfrom the currentstateof
affairs, thereis substantiabgreementhat additionalmecha-
nismsare neededat routers,at the very leastto protectthe
Internetfrom “misbehaing” flows thatdon't useconformant
end-to-enctongestiorcontrol.

Thereis a continuumof possibilitiesin terms of perflow
treatmentat the congestedjueue,shavn in Figure 1, rang-
ing from full perflow schedulingmechanismsuchas Fair
Queuingon one end, to the completeabsenceof perflow
treatmentypical of FIFO schedulingwith active queueman-
agementsuchas RED on the other The middle rangesof
the continuuminclude mechanismsvith perflow treatment
only for badly-misbehaing flows, mechanismsvith perflow
treatmentor all high-bandwidttlows, or mechanismsome-

IMax-minfairnesss theleadingcontendefor afairnessmetricfor com-
petingbest-efort traffic in the Internet,with proportionalfairnessasoneof
thecompetingmetrics.



wherein themiddlewith perflow treatmenfor a smallnum-
ber of high-bandwidthflows. Approacheswith limited per
flow treatmentgenerallystartwith the identificationof ex-
ceptionalflows for specialtreatmentwhile approachesvith
full perflow treatmentregenerallybasedon the directallo-
cationof bandwidth.

All of theproposedapproachewiork by applyingsomeform
of max-minfairnessrestrictingthe bandwidthof a selected
setof flows receving the largestshareof the bandwidthat
the congestedink. One adwantageof max-min fairnessis
thatit is easyto interpretlocally, andmakesno assumptions
aboutbehaiors elsavherein the network. In applyingalim-
ited form of max-minfairnessto a selectedsetof the high-
bandwidthflows, it helpsthatbandwidthconsumptiorin the
Internetis highly skewed (seeSection3), with a smallfrac-
tion of theflows on a link responsibldor mostof the band-
width consumeabverthatlink.
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Figure2: Restricting flowsto a targetbandwidth T'.

In thesimplestform, shavn in Figure2, this limited perflow
treatmentanbethoughtof asselectinga certaintargetband-
width 7', andrestrictingthe bandwidthof higherbandwidth
flowsdown to T'. In the processthis increaseshe available
bandwidthanddecreasethe paclet drop ratefor the aggre-
gate of flows with arrival rateslessthanT. For example,
whenthebandwidthfor Flow A in Figure2 is restrictedo T',
this decreasethe aggrgatepaclet drop ratefor the restof
thetraffic, andallows Flows B, C, andD to receie increased
bandwidthattherouter, if thoseflows have sufficientdemand
tofill theavailablespaceThisis essentialltheapproactihat
we follow in this paper

Mechanismswith perflow treatmenthat apply to all high-
bandwidthflows (for somedefinitionof high-bandwidthlan
be thought of as closely approximatingfull max-min fair-
ness.In additionto applyinga limited form of max-minfair-
ness,several mechanismgroposeactively punishinghigh-
bandwidthflowsjudgedto beviolatingend-to-endongestion
control,asa positive incentive for the continueddeployment
of end-to-endcongestiorcontrol.

1.1 Schedulingvs Preferential Dropping

The available mechanismdor perflow treatmentinclude
both schedulingand preferentialdropping. Scdedulingap-
proacheglaceflows in differentschedulingpartitions(there
mightbemorethanoneflow in apartition)andthebandwidth
receved by eachpatrtition is proportionalto that partition’s
schedulingate.With prefeential droppingmechanismgjif-
ferentflows seedifferentdroppingrates,with the dropping
rate as needed(in combinationwith end-to-endcongestion
control) to control the arrival rate of that flow. Scheduling
mechanism®ffer more precisecontrol, while someprefer
ential droppingmechanismsre fair only in the probabilis-
tic sense. However, schedulingmechanismslso generally
have higherrequirementgor perflow statemaintainedatthe
gueue Figurel classifiesheexistingapproacheasbasedn
eitherschedulingor preferentialdropping,andalsoroughly
placeghemalongthe continuummentionedabove.

We notethatpreferentiadroppingmechanismsuchasRED-
PD or CSFQhave severaladvantagesver scheduling-based
schemesuchasFQ. In particular dropping-basedchemes
presere FIFO schedulingwhich is goodfor low-bandwidth
flows with bursty arrival processeswhere mary perflow
schedulingmechanismsvould introduceunnecessardelay
for paclets from suchflows. Perflow schedulingmecha-
nismscould be amendedo let passsmall burstsfrom low-
bandwidthflows, thoughthis mightintroduceadditionalcom-
plexity to the schedulingnechanism.

Second dropping-basedchemeslreadyincorporateactive
queue managemento limit persistentqueueingdelay for
pacletswithin ary flow; while perflow schedulingmecha-
nismscouldalsoincorporateactive gueuemanagementhere
is little work outlining how this mightbe done.

Third, dropping-basedchemesf desiredcaneasilybeused
to actively punish high-bandwidthflows in times of con-
gestionthatarenot usingconformantend-to-enccongestion
control. Again, perflow schedulingmechanismsould be
amendedo detectflows not using conformantend-to-end
congestiorcontrolin a time of high congestionandto give
suchflows lessthantheir max-minfair share,asa concrete
incentveto flowsto useend-to-enadongestiortontrol. How-
ever, thereis little work outlining how this would bedone.

1.2 Overview of RED-PD

Theapproachn this paper RED-PD(RED with Preferential
Drop), is anidentification-basedpproactusingpreferential
droppingto control high-bandwidthflows. The useof pref-
erentialdroppingenablesus to use FIFO queuingwhich is
advantageoudecausef its simplicity, easeof deployment
andpreventionof pacletreorderingiwhich canhapperwhen
an applicationhaspacletsin two or moreflows). The moti-
vationof this work hasbeento developa light-weightmech-



anismfor identifying andpreferentially-droppindrom flows
usingsignificantlymorethantheir‘share’of thebandwidthin
atime of high congestion.We areparticularlymotivatedby
the needto control misbehaing flows not usingconformant
end-to-enctongestiorcontrol. However, our mechanisnin-
cludesa parametethat canbe eitheradjusted or setby the
systemadministratorto give behaior in arangeof placesn
Figurel's continuumof perflow treatment.

Conceptuallythereare two stepsto an identification-based
mechanisno controlhigh-bandwidtHlows. Thefirst stepis
to identify high-bandwidthflows themselesandthe second
stepis to reducethe bandwidthconsumedy theseflows. We
say that the identified high-bandwidthflows are monitored
flows.

Ouridentificationmechanisnis basednthedropsseerby a
flow attherouter Theidentificationschemecanbetunedto

identify flows above a bandwidththresholdthatis a function
of the paclet drop rate at the congestedjueue. The band-
width thresholdcanbe usedto operateRED-PDalongdiffer-

ent pointsin the continuumof perflow treatmentshavn in

Figurel.

The preferentialdroppingmechanisnis driven by the iden-
tification process.The droppingprobability of a flow is in-

creasedor decreasedn small quantato control the arrival

rate of the flow to the outputqueue. A flow's preferential
droppingprobabilityis increase@achtime theflow is identi-

fiedin theoutputqueue anddecreasedhentheflow’sdrops
in the outputqueueare significantlybelow the thresholdfor

identification.

In addition,we do not wantto invoke preferentialdropping
whenthereis not sufficientdemandrom therestof thetraf-
fic, andthe preferentialdroppingwould resultin an under
utilized link. To avoid anunderutilizedink, therouterdoes
notinvoke preferentialdroppingif the averagequeuesizeis
small (e.g.,whenthe averagequeuesizeis lessthanRED’s
minimumthreshold).This limits preferentiadroppingwhen
thereis insufficientdemandrom the unmonitoredpaclets.

1.3 Organization

The organizationof this paperis asfollows. In the next sec-
tion we discusgelatedwork. Section3 discussesometrace-
basedresultswhich justify our belief that controlling just a
few flows givessignificantcontrol over bandwidthdistribu-
tion to arouter Thisis the mainreasorfor effectivenesof
anidentification-basedcheme Sectionst and5 describeour
identificationandpreferentialdroppingmechanisnin detail.
A discussiorof someissuegelatedto RED-PDis contained
in Sections6 and 8. In Section7 we evaluatethe scheme
using simulation. Section9 discusseghe relationshipse-
tweenaggreate-basedongestiorcontrol at the router and
flow-basedcongestiorcontrol suchasRED-PD. Finally, we

concluden Section10.

2 RelatedWork

In this sectionwe briefly describesomeexisting proposals
for achieving completeor limited fairness. There are two
differentaspect®f schedulingnechanisms:iamelyfairness,
and providing incentves for end-to-endcongestioncontrol
[FF99. We believe thatend-to-endcongestiorcontrolis one
of themajorreasongor the Internets successandwe should
build mechanismshatnotonly provide fairnessamongflows
but also provide incentves for end-to-endcongestioncon-
trol. Perflow schedulingnechanisméiave beendesignedo
achieve fairnessput have in generahotyetaddressetheis-
sueof incentivesfor theuseof end-to-endtongestiorcontrol.

In Fair Queuing(FQ) [DKS8Y], pacletsare sentin the or-
derin which the routerwould have finishedsendingthemif
it could sendeachpaclet one bit at a time. Deficit Round
Robin(DRR) [SV95] differsfrom FQn its implementation,
but achieresa similar effect. Both of thesemechanismsffer
an upperboundon extra delayintroducedover a hypotheti-
cal fluid modelscheme.Both of thesemechanismslsouse
perflow queueingandthereforeare somavhatexpensve to
implement.

StochastidrairnesQueuing(SFQ)[McK90] useshashingo

mapa flow to a queue thusreducingthe lookup costfor the

source-destinatiopair in FQ. This simplification comesat

the costof maintainingmary morequeueghanactive flows

(at leastconceptually)to avoid collisions; SFQ is compli-

catedio implementwith moving hashfunctionsandavoiding

paclet reordering. SFQ doesnot provide completefairness
sincemultiple flows canbe hashednto the samequeue.

Thework in thepaperdravsheavily from Core-Stateledsair

Queuing(CSFQ)[SSZ99 andFlow RandonEarly Detection
(FRED)[LM97], two approachethatuseperflow preferen-
tial droppingin concertwith FIFO scheduling. The goal of

CSFQis to achieve fair queuingwithout usingperflow state
in the core of anisland of routers(an ISP network, for in-

stance). On enteringthe network, paclets are marked with

an estimateof their currentsendingrate. A corerouteres-
timatesa flow’s fair shareand preferentiallydropsa paclet
from a flow basedn thefair shareandtherateestimatecar

ried by the paclet. A key impedimentto the deploymentof

CSFQis thatit would requirean extrafield in the headerof

every paclet. Otherdravbacksof CSFQincludetherequire-
mentthat for full effectivenessall the routerswithin theis-

landneedto be modified.

FREDis similarto CSFQin thatit uses~IFO schedulingput
insteadof usinginformationin paclet headersFRED con-
structsperflow stateattherouterfor thoseflowswith paclets
currentlyin thequeue.Thedroppingprobabilityof aflow de-



pendson the numberof pacletsthatflow hasbufferedat the
router FRED's fair allocationof buffers canyield very dif-

ferentfairnesspropertiedrom afair allocationof bandwidth
[SSZ99. In addition,the resultsobtainedby FRED are not
predictableasthey depencbn the paclet arrival timesof the
individualflows.

Stochastidrair Blue (SFB) [FKSS99 doesnot useperflow

stateto achieve fairerallocationsbut relieson multiple levels
of hashingto identify high-bandwidthflows. As the authors
statein their paper the schemeworks well whenthereare
only a few high-bandwidthflows. In the presenceof multi-

ple high-bandwidthflows it endsup punishingeventhe low

bandwidthflows asmoreandmorebinsgetpolluted.

CHOKe [PPPO( is arecentproposalfor approximatingfair

bandwidthallocation.An incomingpacketis matchechgainst
arandompacletin thequeue If they belongto thesameflow,

both pacletsare dropped,otherwisethe incoming paclet is

admittedwith a certainprobability. Therationalebehindthis

schemads thathigh-bandwidthflows arelikely to have more
pacletsin the queue. CHOKe is not likely to performwell

whenthe numberof flows is large (comparedo the buffer

space)and even the high-bandwidthflows have only a few

pacletsin the queue.The simulationsin [PPPOQ shawv that
CHOKe achiereslimited performancefor example,in the
simulationsthe high-bandwidthUDP flows getsmuchmore
thantheir fair share.

Floyd andFall in [FF97] briefly discussnechanismsor iden-
tifying high-bandwidtHlows usingthe RED [FJ93 drophis-

tory, using CBQ schedulingmechanismso partition misbe-
having and conformantflows in differentclasses.However,

[FF97 did not presenta completesolution, andthe perfor

mancewas limited by the choice of aggreyate scheduling-
basedmechanisménsteadof the perflow preferentialdrop-

ping mechanismaisedin RED-PD. Our paperis in some
sensea successoto [FF97] usingthe perflow preferential-
dropping mechanismspreviously explored in FRED and
CSFQ.

3 Why an Identification-Based Ap-
proachWorks?

In this sectionwe presenta few traceresultswhich justify
the identification-basedpproach.The tracesthatwe exam-
inedshaw the sameresultsfoundby others thata smallfrac-
tion of flows areresponsibldor alargefractionof the band-
width. We alsoshaw thatidentifying andpreferentiallydrop-
ping from theseflows is useful. The resultspresentedchere

areasubsebdf thosepresentedn [MFPO(Q andarediscussed

herefor the sale of completeness.

Figure3 shavsresultsfrom aone-houflongtracetakenfrom
UCB DMZ in August2000. The graphshaows the fraction
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Figure3: Skewednes®f bandwidth distrib ution

of flows responsiblefor eachfraction of bytesand paclets
in the trace. A flow hereis definedby the tuple (sourcelP,
sourceport, destinatiorlP, destinatiorport, protocol).A flow
wastimedoutif it wassilentfor morethan64 secondsThat
meansf aflow did notsendpacletsfor morethan64 seconds,
it would becountedasa separatélow whenit sendsagain.It
is clearfrom thegraphthata merel% of theflows accounted
for about80%of thebytesand64%of thepaclets.Moreover,
about96% of the bytesand 84% of the paclets camefrom
just 10% of the flows. Thoughthesenumbersmight seem
very skewed, they aresimilar to thoseobtainedfrom various
headetracegakenfrom NLANR [NLA], andto otherresults
reportingon the heary-tailed distribution of flow sizes. The
numbersalso don’t changemuchif we changethe timeout
value. For instance with a timeoutof 2 secondsl% of the
flows got 78% and57% of bytesandpacletsand10% of the
flows got 97%and81%of thebytes.
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Figure4: Skewednes®ver smaller time scales

The graphin figure 4 plots the sameinformationfor much
shortertime windows. It shaws the fraction of flows respon-
siblefor eachfractionof bytesandpacletsin agiventimein-



tenval. We canseethattheskewednes$ioldsnotonly for long
time periodsbut alsofor muchshortertime windows. Thisis
ausefulpieceof informationfor identification-baseéairness
approacheasthey arelikely to identify the high-bandwidth
flows onfairly shorttime scales.

08 |

0.6 |

0.4 |

02 |

Fraction of Bytes in the Subsequent Window

. . . .
0 0.2 0.4 0.6 0.8 1
Fraction of Bytes in a Window

Figure5: Predictive natur e of bandwidth consumption

For an identification-basedpproachto be successfuljt is
necessaryhattheidentifiedhigh-bandwidtHlows in a given
interval are a goodpredictorof the high-bandwidthflows in
thesucceedin@nterval. Figure5 provesthatthisis indeedthe
case.Thegraphplotsthe fractionof bandwidthconsumedn
thesubsequerinterval by flowswhichaccountedor apartic-
ularamountof bandwidth(z-axis)in the currentintenal. For
example from thegraphin Figure4 we canseethatin atime
window of 5 seconds1% of the flows sentcloseto 50% of
the bytes. Figure5 tells usthattheseflows wereresponsible
for 36% of the bandwidthin thenext 5 secondvindow. Soif
anidentification-basedchemevasto restrictjustthesesmall
fractionof flows, it couldsave afair amountof bandwidthfor
otherflowsif it neededo.

In this papemwe areparticularlymotivatedby theneedo con-

trol misbehaing flows at a routerusingcheapmechanisms.

However, in theabsencef reliabledifferentiationtechniques
betweerconformantlows with shortround-triptimeson the
onehand,andhigh-bandwidtinon-conformanflows on the
other our proposedschemecontrolsboth cateyoriesof flows
equally For UDP flows suchas non-congestion-conthed
multimediatraffic, we would expectfor the bandwidthcon-
sumedn oneinterval to be a plausiblepredictorof the band-
width consumedn the subsequeninterval, but this will not
necessarilype the casefor all misbehaing flows. Thereis a
greatneedfor more measuremendataon the presenceand
behaior of misbehaing high-bandwidthflows in the Inter-
net.

4 Identifying High-Bandwidth Flows

This sectionandthe next describeRED-PDin detail. While
this sectiontalksabouttheidentificationmechanismthenext
discusseshe PreferentiaDroppingscheme.

We first list the possibletechniquego identify misbehaing
or high-bandwidthflows, and then delve into the approach
taken by RED-PD.A routerwith no limitations in termsof
memoryor CPU cyclescouldidentify high-bandwidthflows
by calculatingdirectlyboththearrival rateandthe pacletloss
ratefor eachflow overagiventimeinterval. In this casethe
router could usethe direct measuremenf the arrival rates
to identify the high-bandwidthflows. Moreover, the router
couldidentify misbeh&ing flows by usingthe measurements
of drop ratesand arrival rates,and plugging theseinto the
TCPthroughputequation.

However, keepingsucha completdist of thearrival rateand
the paclet drop rate at the router for eachflow is not nec-
essary In addition,real routersdo have limitationsin terms
of memoryor CPU cycles. We list belov someof the range
of possibletechniquedor identifying high-bandwidthflows
without directly calculatingthe arrival rate for eachflow.

Possibletechniquesnclude a randomsamplingof the arriv-

ing traffic; usingthe history of paclet dropsasa someavhat-
randomsampleof the arrival rate; and using otherforms of

historybasedn pacletarrivals.

¢ RandomSampling: A routerrandomlysamplesncom-
ing traffic. The high-bandwidtHlows arethenthe ones
with moresamples.

o DropHistory: Flowswith higharrival ratesarelikely to
have morepacletsdroppedattherouter If aroutergoes
back and obseresits drop history, it canidentify the
high-bandwidthflows asbeingthosewith a large num-
ber of drops. [FF97] shows thatthe RED drop history
canbe successfullyusedto estimatethe arrival rateof a
flow. While notaspreciseaspurerandomsampling the
useof the drop history givesinformationabouta flow’s
droprateaswell asaroughestimateof theflow’s arrival
rate.

¢ History Data Structur e: A routercouldmaintainsome
historicalinformation, basedon which it can estimate
a flow’s sendingrate. The historicalinformationitself
is updatedat eachpaclet arrival. The zombielist in
[OLW99] is an exampleof suchan approach More in-
formationabouta flow in the history meanshata flow
is high-bandwidth.

¢ Bloom Filters or Hashing: Incomingflows could be
hashedinto bins at one or more levels, and the bins
with morehits couldbe usedto identify high-bandwidth
flows. The identificationmechanisnin Stochastid=air



Blue [FKSS99 is an example of this approach. A
hashing-base@pproachavoids the memory and pro-
cessingrequiredfor full perflow state,with therisk of
incorrectlyidentifying low-bandwidthflows mappedo
thesamebinsashigh-bandwidtHlows.

RED-PD uses the RED drop history to identify high-
bandwidthflows (thoughwe useit in a way differentfrom
[FF97). We notethat by usingthe RED drop history, we
areidentifying notonly high-bandwidtHlows, but occasional
lower-bandwidthflows that have beenunlucky, in thattheir
lossrateat therouteris not anaccurateredictorof their ac-
tualarrivalrate. Thisis discusseth detaillaterin thissection.

4.1 Choosingldentification Parameters

In this sectionwe considerthe identificationschemes cri-
teria for identifying a high-bandwidthflow. We assumean
ervironmentdominatedby flows using either TCP or TCP-
compatiblecongestiorcontrol.

w
Congestion
Window W2 +2
W/2 +1
Wi/2

Time
Figure6: TCP’scongestionwindow in steady-state.

Considera queuewith an averagepaclet drop rate p over
somerecentinterval of time. Next, considera TCP flow
with anRTT of r seconds.We considera TCP flow where
thereceversendsa separatacknavledgemenfor everydata
paclet (ratherthanusingdelayedACKs, andsendingan ac-
knowledgemenfor every two datapaclets).In thedetermin-
istic modelof TCPwith periodicpacletdrops,this TCPflow
is doingits savtoothwith thecongestiorwindow varyingbe-
tweenw/2 andw paclets,with a paclet droppedeachtime
thewindow reachesv paclets,asshavn in Figure6. A sin-
gle congestiorcycle includesroughly w/2 round-triptimes,
andlastsroughly (w/2)r seconds(For a TCP flow thatonly
sendsan acknavledgmentfor every two data paclets, the
length of a congestiorcycle is someavhatlonget) In order
to identify a high-bandwidthflow, we would ideally wantto
consideiits arrival rateover severalcongestiorepochs.

We let the averagesendingrate of a TCP flow with a round-
trip time r anda steady-statpacletdropratep, in thedeter

ministic model, be denotedas f(r, p) pkts/sec.From some
simplearithmetic[FF99, we have thefollowing:

1)

Onecouldalsousetheequationf; (r, p) givenin [PFTK9§,

1
hilrp) = )
r\/2 + trro(3y/2)p(1 + 32%)

for TCPretransmitimeoutvaluet gro, which canbeapprox-
imatedas4r. This equationf, (r, p) incorporateshe effects
of retransmitimeouts andis basednamodelof RenoTCP
experiencingndependenpaclket drops. We discusgherela-
tive meritsof f(r,p) and f1(r, p), for our purposesl|aterin
the paper For the moment,we simply assumehatouriden-
tification mechanisnusesf (r, p) insteadof fi (r, p).

A congestiorepochcontains% paclets, so the congestion
epod lengthCL is

1 r
CL = =
v/1.5p

f(r,p)p
seconds.Thus, given a steady-stat@aclet drop rate p and
averageround-triptime r, we could considerthe arrival rate
of flows overseveral CLs.

Of coursethereis notnecessarilya “typical round-triptime”
for theflowsin aqueueandif therewas,therouterwould not
necessariljknow whatthis typical round-triptime was. For
ouridentificationmechanismye considearefeenceT CPas
a TCP connectionjn the deterministicmodel, with a target
round-triptime R andpacletdropratep. ThetargetCL gives
the CL for thisreferencel CP. Figure7 shavs how targetCL
varieswith targetRTT R andpaclet drop rate at the router
In an ervironmentwith a steady-stat@aclet dropratep, a
flow sendingat the rateof thereferencel CP couldreceve a
pacletlossroughlyonceperCL.
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Figure7: Congestionepochlength CL for atargetRTT R

Our goalis to identify thosehigh-bandwidthflows that, over
a period of several (e.g.,for K = 3) CLs, are sendingat
a rate higher than the referenceTCP in the sameerviron-
ment. In addition, we restrict our attentionto thosehigh-
bandwidthflows thathave in factgottenmultiple congestion



signals(losses)t the routerduring this intenal. Packetloss

sampleshave informationaboutboththe arrival rateandthe

loss rate of flows. Thus, we usethe paclet loss samples
to roughly estimatethe arrival rate of the flow andto con-

firm thattheidentifiedflow hasin factreceved multiple loss

events. We could insteadidentify flows by takinga random
sampleof thetraffic unrelatedo thecurrentpacletdrops,but

thiswould suffice only to estimatehearrival rate,andwould

notalsoconfirmthattheidentifiedflow hadactuallyreceved

losseduringthatperiod.

Now we canreconsideour choiceof f(R,p) (from thede-
terministic TCP model)insteadof f;(R,p) (from the Reno
TCP modelwith timeouts)for definingthe target CL. While
the TCPthroughputequationf; (R, p) moreaccuratelymod-
els TCP behaior, it basically gives the long-term sending
rate of a TCP connection.A conformantTCP flow that has
not suffered a retransmittimeoutin the mostrecentseveral
CLsmightbesendingataratehigherthan f; (R, p) overthat
period. The equationfor f(R,p) is closerto the maximum
sendingrate of the TCP flow over the shortterm (of several
congestiorepochs)Forlow to moderatdevelsof congestion,
f(R,p) and f1 (R, p) give similar results,andthe difference
is negligible. However, for higherpaclet droprates,whena
CL is quiteshort,aflow couldeasilygofor several CLswith-
out receving a retransmittimeout,andin this caseit would
seemimportantto usef (R, p) to beproperlyconserative in
our identificationof high-bandwidttflows.

Guidelinesfor the choiceof the targetround-triptime R are
discussedh detailin Sections/.7and8.2. This paramete?
is the single mostimportantparameteifor RED-PD5 iden-
tification mechanismand can be chosento make RED-PD
operateat different points along the perflow continuumof
Figurel.

4.2 The Multiple-List Identification Scheme

RED-PDusesa multiple-listidentificationmedanismbased
on the paclet drop historiesover several successie drop-
list intervals For eachdrop-listintenal (the interval length
varies,seebelow), theroutercompilesalist of flowsthathave
suffereddropsin thatinterval. The high bandwidthflows are
thosewhich appeaiin thesedrop-lists“regularly”.

For RED-PD, we considerthe drop history of flows over
K = 3 targetcongestiorepochlengths.In orderto definethe
currenttargetCL, we have to first have anestimateof there-
centpacletdropratep (asmeasureaveraperiodof roughly
several CLs, for the mostrecentknown valuefor CL). The
router canreliably determineits loss rate as the numberof
dropsdivided by the numberof arrivals. We useexponential
averagingto smooththis drop rate estimateover successie
intervals.

For RED-PDidentification,we restrictour attentionto flows

thathave recevedatleastK separatdéosseventsin the most
recentK CLs. To dothis,wedividetheperiodof K CLsinto
M separatelrop-listintervals,eachof length

K K R
(L= ——— 3
u° M /1.5p ®

secondsandkeepa separatdist of the droppedor marked
pacletsin eachinterval. RED-PDidentifiesa flow if it has
receveddropsin atleastK of thelast M drop-listintervals.
Note that this implies that the length of a drop-listintenal
variesasafunctionof therecentaveragepacletdropratep.

Now, we considerour choiceof the valuefor K, the num-
ber of CLs that make up our identificationperiod. Larger
valuesof K make theidentificationmorereliable,but at the
expenseof anincreasen thetime requiredto identify high-
bandwidthflows (seeSection5.2). In addition,alargervalue
of K malkesit morelikely thattheflow’s arrival ratereflects
the responsef end-to-endcongestioncontrol to the paclet
lossegecevedduringthatperiod. Smallervaluesof K make
it morelikely to catchunlucky flows, thatis, low-bandwidth
flows which happento suffer drops. We usethe absencef
adropin all thelists for decreasing monitoredflow’s drop-
ping probability (Section5); a small value of K would lead
to frequentchangesn the droppingprobability For now, a
valueof K = 3 seemdo give areasonablypromptresponse
alongwith areasonablerotectiorfor unlucky flowsthathave
recevedmorethantheir shareof losseslin particular avalue
of K = 2 is considerablymorevulnerableto the identifica-
tion of unlucky flows (even the lossesin the samewindow
canspreadvertwo lists).

After choosingK, the next parameteto consideris M, the
numberof separatalrop-listintervals. Clearly we need M
greatethan K, becausave wantto only considerflows that
have recevedatleastK separatéossevents. The minimum
possiblevalueof a drop-listinterval to countthedropsin the
samewindow asa singleeventis the typical roundtrip time
of flowsin thequeue Onewould wanteachdrop-listinterval
to be longerthanthis typical round-triptime to avoid over
countingnumberof separatdoss eventsreceved by mary
flows. Givenour choiceof K = 3, avalueof M = 5 has
workedwell for the numberof separat@rop-listintervals.

In ary identificationmechanismijt is importantto strike a
balancebetweerthe numberof falsepositvesandfalseneg-
atives, andthis desiredbalancealso dependson the conse-
quencesof thesefalse positives and false negatives. False
positvesoccurfor unlucky flows thatreceve morethantheir
shareof paclet losses. If the consequencesf a falseposi-
tiveis severe,thenfalsepositivesshouldbe avoidedasmuch
aspossible.If desiredtheroutercould protectitself against
falsepositivesby directly measuringhe arrival rate of moni-
toredflows, ratherthanrelying solely on the pacletlossrate
asanindicatorof the arrival rate. However, badluck for a
flow is a temporaryphenomenon.In addition, the conse-



guencesf a flow beingidentified for the first time are not
draconianandfurtherreduceits chance®f beingincorrectly
identifiedagain.Thus,we have notaddedextra mechanisms,
suchasthe direct measurememnf the arrival rate of moni-
toredflows, to avoid falsepositivesin our scheme.

Falsenegativesin ouridentificationschemevouldresultfrom
flows that getlucky, in thatthey receve lessthantheir share
of paclet losses.However, we rely on the underlyingqueue
managemernnhechanisnto ensurehathigh-bandwidtHlows
do notgetconsistentijucky, thatis, they do notconsistently
receve lessthantheir shareof paclet drops. Thus,we can
restrictour attentionto flows thathave actuallyrecevedindi-
cationsof congestiorfrom this routet

4.3 Multiple Lists or a SingleList?

Themultiple-listidentificationschemadentifiesa flow if the
flow receveslossesn K outof M drop-listintenals. This
multiple-list identification could be comparedto single-list
identification which would identify flows that receve the
largestnumberof dropsin a single,largerinterval. Themain
adwantageof multiple-listidentificationover single-listiden-
tification is thatmultiple-listidentificationignoresflows that
suffereddropsonly in onelist.

Thereareseveralreasonsvhy aflow mighthave severaldrops
in onelist, but no dropsin otherlists: because singlecon-
gestioneventfor that flow was composedf multiple drops
from awindow of data;becausé¢heflow reducedts sending
rate after several round-triptimeswith drops;or becausef

simplebadluck unrelatedo theflow’s sendingrate.

In anenvironmentwith RED andamoderatgacletdroprate,
a flow is unlikely to receive multiple dropsin a singlewin-
dow of data,andthereforeeachlosseventfor a flow would
be likely to consistof a single pacletloss. In suchan ervi-
ronmenttheremightbelittle differencebetweerasingle-list
identificationschemebasedon individual lossesor on loss
events, and there also might be little differencebetweena
single-listand a multiple-list identification scheme. How-
ever, in ervironmentswith higherdropratesor with a highly
bursty arrival pattern,a multiple-list identification scheme
couldhave significantadvantagesver the single-listscheme
basedon loss events, which would itself have considerable
adwantageover a single-listidentificationschemebasedon
individual losses.

In a setof simulationswe createdan ervironmentlikely to
shav theadwvantagesf amultiple-listschemeaverthesingle-
list schemeThecongestedink hada smallbuffer spaceand
a high ming, (half of the buffer space).Figure8 shawvs the
fraction of timesa TCP flow with the givenRTT wasidenti-
fied by the two schemes.The single-listschemddentifiesa
flow whenit experience or moredropsin the last K*CL

secondslt canbe seenthatin this ernvironmenta single-list

multiple-list identification —<—
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Figure8: The probability of identification for single and
multiple list identification schemedor a bursty lossenvi-
ronment. ThetargetRTT was40 ms.

scheméasemnlossegatherthanlosseventsidentifiesflows
with round-triptimesmuchgreaterthan R with a significant
probability. On the otherhandthe multiple list schemedoes
abetterjob of identifying only the high bandwidthflows.

Thereis anotherpossibility for a single-list schemewhich

would do betterthan the simple schemeabore. This is a
single-listschemethat identifiesa flow if the flow receves
K or morelosseventsin a singledetectionintenal of dura-
tion K « C'L, wherea losseventis definedasoneor more
lossedn a shortperiodof time (suchasa typical round-trip
time). Thisschemdendsitself to amorecomple<implemen-
tationastiming informationis requiredwith every drop. We

have not exploredthis loss-&ent-basedingle-listidentifica-
tion schemehput we believe thatit would be roughly equia-
lentto amultiple-listidentificationschemevith adrop-listin-

terval equalto the time single-listschemeausesto filter drops
into events.

4.4 Probability of Identification

In this sectionwe computeRED-PDS% probability of identi-
fying aflow sendingat a givenfixedrate. We’'ll seethatthis
probability is dependenhot only on the flow's sendingrate
but alsoontheambientdroprate.Notethatin this sectionwe
areonly investigatinga flow’s probability of beingidentified
in asingleroundof theidentificationmechanismthe steady-
statebandwidthreceved by a flow underRED-PDdepends
onwhetheror nottheflow is persistentlyidentified. Thesim-
ulationsin Section7.1 shav the bandwidthactuallyreceved
underRED-PDby a flow sendingat a fixedrateinto a queue
with afixedambientdroprate.

Considera flow sendingat a rate of v = f(R,p) pkts/sec,
wherep is the ambientdrop rate and R is the taget RTT
chosenat therouter Assumethatthe lengthof the drop-list



interval lengthis chosenaccordingto the guidelinesof the
previoussection.In this casetheflow is sending}l—fé paclets
perinterval. The probability P(1) thataflow suffersatleast
onedropin adrop-listintenal is asfollows:

P(1)=1-(1—p)¥s.

For a flow to beidentified,it hasto suffer at leastK drops
in M drop-listintervals. Sothe flow's probability of being
identifiedis

Pidentification = C(M7 K)P(I)KPI(]')MiK +
C(M,K +1)P(1)E+tp(1)M-K-1 4
o+ C(M, M)P()M (4)
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Figure9: The probability of identification of a flow send-
ing atarate vy * f(R,p) for K/M =3/5

Figure9 shavsaflow’s probabilityof identificationasafunc-
tion of its sendingate,asgiventheEquationd. Separatéines
shav the probability of identificationwhenthe ambientdrop
rateis 1%, 5%, and10% respectrely. While the probability
of identificationapproacheg for flows with highersending
rates,t is alsonon-zerdor flows sendingatlessthan f (R, p)
pkts/sec.Simulationsof the identificationof CBR flows, in
a scenariovhereeachpacletis droppedindependentlyvith
probabilityp, give essentiathe sameprobabilitiesof identifi-
cationasthoseshavn in Figure9.

Figure9 shouldbeinterpretectarefully, becaus¢he z-axisis

theratemultiplier of f(R, p), andf(R,p) is itself afunction

of theambientdropratep. Thatis, a CBR flow sendingat a

fixed ratein pkts/seamight be sendingat 2 * f(R, p) when
theambientdroprateis p = 1%, but thatsamefixed sending
ratewill bev % f(R,p) for a muchlargervalueof v when
theambientdroprateis p = 5%. Therefore,asthe ambient
droprateincreasesa flow sendingat a fixed ratein pkts/sec
becomesnorelikely to beidentified.

Figure9 shavsthata flow canbeidentifiedevenif it is send-
ing atlessthan f (R, p) pkts/sec.This occurswhenthe flow

hasbeenunlucky, and hasreceved more thanits shareof

paclet drops. The consequencesf a flow getting identi-
fied oncearenot severe;it is monitoredwith a smallinitial

droppingprobability. Monitoringthis flow furtherreducests
chancef beingidentified againand thus this flow would
soonbe unmonitored.Also, the sameflow is unlikely to be
consistentlyunlucky in its pacletdropsasRED is notbiased
in ary way towardsa particularflow. Thesefactorsensurea
bandwidthdistribution thatis fair in average.

5 Preferentially  Dropping
Bandwidth Flows

High-

After having identified high-bandwidthflows, we needto
preferentiallydrop themto bring down the bandwidthcon-
sumedby them. We would like a differentiationmechanism
to belight-weight, sothata numberof flows could be moni-
toredatthe samedime. We would lik e a differentiationmech-
anismto be compatiblewith FIFO schedulingwhichis used
by mostroutersin thelnternet.

In addition,we would like a differentiationmechanisnthat
not only protectsother traffic from the monitored traffic,

but also that provides relative fairnessamong the moni-
toredflows, protectingmonitoredflows from othermonitored
flows. Thisrulesoutasolutionthatlumpsall monitoredflows
together

Finally, the differentiationmechanisnmshould not only not

stane the monitoredflows, but also shouldnot protectthe
monitoredflows by giving them more bandwidththanthey

would have obtainedn theabsenc®f monitoring. Thisrules
outsolutionsthatonly give “leftoverbandwidth”to themon-
itored flows, or that give a fixed amountof bandwidthto a

monitoredflow without regardto the level of unmonitored
traffic.

Before goinginto our preferentialdroppingmechanismye
discusswhy existing paclket-droppingmechanismséntended
for aggreatesare not suitablefor our needsfor perflow

differentiation. Two populardifferentiationmechanismsire
RIO [CF9§ andWRED [Cis98]. In RIO, differentaverage
queuesizesare maintainedfor two cateyoriesof traffic, in

andout. A RIO-liketechniquen our casewould classifythe
identifiedhigh-bandwidthasouttraffic andtherestasin traf-

fic. A separateveragequeuesizefor thein traffic protectst

from excessie out traffic. By puttingtogetherall monitored
flows into the out cateyory, RIO would fail to provide rela-
tive fairnessetweemmonitoredflows. RIO alsocanleadto

stanationof outtraffic in somecase§BSPO0Q.

WRED maintainsonly oneaveragequeuesizeandprovides
differentiationby having differentdrop probabilities(maz,
in RED) andmin andmaxthresholdsassociatedvith differ-
entcatgyoriesof traffic. WRED fails to provide relative fair-



nessbetweermonitoredflows if thereis too muchbadtraffic
andtheaveragequeuesizeexceedsnin_th for thegoodtraf-
fic [BSP00]. WRED will alsoclub togethermultiple moni-
toredflows into the sameclassandthusfail to protecthigh-
bandwidthflows from oneanother It shouldbenotedthatthe
effectivenesof WRED goesdown asmoreclassesreintro-
duced,so a differentclassfor eachmonitoredflow is not a
goodoption. A largeamountof goodtraffic will leadto star
vation of monitoredflows asthe averagequeuesizeexceeds
min_th of goodtraffic, which mustbe greaterthanor equal
to min_th for thebadtraffic [BSP0O].

We now describea technique,perflow preferentialdrop-
ping, which hasall the requiredproperties.The mechanism
we use involves placing a pre-filter in front of the output
gueugwhichuses-IFOscheduling) All themonitoredhigh-
bandwidthflows pasgshroughthis pre-filter, aredroppedwith
a certainprobability, andthen are put in the outputqueue.
Differentmonitoredflows have differentdroppingprobabili-
ties. Theunmonitoredraffic wouldbeputin theoutputqueue
directly. Figure 10 shaws this process. This simple mech-
anismprovidesrelative fairnesshetweemmonitoredflows; a
high-bandwidttlow is droppedn proportionto its excessar
rival rate,makingits arrival ratein the outputqueueroughly
the sameasthatof the highest-bandwidtlunmonitorediow.
Perflow preferentiabdroppingdoesnot protectthemonitored
flows from the generalcongestionat the link, becausehe
outputqueuedoesnot differentiatebetweernthe flows in ary
mannewoncethepre-filterhascutdown onthemonitoredraf-
fic.

Pre-filter
(drops packets with flow specific
droppping probability)

Packets surviving
the Pre-filter

Out
—

Identification
Figure10: The dropping mechanism.

An importantpartof the abose schemas thedroppingprob-
ability of eachmonitoredflow in the pre-filter We consider
severalpossibilitiesfor the pre-filter.

Token-Bucket-BasedPreferential Dropping

In anideal settingwe would know the target bandwidthto
whicheachmonitoredflow is to berestricted Onepossibility
for the droppingmechanisnwould be a tokenbucket or vir-
tual queuerestrictingthe monitoredflow to the target_rate
beforeits pacletsentertheoutputqueue A possiblevaluefor
the target_rate would be the arrival rate given by the TCP
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responsdunction for a flow with a default paclet size, the
round-triptime R usedby the identificationprocedureand
the currentsteady-statpacket droprateat the outputqueue.
In fact, this is the tamgetrateimplicitly usedin our preferen-
tial droppingmechanismWhile thiswouldrestricttheflow’s

arrival rateto the outputqueueto the desiredvalue,it could
leadto a someavhatbursty patternof dropsfor the monitored
flow. Also, thefast-pathprocessingequiredfor implement-
ing a token bucket is more than just the probability lookup
anddroprequiredfor theschemeve describan Section5.1.

Equation-BasedPreferential Dropping

A secondpossibility for the dropping mechanismwould
be preferentialdropping with drop probability p = 1 —
(target_rate/arrival rate). Thisrequiresestimatiorof the
flow’'s arrival rateat the router The flow’s arrival rate could
be estimatedfrom the paclet drop history or measuredli-
rectly, if thereare only a small numberof monitoredflows.
A directmeasuremenf the arrival rate of monitoredflows
would protectmonitoredflows that were simply unlucky in
theirpacletdrops.Thearrival ratefor aflow usingend-to-end
congestiortontrolchange$n responséo packetdropsandso
doespacletdropprobability give by theequationabove.

5.1 Identification-Based Preferential

ping

A third possibility for the droppingmechanismandthe one
exploredin this paper is preferentiadroppingdrivenby the
identificationmechanismThatis, if amonitoredflow contin-
uesto beidentifiedfrom its packetdropsin the outputqueue,
thenits droppingprobabilityin the pre-filteris increasedand
when a monitoredflow’s paclet dropsin the output queue
drop below a certainlevel, thenits droppingprobability in
thepre-filteris decreased.

Whena flow is identifiedasa flow to be monitored(asde-
scribedin Sectiond) for thefirst time,westartmonitoringthe
flow, andpacletsfrom the flow aredroppedin the pre-filter
with asmallinitial droppingprobability We shouldpointout
herethatthe only dropsconsideredy theidentificationpro-
cessarethosesufferedattheentryto theoutputqueug(shavn
by RED Droppingin Figure 10), not in the pre-filter This
meansghat the identificationprocesss only concernedwvith
the flow’s arrival rateto the outputqueue,not to the router
itself; the two quantitieswould be differentfor a monitored
flow. If the monitoredflow is still identified by the identi-
fication processjt meanshatits arrival rateinto the output
queueis still on the high side. For suchflows we increase
the their dropping probability in the pre-filter If the flow
cutsdown its sendingrate and doesnot appeatrin ary of y
successie intenalsin theidentificationprocessyve decrease
its droppingprobability in the pre-filter Oncethe dropping

Drop-



probability of flow reaches negligible value,theflow is un-
monitored. With thesesmallincreasesand decreasesf the
droppingprobability, theroutershouldsettlearoundtheright
droppingprobabilityfor theflow.

Thedroppingprobabilityfor amonitoredflow is notchanged
whenthetheflow appearsn atleastonebut lessthanz of y
successie droplists. This providesthe necessarhysteresis
for stabilizingthe droppingprobability. Changego thedrop-
ping probability arenot madeuntil a certaintime periodhas
elapsedafterthe lastchange.This ensureghatthe flow has
hadtime to reactto thelastchange.

Now we specifyhow the routerincreasesind decreasethe
monitoredflow’s droppingprobability Whendecreasinghe
droppingprobability, we just halve the droppingprobability
for aflow. Thereductionis boundedby a maximumallow-
abledecreasén onestep. Soif halving the droppingprob-
ability reduceghe flow’s droppingprobability by morethan
this fixedbound,it is reducedy this boundinstead.The up-
perboundonthereductionreducesscillations.Theabsence
of the flow in all the drop-listscould just be the resultof it
getting lucky and not from the flow’s reductionin sending
rate. In suchcaseghe upperboundensureghatcontrolover
aflow beingmonitoredwith high droppingprobabilityis not
loosenedy alargeamountin onestep.

Whenincreasinga flow’s dropping probability, two factors
have to be consideredthe dropratein the outputqueue and

the arrival rate of the monitoredflow. If thedropratein the

outputqueuss high,thearrival rateof monitoredflows needs
to be broughtdown soonerand hencethe increasequanta
shouldbe high. Second,even amongthe monitoredflows

differentflows have differentsendingrates,so the increase
guantashouldbe differentfor differentflows. Thatis, among
the monitoredflows, thoseflows with higherarrival ratesto

the outputqueueshouldreceve higherdropratesin the pre-

filter. (Flowswith higherarrival ratesto theoutputqueuecan

be detectedy their higherdropratesin the samequeue.)

At agiveninstantwe have a groupof identifiedflows whose
droppingprobabilitieshave to beincreasedLet thedroprate
in the outputqueuebe p, andthe averagenumberof drops
amongtheflows identifiedin this roundbeavg_drop_count.
One possiblemethodfor decidinga flow’s increasequanta
thattakesinto accountoththeambientpacketdroprateand
the relative sendingrate of the differentmonitoredflows is
thefollowing:

Paeltasion = (dropyiow/avg-drop_count) xp  (5)

wheredropyio, is the numberof dropsof this flow. If this
increasequantumis morethanthe flow’s existing drop rate,
thenwe just doublethe flow’s droppingprobability (to make
surewedon'tincreaseaflow’sdroprateall of asudden) The
existing dropratefor aflow is the sumof thedroprateat the
pre-filter(zerofor unmonitoredlows) andthedroprateatthe
outputqueue.This droppingschemeénasafastreactionwhen
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dropratesarehigh, anddifferentialtreatmenfor flows based
ontheirrelative arrival rates.

5.2 ResponseTime

In this sectionwe do a simplified analysisof the time taken
by RED-PDto bring down a high bandwidthflow aswell as
thetime takento release flow which hasreducedts sending
ratebelow threshold.

Assumethata flow increasedts sendingrateall of a sudden
to v x f(R,p) pkts/sec(y > 1), wherep is the prevalent
droprateatthe outputqueueandR is thetargetRTT. f(R, p)
is givenby equationl. We malke the following simplifying
assumptions theanalysis

1. Thelossrateat the outputqueueis independenbf this
flow’s arrival ratein the queue. In reality, the lossrate
cango up whena flow startssendingat a high ratesud-
denlyandcomedown asthe droppingprobabilityof this
flow is increasedn the pre-filter.

2. Thisistheonlyflow whosedroppingprobabilityis being
increasedFromequatiorb, this meanghattheincrease
quantaof thedroppingprobabilitywould be p.

3. Theflow is successfullydentifiedin eachround.Thisis
likely to betrue until the flow is broughtdown to about
twice of f(R, p). As seenin Figure9, the probability of
identifying the flow is high for a flow sendingat twice
f(R,p). Theanalysiscanbe mademoreaccuratgand
comple) by assuminga lessemprobability andelongat-
ing the lengthin time requiredfor eachround, but we
feel thatis not necessarpaswe aremainly interestedn
aroughestimation.

Thefirst assumptiorcanleadto anoverestimatiorof there-
sponsdimeif theincreasen aflow’s sendingateis responsi-
blefor anincreasediroprateattherouter aswouldbetypical
in anervironmentwith alow level of statisticalmultiplexing
(seeSection7.3). Thesecondhissumptioteadso anoveresti-
mationof theresponséime for flowswith anincreasejuanta
of morethanp. This would be the casefor flows sendingat
avery high rate,andhencethe numberof dropssufferedby
theseflows would be morethanthe averageamongidentified
flows. Thethird assumptiodeadsto a slightunderestimation
onlywhenwe usetheanalysiselow to calculateheresponse
time to bring down theflow below 2 x f(R, p).

We calculatethe time requiredto bring down the arrival rate
of theflow in theoutputqueueto a x f(R, p). Thedropping
probabilityrequiredin the pre-filterin this caseis 2=<. Be-
causeof Assumptior?, thedroppingprobabilityincreases in
quantunof p. Hencethenumberof roundsequire(hre%.
Eachroundis M — 1 intervalslong becauseafterincreasing
the probability, we wait for M — 1 intervalsandseeif there



aredropsin K lists out of last M. This just speedaup the
probabilityincreasingphasewhile maintainingthe necessary
time betweentwo subsequenincrements. Substitutingthe
lengthof aninterval from Equation3, the total time required
is

(y—a)RK(M —1)

yp\/1.5pM

We did asimplesimulationto testEquation6. A CBR source
wasmadeto pasghroughaqueuewith afixedconfiguredoss
rate. The CBR sourceinitially sendsat 0.25 = f(R,p) and
increasests sendingrateto 4 x f(R,p) att = 50s. Figure
11 shaws the results. The line marked “equation” is based
on Equation6, andtherestof thelinesaresimulationresults
for recevedbandwidthaveragedverl-secondntervals. The

targetR usedwas40ms.lt is clearthatthe equationpredicts
the simulationresultsvery closelytill abouta = 1.5, belov

which Assumption3 ceasego hold. The simulationline is

slightly below theline of theequatiorbecaus¢he simulation
line plots the actualbandwidthreceved, while the equation
plots the arrival rate into the output queue(after which the

flow furthersuffersthe configuredossrate).
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Figurell: The responsdime of RED-PD. In thissimulation
the CBR sourceincreasests sendingrateto 4 x f(R,p) at
t = 50s andreducest backto 0.25  f(R, p) att = 250s.

Figure12 shovstheimportanceof Equations andprovesthat
Assumptior2 leadsto anoverestimatiorof thetime required
to cutdown thearrival rateof theflow. In this simulationtwo

CBRflowswerestarted At t = 50s oneof themincrease#ts

sendingateto 4 x f(R, p), theotheroneto 2 x f(R,p). The
line marked“2 flows” shaws the bandwidthreceved by the
formerflow. Theline marked“1 flow” is the sameasthatin

Figure11 andshowvn herefor comparisonSowhenmultiple
flows areidentifiedat the sametime, a largerincreaseguan-
tum for the highersenderdeadsto a quicker responsdrom

RED-PDandat the sametime protectsthelow sendergrom

ahighincreasejuantum.

We now estimatethe time requiredto releasea flow, thatis,
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Figure12: Effect of Equation 5 and overestimation of re-
sponsetiime becauseof Assumption 2.

the time taken to transfera monitoredflow to the unmoni-
toredcateyory afterit cutsdown its sendingrate. Thetime

estimatdellsusnotonly how longthisflow will bepenalized
afteraratereduction but alsothe time requiredoy RED-PD
to forget a monitoredflow which ceasego exist. The only

assumptiorwe make in this computationis that the flow is

no longeridentified afterit cutsdown its sendingrate. The

assumptiorholdsaslong asthereducedsendingrateis way

belov f(R, p).

Considera flow being monitoredwith a pre-filter dropping
probabilityof P. Thisflow would be unmonitoredvhenthis
droppingprobabilitygoesbelon P,,,;nThresh- IN €achround
the probability is reducedby eithera factorof g or a fixed
amountpy, Whicheverleadsto lessereduction. Assumehere
aren subtractve reductionroundsfollowedby m multiplica-
tive reductionrounds.

The subtracte reductionroundsgo in the seriesP, P —
P4, ----, P — mpg and end when the dropping probability
P — npg goesbelow 2 x py. Roughly this givesus

0 if P<=2x%py
n2 { L _ 9 otherwise
Pd
The multiplicative reductionof the flow would go in the se-
ries P — npy, P_ﬁ"pd, P_ﬂgpd o P;zpd, where szpd <
PinThresn. Thisgivesus

log(P Lot )

minThresh

log(B)

Thetimerequiredfor eachroundis intervals(minimumwait
betweenwo successie decrements)Takinginterval length
from Equation3, thetotal releasdimeis

m >

(m+n)IRK
trelease = 7
! sqrt(1.5p) M 0



We use (ﬂapda PrinThreshs l) = (27 0.05,0.005, 3)

for responsie flows and (8,p4, PninThresh;l) =

(1.5,0.05,0.0025, 5) for unresponsie flows, which makes
the releaseslower for unresponsie flows (seeSection6.2).

For the simulationin Figure1l, P = 0.75 andthe sending
rateis4 x f(R,p), sowegetn = 13 andm = 5. Therelease
time for p = 1% comesout to be 10.58 secondsaindis very

closeto whatwe getfrom the simulationgimmediatelyafter
thebandwidthcutdovn att = 250s).

6 Discussion

In this sectionwe discusssome issuespertainingto the
schemawe have describedabove.

6.1 Max-min Fairness

Thefairnesgropertiesof the network aredetermineddy the
fairnesspropertiesof the routersandthe congestiorcontrol
algorithm usedat the end hosts. In a network with FIFO
gueuesandTCR therelative bandwidthrecevedby two con-
formant TCP flows depend=on factorssuchastheir round-
trip times, and the numberof congestedinks traversedby
eachflow. This sectiontalks aboutthe fairnesgropertiesof
RED-PDandhaw it achieresalimited form of max-minfair-
ness.

FIFO queues,without perflow differentiation,cannotpro-
vide max-minfairness;the bandwidthreceved by a flow is
proportionatto the arrival rateof thatflow. In contrasta full
max-minfairnesschemdik e FQ doesnotlet aflow getmore
bandwidththananotherflow whosedemancasnotbeemmet.
RED-PDaimsto provide limited max-minfairnessjn which
we control the bandwidthallocatedto the high-bandwidth
flows. The high-bandwidthflows are definedusing Equa-
tion (1) for a selectedarget RTT R and existing drop rate
p. RED-PDchangegshe fairnesgropertiesof the systemby
controlling the arrival rate of selectedlows into the output
gueue by droppingfrom the identifiedflows in the pre-filer.
Thus,theoverallfairnessvould besimilarto onein whichno
flow wassendingatarategreatetthan f (R, p).

To put it clearly in ervironmentswhere all of the high-

bandwidthflows are using conformantend-to-endconges-
tion control, and have round-trip times considerablyarger
thanthetargetround-triptime R, preferentiadroppingmight

never be invoked, leaving the fairnesspropertiesof the un-

derlyingsystemunchangedThatis, for suchanenvironment
with FIFO schedulingand TCP or TCP-compatibleconges-
tion controlmechanismghis would meanthefamiliarbiases
in favor of flows with smallerround-triptimes.

However, in ervironmentswvith non-conformanflows or with
flowswith round-triptimeslessthanthetargetround-triptime
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R, RED-PDchangeshebandwidthallocationof theunderly-
ing system.In particulay RED-PDpreferentiallydropsflows

till their arrival rateinto the queueis notmorethan f (R, p).

Concomitantwith the controlling the high bandwidthflows

is the reductionof theambientdroprate,definedasthedrop
rate at the outputqueue. The ambientdrop rateis the drop
rate seenby unmonitoredflows, andalsothe drop rate seen
by monitoredflows afterpassinghroughthe pre-filter RED-

PD reduceghe ambientdrop rate by controlling the arrival

rateto the outputqueue. The extent of the reductionin the
ambientdroprateq depend®nthetargetRTT R usedatthe
router (seesection7.7). The bandwidthabore which flows

aremonitoredalsodependsn the ambientdroprate. A de-
creasdan the ambientdrop rateresultsin anincreasen the
bandwidthallowed for anindividual unmonitoredflow. Ex-

tendingthis to the scenariovherethe droprateis negligible,

RED-PDhasvery little effectin sucha scenario.Thisis the
reasonwhy we say RED-PD controlshigh-bandwidthflows

atthecongestedouter

6.2 Unresponsve Flows

It is importantfor schemeghat provide differential treat-
mentfor flowsto provideincentvesfor endto endcongestion
control. Theidentificationand preferentialdroppingmecha-
nismsof RED-PDdescribedsofar make no judgmentsabout
whetheranidentifiedflow is or is notmisbehaing - identified
flows are treatedthe same,whetherthey are unresponsie,
or simply TCP flows with shortround-triptimes. However,
to provide a concreteincentive to end-userdo useconfor
mantend-to-endtongestiorcontrol,oneshouldactively pun-
ish high-bandwidthflows that are judgedby the congested
routerasunresponsie. In this work, we have addressethe
issueof identifyingunresponsieflows only briefly, andatthe
momentRED-PD’ only responséo the identificationof an
unresponsieflow is to bring theflow down to its “f air share”
someavhat more quickly thatit would for a monitoredflow
thatwasnotidentifiedasunresponsie.

However, by performing the experimentof increasingthe
drop rate of an identified flow, the preferentialdropping
mechanisnof RED-PDgivesustheidealframewvork for test-
ing whetheranidentifiedflow is or is notresponsie. Investi-
gationsof possibilitiesfor decreasinghe throughputfor un-
responsie monitoredflowsto significantlylessthantheir fair
share,asa concreteincentve towardsthe useof end-to-end
congestiorcontrol, will be addressedh future work. Some
potentialpoliciesaredroppingfrom unresponsie flows with
aprobabilityhigherthanthatsettledatby RED-PDdynamics
or restrictingunresponsie flows to bandwidthmuch lower
thanf(R,p).

To performthetestfor unresponsienessywe keepa historyof
thearrival rateanddrop ratefor eachmonitoredflow, where
the drop rate is the sum of the pre-filter and output queue



drops. Note that this would requirethe additionaloverhead
of measuringhe arrival ratefor monitoredflows. Our sug-
gestionwould be to recordthe arrival and drop ratesover

successie periodsof y B secondswhich correspondso sev-

eral congestiorepochgor arny conformantTCP flows likely

to identified.

Oncewe have a numberof arrival/loss-ratepairsin a moni-
toredflow’s history, we cancheckif the pacletdropratefor
the flow hasincreasedsubstantiallywhile the flow was be-
ing monitored. If the flow's paclket drop rate hasincreased
substantiallybut the flow’s arrival rate at the routerhasnot
decreasedn responsethenthe router can reasonablyinfer
thatthe flow is not responsie. From Equation(1), the TCP
responséunction f (R, p) impliesthatif thelong-termpaclet
droprateof a conformantflow increasesy a factorz, then
the arrival rate of the flow shoulddecreasédy roughly /z,
thatis, to roughly1/+/z of its previousvalue.

We would notethat this testfor unresponsienessan have
falsepositives, it could identify someflows that arein fact
responsie. The arrival rate of a flow at the routerdepends
not only on the dropsat that router, but alsoon the demand
from theapplication,andthedropselsavherealongthepath.
In addition,the routerdoesnot know the round-triptime of
theflow, or the otherfactors(e.g., multicast,equation-based
congestiorcontrol mechanisms)hat affect the timelinessof
the flow's responseo congestion. Thus, the router should
take somecarein applyingtheresultsof theunresponsieness
test,anderr of thesideof caution.

The testfor unresponsienesanalso have falsenegatives,
in thatit mightnotdetectmary high-bandwidtHlowsthatare
unresponsie. However, thisis nota problem,sinceRED-PD
controlsthe bandwidthreceved by theseflows at ary rate.
Thegoalis simply thatthe mostblatantanddisruptive of the
unresponsie flows would beidentifiedasunresponsie.

To testfor unresponsienesswe simply testhow a flow re-
ducedits sendingratein responsdo anincreasedirop rate.
If amonitoredflow did notreducets sendingratein response
to anincreasedirop rate, we declarethe flow asunrespon-
sive. Whenamonitoredflow is identifiedasunresponsie,the
routeris morewary of it thanof othermonitoredflows. The
routerincreaseshe droppingprobability of the unresponsie
flow in biggerquantaanddecreased in smallerquanta(the
resultof which canbe seenin Section7.3). Theresultis that
we reachthe right droppingprobability for an unresponsie
flow sooney andkeepit undertighter control. If the unre-
sponsve flow becomegesponsie, the flow will cut dowvn
its sendingrate, and the router would slowly decrease¢he
flow’s droppingprobability Whenthe droppingprobability
becomemaegligible, we unmonitorthe flow altogetherand
loseall history of the flow beingunresponsie. Thuswe do
not have to do arnything specialto discoverthatanunrespon-
sive flow hasbecomeesponsie again.
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6.3 EvasieFlows

Given a completeknowledge of the identification mecha-
nisms at the router a high-bandwidthflow can possibly
evadethe identificationprocedure. To evadethe identifica-

tion mechanismthe evasive flow would have to sendin such
amannethatit recevesdropsin atmostK — 1 of M succes-
sive identificationintervals. A flow is notlikely to beableto

do this preciselywithout knowing the lengthandstarttimes

of the identificationintervalswhich arenot fixed but change
with droprateattherouter However, it is truethatthemore

bursty the sendingpatternof a flow over successie identi-

fication intenvals, the lesslikely it is to be detectedby the

identificationmechanism.

To protect againstbursty flows, the identification mecha-
nism couldincludeadditionalproceduregor detectinghigh-
bandwidthbut bursty flows. In particular the identification
mechanisntouldextendto flowsthatrecevedropsin atmost
K — 1 of M successie identificationintervals, but thathave
avery high numberof pacletdropsin thesentervals.

6.4 PacketsvsBytes

So far, we have describedRED-PD only in termsof pack-
ets,asa resultof which a flow sendingfewer larger paclets
can get away with more bandwidththan a flow with same
bandwidthin bytes/sedut sending(more) smallerpaclets.
Sincethereis no consensusn the networking community
aboutwhetherflows shouldbechagedperpacletor perbyte,
onewould desirea schemewhich canbe operatedn either
mode. The biasagainstsmallerpacletsin RED-PDcaneas-
ily bereducedy runningthe underlyingRED queuen byte
mode,wherea flow’s pacletsaremarkedin proportionto its
arrival ratein bytes/secratherthanin proportionto its arrival
ratein paclets/secFor a RED queuerunningin byte mode,
the countingof dropsin Equation5 shouldbe donein terms
of bytesinsteadof in termsof paclets. With thesechanges,
RED-PD5s biasagainssmallerpacletsgoesaway. We tested
this using simulationsin which two groupsof flows, with a
paclet sizeratio of two, were sendingat the samerate (in
bytes/secver a commonRED-PD queuewith the above
mentionedchanges. One group of flows was sendingat a
ratemorethan f (R, p) andthe otheratlessthanit (thisis in
somesensdheworstcasefor thebias).In all thesimulations
we did, underdifferentloss rate conditions,the bandwidth
obtainedby onegroupof flows waswithin 10%of another

7 Evaluation

In this sectionwe determinepsingsimulation theimpactof
RED-PDandits effectivenessn controlling high-bandwidth
flows. Simulationswere carriedout usingthe NS network



simulator[NS]. RED-PD hasbeenaddedto the NS distri-
bution, andwe planto make our simulationscriptsavailable
shortly Mostof thesimulationdn thissectionuseTCPflows
thatsenda separateACK for every datapaclet; future sim-
ulationswill alsoincludeTCP flows usingdelayedacknavl-
edgements.

7.1 RecevedBandwidth

The simulationsin this sectionexplore the bandwidthre-
ceivedby flows sendingat a fixedrate,givenRED-PDanda
specifiedpaclet droprateatthe congestedjueue.The band-
width reduction(by dropping)occursin the pre-filterandout-
put queuefor monitoredflows andjust in the outputqueue
for unmonitoredflows. In orderto have a controlledenvi-
ronment,the RED-PD outputqueuewas configuredto drop
eacharriving pacletwith afixed probabilityp, ratherthanas
determinedoy RED dynamics. A CBR sourcewas started
with a sendingrateof v * f(R,p) pkts/seq(y > 0), where
RisthetargetRTT (40 ms)andp is the configureddroprate
at the queue. Figure 13 shaws the results. The line labeled
“precise”shows the targetupperboundon the arrival rate of
amonitoredflow to the outputqueuewherethe z-axis gives
the steady-statarrival rateof the monitoredflow to the pre-
filter. Theline labeled“p=1%" shavs the actualthroughput
receved by the CBR flow after the outputqueue whenthe
ambientpaclet drop rateis 1%. Therearetwo reasongor
the lines with the simulationresultsbeing below the “pre-
cise” targetline. First, flows with anarrival rateof f(R,p)
pkts/sedo the outputqueuestill hase a non-zeroprobability
of beingidentified,andof beingpreferentiallydroppeduntil
they reducetheir sendingratefurther Secondthetargetline
specifieghetamgetarrival rateto the outputqueuewhile the
simulationline givesthe throughputafter the dropsin both
thepre-filterandthe outputqueue.

0.8 |
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0.4 |

Received Rate Multiplier of f(R,p)
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15 2 25 3
Sending Rate Multiplier of f(R,p)

05 1
Figure13: Bandwidth recevedby a flow.

Thesimulationlinesin Figure13shaw thattherecevedband-
width of the CBR flow doesnotincreasewith theincreasef
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the sendingrateabove 1 * f(R,p). This shaws thata flow
is not ableto consumea large amountof bandwidthby in-
creasingts sendingate.Anotherinferencehatcanbedravn
fromthefigureis thatRED-PDsuccessfullyrotectsthelow-
bandwidthsenders.This is evident by a relatively smallde-
creasean bandwidthrecevedby theflows whosesendingate
is low. Theonly dropssufferedby thelow-bandwidthsenders
arethosein the outputqueue.Thus,it becomesmportantto
reducetheambientdroprateby controllingthe arrival rateof
thehigh-bandwidtHlows into thequeue.

7.2 Fairness

The previous sectionshaved that RED-PD can control the
bandwidthallottedto high-bandwidthflows, andthatthe re-
ceivedbandwidthis roughly samefor all the high-bandwidth
sendersThelastsimulation,with justoneflow passingover
the queuewith a fixed drop rate,wasa “toy” simulationto
prove the main propertiesof RED-PD.Therestof the simu-
lationsin the paperarenormalsimulationsdonewith the un-
derlying outputqueueas RED and hence the ambientdrop
ratedeterminedy RED dynamics.Fromthis pointonwards,
we'll talk abouta flow’s throughputin termsof Mbps be-
causehereis nofixeddropratep for calibratingthethrough-
putin termsof f(R,p). The capacityof the congestedink
is 10 Mbps in all the simulations. Flows were startedat a
randomtime within 10 secondsindaggreyatedresultswhen
presentedweretakennot before20 secondsfterthe startof
of the simulation. Unlessotherwisespecified thetamgetR is
40ms. Exceptfor the web traffic simulationin Section7.4,
the paclet sizeusedin simulationsis 1000bytes. RED was
runningin paclet modeandthe SACK versionof TCP was
usedin all simulationsinvolving TCP.

The simulationin Figure 14 shows that RED-PD approxi-
matesmax-minfairnessamonghigh-bandwidtHlows (which
aresendingsimultaneoushandat differentrates)by increas-
ing anddecreasinghedropprobabilitiesin theiterative man-
ner explainedin Section5. The simulationconsistsof 11
UDP CBR flows. The sendingrate of the first flow is 0.1
Mbps,thatof secondlow is 0.5Mbps,andevery subsequent
flow sendsat a rate which is 0.5 Mbps morethanits previ-
ousflow (sothelast UDP flow sendsat 5 Mbps). Figure 14
shaws the bandwidthreceved by eachof the 11 CBR flows
with RED andwith RED-PD,while a third line shawvs each
flow’s max-minfair share. The graphshaws thatwith RED
eachflow recevesabandwidthshareproportionalo its send-
ing rate, while with RED-PD all the flows receve roughly
their fair share. The simulationshavs RED-PD5 ability to
controlthe high-bandwidthflows, protectthe low bandwidth
flows (1 and2), andprotecthigh-bandwidtHlows from each
other With RED-PDthe ambientdrop rate wasreducedto
roughly 4%, while without RED-PD the ambientdrop rate
would have beenabout63%.
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Figure14: Simulation with multiple UDP flows. Flow 1 is
sendingat0.1Mbps flow 2 at0.5Mbpsandevery subsequent
flow is sendingatarate0.5Mbpsmorethanthepreviousflow

The simulationin Figure 15 consistsof a mix of TCP and
UDP flows. Theaimis to studythe effect of high-bandwidth
UDP flows on conformanfTCPflows. Thereare9 TCPflows
and3 UDP flows. The TCP flows have differentround-trip
times;thefirst threeTCPflows have round-triptimescloseto
30 ms (thereis somevariationin the actualRTTSs), the next
threehave RTTs around50 ms, andthe lastthreehave RTT
of 70 ms. The UDP flows, with flow numbers10, 11 and
12, have sendingratesof 5 Mbps, 3 Mbps and1 Mbps re-
spectvely. Again, Figure 15 shavs the bandwidthof each
of the 12 flows with RED and with RED-PD. With RED,
the high-bandwidtHJDP flows run away with almostall the
bandwidth)eaving little for the TCPflows. In contrastRED-
PDis ableto restrictthebandwidthallottedto the UDP flows
to neartheir fair share. With atamgetR of 40 ms, RED-PD
monitorsnot only the UDP flows but alsothoseTCP flows
with RTTs around30 ms (andoccasionallythosewith 50 ms
aswell). Clearly eachof the UDP flows receved a different
pre-filterdroppingrate,becauseachUDP flow wassuccess-
fully restrictedto its max-minfair share. It is interestingto
notethatthe TCP flows with RTT of 70 msstill getslightly
lessbandwidthcomparedo otherflows. We delve into the
reasondor thisin detailin Section7.7.

7.3 Adapting dropping probability

Thesimulationin Figure16 shavs RED-PD5 ability to adapt
tothevaryingsendingateof aflow. Thesimulationis similar
tothatpresenteéh Sections.2butit hasa RED queuenstead
of aqueuewith afixeddroprate,andis donein the presence
of backgroundraffic. A UDP flow wasstartedwith theinitial
rate of 0.25Mbps. At ¢t = 50s the UDP flow increasests
sendingateto 4 Mbps,andatt = 250 it decreaseis sending
ratebackto 0.25Mbps. Othertraffic onthelink consistef
9 TCP flows with the sameRTTs asabove. Figure 16 showvs
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Figure15: Simulation with a mix of TCP and UDP flows.
Flows 1-9 areTCPflows, 1-3with RTT 30ms,4-6 with RTT
50msand 7-9 with RTT of 70ms. Flow 10, 11 and12 are
UDP flows with sendingrateof 5 Mbps,3 Mbpsand1 Mbps
respectiely

the bandwidthreceved by the UDP flow averagedover 1-
secondntenvals. Figure16 shawvs theresultsof two separate
simulations pnewith the testfor unresponsienesgslisabled,
andonewith it enabled Thebottomgraphof Figurel6 shavs
the exponentialaverage(with o = 0.5) of the ambientdrop
rate.

The responsdime for cutting down is much lessthanthat
computedin Section5.2 mainly becauseAssumptionl of

a fixed ambientdrop rate doesnot hold in this scenario,as
shavn in the bottom graph of Figure 16. The graphalso
shavsthatif theunresponsie testis on, the UDP flow is cut
down muchsoonerandreleasedater, asdiscussedbefore.In

this simulationit took aboutthreesecond$or RED-PDto de-
clarethe UDP flow unresponsieafterit increasedts sending
rate.

As we saidearlier the speedof RED-PD5 reactiondepends
ontheambientdroprateandthearrival rateof the monitored
flow. If the ambientdrop rateis high, the increasequanta
is large andthe right droppingprobability is reachedmuch

faster In asimilarfashion RED-PDadaptsts droppingprob-

ability whenthe conditionsattherouterchangefor instance,
if thearrival of a significantnumberof new flows leadsto an

increase@mbientdroprate.

7.4 Web Traffic

Thesimulationin Figure17 shavs theeffectivenesof RED-
PD in adynamicervironmentin the presencef web traffic
(asrepresentebtly thewebtraffic generatom ns). Thepaclet
sizein this simulationwas500 bytes. The objectsize distri-
bution usedwas paretowith average24 paclets and shape
parameted.2. Thelong term averageof the generatedveb
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Figure16: Adapting Dropping Probability. Thetop graph

shavs the bandwidthrecevedby a UDP flow which changes
its sendingrateto 4 Mbpsatt¢ = 50s andbackto 0.25Mbps

att = 250s. Theline labeledf (R, p) is basedntheambient
droprateseenover the whole simulation. The bottomgraph

plotsthevariationof ambientdropratewith time.

traffic wasabout5 Mbps,roughly50%o0f thelink bandwidth.
A dumbbelltopologywith 5 nodeson eachside was used.
The RTTs for flows on this topologyrangedfrom 20 to 100

ms. In additionto the web traffic, traffic includedone UDP

flow with a sendingrate of 2 Mbps andten infinite demand
TCP flows. Two simulationswere run, one with and one
without RED-PD. Figure 17 shavs the cumulatie fraction

of webrequesteompletedy agiventime. Thereis asignifi-

cantgainfor thewebtraffic with RED-PD,in spiteof thefact
thatshort-R' T TCPflows carryingwebtraffic arealsoocca-
sionally monitored(if they lastsufficiently longto beidenti-

fied). By monitoringthe UDP flow andshort-R' T TCPflows,

RED-PDreduceghe ambientdrop rate,which doesa lot of

goodfor othertraffic. Figure 18 shows the bandwidthob-

tainedby eachof the infinite-demandlows. Apartfrom the

UDP flow, RED-PDalsoreduceghe bandwidthobtainedby

theshort-RI'T TCPflows (1 and?2), astheir RTT is lessthan
thetargetR of 40ms.

7.5 Multiple CongestedLinks

The simulationin Figure19 exploresthe impactof RED-PD
with multiple congestedinks. Eachcongestedink hasa ca-
pacity of 10 Mbps. On eachlink eight TCP sourcesandtwo
UDPsourcesverestartedwith round-triptimesrangingfrom
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Figure17: Simulation with Web Traffic. The cumulatve
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Figure18: Simulation with Web Traffic. Thebandwidthby
the long flows. Flow numbersl-10 are TCP flows, 2 each
with RTT in msof 20,40, 60,80and100. Flow 11is aUDP
flow sendingat 2 Mbps.

20to 80 ms. The UDP flows were eachsendingat 5 Mbps.
We studythe bandwidthobtainedby a flow passinghrough
all the congestedinks, asthe numberof congestedinks in-

creaseTheflow passinghroughmultiple congestedinks is

eithera UDP flow with sendingrateof 1 Mbpsor (in asepa-
ratesimulation)a TCPflow with anRTT of 80 ms. TheRTT

of theTCPflow waskeptthesamedrrespectve of thenumber
of congestedinks it passedver, by adjustingthe delay of

the connectinghode,to factorout a throughputdecreaselue
toanincreasingRTT.

Figure19 shows the bandwidthobtainedby the flow passing
throughmultiple congestedinks, with andwithoutRED-PD.
Eachmarkin Figure 19 shaws the resultsof a single sim-
ulation, with eithera UDP or a TCP flow, with or without
RED-PD, and with the numberof congestedinks ranging
from oneto five. Thethroughputfor the multiple-links flow



goesdown asthe numberof links increaseshut is muchbet-
terwith RED-PDthanwith RED,becaus&®ED-PDdecreases
theambientdropratefor eachof the congestedinks. Unlike
completeallocationschemedik e FQ, RED-PDhasa goal of
limited max-minfairness,anddoesnot bring down the am-
bient drop rate to zero. However, by controlling the high-
bandwidthflows, RED-PDbringstheambientdropratedown
to manageablévels. The decreasén the ambientdrop rate
dependon thetamgetR (higherR leadslower droprate),an
issuewe discussn moredetailin Section7.7.
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Figure19: Multiple CongestedLinks. Thegraphshowvsthe
throughputof the UDP or the TCP flow which goesover all
thecongestedinks.

7.6 Other CongestionControl Models

In the simulationin Figure 21, we explore RED-PDS im-
pact on congestioncontrol modelsotherthan TCP. TFRC
[FHPWO( is a TCP-friendly rate-basedgrotocol which at-
temptsto smooththesendingatewhile maintaininghesame
longtermsendingrateasTCP asgivenby the TCP equation
in [PFTK9§. Insteadof halvingits sendingratein response
to eachcongestionindication, TFRC estimategshe average
lossrate,andadaptsdts sendingateaccordingly To maintain
asmoothesendingate, TFRCrespondsnoreslowly to con-
gestionthatdoesTCR This canresultin RED-PDpenalizing
a TFRCflow morethanit would a corresponding CP flow,
whenthe levels of congestiorat the routerincreaseat a rate
fasterthanthe TFRCresponsédime. However, we do not ex-
ploretheseransientsn this work but restrictour attentionto
observinghow thelong termthroughputbf TFRCis affected
with RED-PDinsteadof RED.

In the simulationwe started4 « n sourcesyn eachof TCP
andof TFRCwith anRTT of 30 msandn eachof TCPand
of TFRCwith anRTT of 120ms. ThetargetR was60 ms.
Figure20 shaws the total throughputreceved by 30-msand
120-msTCPandTFRCsourcesaveragedver5 simulations,
asthe numberof flows increase Figure 21 shovs the TFRC
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Figure20: The throughput of TCP and TFRC flows. The
graph plots the total thoughputreceved by that cateyory
(TCPor TFRC,RTT, RED or RED-PD)of flows

thoughputnormalizedw.r.t. to throughputof the TCP flow
with the sameRTT. In the top two graphsof Figure21 each
markis from a separatsimulationandtheline joining them
is the average. An increasen the numberof sourceds ac-
companiedby a correspondingncreasan the ambientdrop
rateasshavn by the bottomgraph.

It is evidentthatthe performanc®f theshortRTT TFRCflow

deterioratesasthe drop rate increaseswith both RED and
RED-PD.Therelatve TFRCthroughputs betterwith RED-

PD. Inspectionof Figure 20 revealsthat this improvement
is largely becauseof the reductionin throughputof the 30-

ms TCPflows with RED-PD.Thedropin theabsoluteband-
width obtainedby the short-RI'T TFRC flows is not signifi-

cant(asthey arealreadysendingataratelowerthanthe TCP

of sameRTT). Thereis a bandwidthgain seenby bothlong-

RTT TFRCandTCPflowsbecausef RED-PD.Thedifferent
relative gainschangeshe bandwidthdistributionfrom amild

biastowardsTFRC (with RED) to a mild biastowardsTCP
(with RED-PD).

The broadconclusionfrom thesesimulationsis thatin gen-
eral, RED-PD doesnot have an undesiredmpacton either
TCPor TFRCin the presenc®f the otherandthe schemeds

not vulnerableto TFRC, a TCP-friendly congestioncontrol
algorithm.

7.7 Simulations on Choosing R, the Target
RTT

The simulationsin this sectionillustrate how the choiceof
the configuredround-triptime R affectsthe identificationof
flows for monitoring as well asthe bandwidthreceved by
monitoredflows. Eachcolumnin Figure22 represents dif-
ferentsimulation,with a differentvaluefor R, rangingfrom
10 msto 170 ms. In eachsimulation14 TCP connections
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Figure21: TFRC performance compared with TCP. The
top graphplots the throughputof the 30-msTFRC, normal-
izedw.r.t. thethroughpubf the30-msTCP. Themiddlegraph
plotsthesamefor 120-msTFRC. Thebottomgraphplotsthe
dropratevariationwith numberof flows.

fig:tfrc

were started two eachwith RTTs of 40 ms,80 msand120
ms, and the restwith RTTs of 160 ms. The top graphof
Figure22 shavs the averagebandwidthreceved by the TCP
flowswith round-triptimesfrom 40-120ms,while thebottom
graphof Figure22 shavstheambientdroprate. For the sim-
ulationswith R lessthan40 ms, RED-PDdoesnot identify
ary flows, andthe bandwidthdistribution is essentiallythe
sameasit would bewith plain RED. However, for the simu-
lationswith R of 40 msor higher, the short TCP flows with
a40msRTT startto beidentifiedandpreferentiallydropped.
Note thatas R is increasedthe bandwidthreceved by the
shortTCPflows is decreasedccordingly This makessense,
becausé¢hetargetbandwidthfor amonitoredflow is f (R, p),
andthis decreasewith anincreaseof R. In addition,asR is
increasedheambientdropratedecreaseandthethroughput
for thelong TCP flows increasegthoughthis is not shavn
in Figure22). Similarly, asR is increasedabose 80 ms, the
80 ms TCP flows begin to be monitoredand preferentially
dropped.

As thesesimulationsillustrate,increasingRED-PD5 config-
uredvalueof R resultsin moreandmoreflows beingmon-
itored, with more dropsoccuringin the pre-filter using per
flow state. Thus,as R is increasedRED-PD getscloserto
full max-minfairness. In addition, increasingR decreases
theambientdroprate,andthereforeincreaseshe bandwidth
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availableto webmice andothershortflows.

Thesimulationdn Figure22 alsoshawv that,with averysmall
valuefor R, RED-PD haslimited impactat the router and
can be usedwith the goal of controlling only egregiously-
misbehaing flows or thoseconformantlows with very short
round-triptimes.
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Figure22: The Effect of Target R. Thetop graphshowvsthe
bandwidthreceved by 40 ms,80 msand120msRTT TCP
flows asR is increased The bottomgraphplotsthe ambient
droprate.

8 Other Issueswith RED-PD

In this sectionwe male explicit the staterequirementsof
RED-PD,andalsodiscussheissuegelatedto choosingthe
right targetround-triptime R for aRED-PDqueue.

8.1 StateRequirements

In additionto thestateneededy aregularRED queue RED-
PDrequiresstatefor theidentificationengineandfor keeping
trackof monitoredflows. For theidentificationengine RED-
PD storesM lists of flows which have suffereddropsoveran
intenal lengthgivenby Equation3. Theamountof memory
requireddepend®n boththeambientdroprateandthenum-
ber of flows competingat that queue. The drop rate at the
routeris dependenbn the configuredvaluefor R, which we
discusanorein thenext section.As anexample for aninter-
val lengthof 150ms,and M = 5, therouterstoredinforma-
tion aboutdroppedbacletsoverthe past750ms. This should



not be a problemevenfor high-speedouters.It shouldalso
be notedthatthis doesnot requirefastmemory astheiden-
tification processdoesnot run in the forwarding fast path.
In rarecaseswvhentherouterdoesnot have enoughmemory
to storeheaderdor all the drops,it cansort, and storejust
the dropsfrom the high sendergasrepresentetdy the flows
with the mostdrops)whenretiring the currentlist to starta
new one.Thiswouldrestrictidentificationto justthe highest-
bandwidthflows, andshouldnotleadto ary majorchangen

thebehaior of RED-PD.

RED-PDalsorequiresstateto keeptrack of monitoredflows.
Upon the arrival of a paclet at the router RED-PD hasto
determineif this paclet belongsto a monitoredflow. If so,
then RED-PD appliesthe appropriatepreferentialdropping
to that paclet beforeaddingit (if it is not dropped)to the
outputqueue. This preferentialdroppingoccursin the fast
pathandhencehasto usememorythatcankeepup with the
forwarding speedneeded. Using a sparselypopulatedhash

table (or perfecthashfunctions),fastlookupsare possible.

The speedrequiredin this operationcan be a decidingfac-
tor in how big a configuredR a routercanuse. A larger
R meansthat the router would be monitoring more flows,
leadingto larger hashtablesand potentially slower lookups.
While RED-PD could be configuredto monitor mary flows
atonetime, our own interestis in usingRED-PDto monitor

egregiously-misbehaing flows in timesof high congestion.

For this purpose,a fairly low value of R would be config-
ured,andwe would expectonly a small numberof flows to
be monitoredat onetime. For this purpose we do not ex-
pectthatthe staterequirement$or monitoredflowsto posea
problem.

8.2 ChoosingR, the TargetRTT

As was illustrated by the simulationsin Section7.7, the
choiceof thetargetround-triptime R determinefRED-PDSs
operatingpoint alongthe continuumof greateror lesserper
flow treatmentt the congestedjueue. A largervaluefor R
resultsin greaterperflow treatment,requiresmore stateat
therouter andcomescloserto full max-minfairnesslin con-
trast,asmallervaluefor R leadsusto theoppositeendof the
spectrumln addition,thedesiredchoiceof R depend®nthe
likely mix of round-triptimesfor theconformanflows onthe
congestedink.

Insteadof afixed,configuredvaluefor R, anothempossibility
would be for R to be varied dynamically as a function of
the ambientdrop rateandof the stateavailableat the router
We planto explorepossibilitiesfor dynamicallyvarying R in
laterwork.

20

9 Aggregate-based Congestion Con-
trol

RED-PD can be supplementedt the router by aggreyate-
basedcongestiortontrol,whereanaggraatemightbetraffic
from a distributed denial-of-serviceattack,or a flash crovd
of legitimate traffic to a web site relatedto a news-worthy
event. With aggreate-basedongestiorcontrol, whenthere
is arisein the paclet drop rate,and RED-PDdetectsno in-
dividual flows responsibléefor this rise, then the router can
checkto seeif theincreaseatongestions dueto anincrease
in traffic from atraffic aggreatethatis a subsebf the traf-
fic of the congestedink. If the routeris ableto identify a
traffic aggreatelargely responsibldor the traffic increase,
theroutermightwantto preferentiallydrop pacletsfrom that
aggreyate,to protectthe restof the traffic on thatlink from
anoverallincreasan the pacletdroprate. Coupledwith this
preferentialroppingatthecongestedouter theroutermight
invoke Pushbak to requestheimmediateupstreantouterso
alsodrop pacletsfrom this aggreyate. This useof Pushback
preventsan unnecessaryasteof bandwidthby pacletsthat
will only be droppeddownstream. In the caseof a denial-
of-serviceattack,Pushbaclcould helpfocusthe preferential
paclet-droppingon the malicioustraffic within theidentified
aggreyate[BFM*00Q].

At somelevel, aggreyate-baseadongestioncontrol can be

thoughtof as a variant of RED-PD appliedto aggrejates
ratherthanto individual flows, in thataggreyate-basedon-

gestioncontrol enforcesan upperboundon the bandwidth
givento anidentifiedaggreyateattherouterin atime of con-

gestion. However, thereare substantiallifferencesetween
flow-based(i.e., RED-PD)and aggrejate-basedi.e., Push-
back)congestiortontrolattherouter As anexample theuse
of the TCP throughputequationis appropriatdor individual

flows (asdefinedby sourceanddestinationlP addresseand
portnumbersput notfor aggrgatesof flows. Thedistinction
betweenconformantand non-conformantaggrejatesis con-

siderablyharderto pin down that that betweenconformant
and non-conformanflows. For example,a conformantag-

gregatecomposedf mary very shortflows will responseo

preferentiadroppingdifferentlythanwill anaggreyatecom-

posedof asmallernumberof largeflows.

Theidentificationmechanisms alsosomevhatdifferentfor
flow-basedandaggreyate-basedongestiorcontrol. An iden-
tification mechanisnbasedon multiple lists of paclet drops
over successie time intenals is most appropriatefor indi-
vidual flows, wheremultiple pacletswithin around-triptime
aredefinedasa singlecongestiorevent, but lessappropriate
for identifying a traffic aggreyate; an identificationscheme
basedon a singlelist of recentpaclket dropsshouldbe suffi-
cientfor identifying anaggreyate.In addition,while thetraf-
fic at therouterbreaksdown into a numberof well-defined,
mutually-exclusiveflows, thisis notnecessarilghe casewith



aggrejates;a router’s job could be to identify the aggreyate
responsibldor high congestionif thereis one,from alarge
overlappingsetof possibleaggrayates.

While Pushbacks akey componenfor aggreyate-basedon-
gestioncontrol,it is not socrucialfor flow-basedcongestion
controlschemesFor a flow-basedcongestiorcontrol mech-
anismsuchasRED-PD,whenappliedto aflow usingconfor
mantend-to-enadtongestiorcontrol,thereis no needto push-
backpreferentialdroppingto an upstreanrouter;increasing
thepacletdroprateatthe congestedouteritself will be suf-
ficient to reducethe arrival rate from that flow. When ap-
plying flow-basedcongestiorcontrolto a misbehaing flow,
therecouldbesomebenefitin pushingbackpreferentiallrop-
ping to anupstreanrouter, but evenso,the upstreanrouters
for thatflow arelikely to be seeingall the packetsfrom that
flow, andcould simply run RED-PDthemselesand prefer
entially drop from that flow if it is causingsignificantcon-
gestion. In contrastfor aggregates,pushingback preferen-
tial droppingupstreantanbe a powerful tool, asaggrejates
changetheircompositiorfrom onerouterto the next. For ex-
ample atarouter, thetraffic aggrejatedefinedoy a certainlP
addresgsourceor destination)prefix could be composedf
flows from a numberof incominglinks, sothetraffic aggre-
gatewith that definition at a routerone hop upstreamcould
have aratherdifferentcomposition.

10 Conclusions

In this paperwe have presentedRED-PD,a mechanisnthat

usesthe paclet drop history at the router to detecthigh-

bandwidthflowsin timesof congestionandto preferentially
drop paclets from thesehigh-bandwidthflows in order to

control the bandwidthreceved by theseflows at the con-

gestedqueue. We shaved the effectivenessof the proposed
mechanisnmhroughextensie simulation,andwe planto run

additionalsimulationsin the future. In futurework, we hope
to exploreanexperimentadeploymentof RED-PD.
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