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Abstract

Oneweaknessof the FIFO schedulingtypical of routersin
thecurrentInternetis thatthereis no protectionagainstmis-
behaving flows thatsendmorethantheir share,or fail to use
conformantend-to-endcongestioncontrol.This paperinves-
tigatesRED-PD(RED with PreferentialDropping),a mech-
anismthatusesthepacketdrophistoryat therouterto detect
high-bandwidthflows in timesof congestion,andpreferen-
tially dropspacketsfrom thesehigh-bandwidthflows to con-
trol the bandwidthreceived by theseflows at the congested
queue.This paperdiscussesthedesigndecisionsunderlying
RED-PD,andpresentssimulationsevaluatingRED-PDin a
rangeof environments.

1 Intr oduction

The dominantcongestion-controlparadigmin the Internet
is oneof FIFO (First-In First-Out)schedulingat routers,in
combinationwith end-to-endcongestioncontrol. This ap-
proachis simpleto implementat therouters,and,becauseit
involvesno requirementsfor any uniformity of packet queu-
ing, dropping,andschedulingalgorithmsin theroutersalong
apath,it is well-suitedto theheterogeneityanddecentralized
natureof thecurrentInternet.At thesametime,therearealso
seriousweaknessesto suchanapproach.Onesuchweakness
is theinability to providerelativequalitiesof servicefor traf-
fic traversingcongestedrouters;thisweaknessiscurrentlybe-
ing addressedby theDifferentiatedServicesWorking Group
in theIETF, andby otherapproachesaswell.

A secondweaknessof a network basedon FIFO schedul-
ing is thevulnerabilityof theroutersto end-nodeswith non-
conformantend-to-endcongestioncontrol. This is coupled
with the intimaterole playedby a flow’s round-triptime and
packet sizein theperformanceof theend-to-endcongestion
control,resultingin aneffectiveallocationof bandwidththat
is inversely proportion to the round-trip time of the flow.
While thereis nouniversally-agreed-uponfairnessmetricfor�
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Figure1: A continuum of per-flow tr eatmentat the queue.
Thetopline denotestherangeof possiblepolicies;thesecond
andthird lines show the roughplacementalongthe contin-
uum of proposalsthat useschedulingandpreferentialdrop-
pingrespectively.

best-effort traffic in thecurrentInternet1, anunquestioningre-
lianceon theend-to-endcongestioncontrolmechanismsim-
plementedin theendnodesis shaky atbest.

While all evidenceis that the vastmajority of the traffic in
the currentInternetusesconformantend-to-endcongestion
control(e.g.,TCP),andwhile weknow of noevidenceof se-
riousoperationalproblemsresultingfrom thecurrentstateof
affairs,thereis substantialagreementthatadditionalmecha-
nismsareneededat routers,at the very leastto protectthe
Internetfrom “misbehaving” flowsthatdon’t useconformant
end-to-endcongestioncontrol.

There is a continuumof possibilitiesin terms of per-flow
treatmentat the congestedqueue,shown in Figure1, rang-
ing from full per-flow schedulingmechanismssuchasFair
Queuingon one end, to the completeabsenceof per-flow
treatmenttypicalof FIFOschedulingwith activequeueman-
agementsuchas RED on the other. The middle rangesof
the continuumincludemechanismswith per-flow treatment
only for badly-misbehavingflows,mechanismswith per-flow
treatmentfor all high-bandwidthflows,or mechanismssome-

1Max-minfairnessis theleadingcontenderfor a fairnessmetricfor com-
petingbest-effort traffic in theInternet,with proportionalfairnessasoneof
thecompetingmetrics.
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wherein themiddlewith per-flow treatmentfor asmallnum-
ber of high-bandwidthflows. Approacheswith limited per-
flow treatmentgenerallystart with the identificationof ex-
ceptionalflows for specialtreatment,while approacheswith
full per-flow treatmentaregenerallybasedon thedirectallo-
cationof bandwidth.

All of theproposedapproacheswork by applyingsomeform
of max-minfairness,restrictingthe bandwidthof a selected
setof flows receiving the largestshareof the bandwidthat
the congestedlink. One advantageof max-min fairnessis
that it is easyto interpretlocally, andmakesno assumptions
aboutbehaviorselsewherein thenetwork. In applyinga lim-
ited form of max-minfairnessto a selectedsetof the high-
bandwidthflows, it helpsthatbandwidthconsumptionin the
Internetis highly skewed(seeSection3), with a small frac-
tion of theflows on a link responsiblefor mostof theband-
width consumedover thatlink.
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In thesimplestform, shown in Figure2, this limited per-flow
treatmentcanbethoughtof asselectingacertaintargetband-
width

�
, andrestrictingthe bandwidthof higher-bandwidth

flows down to
�

. In theprocess,this increasestheavailable
bandwidthanddecreasesthepacket drop ratefor theaggre-
gateof flows with arrival ratesless than

�
. For example,

whenthebandwidthfor Flow A in Figure2 is restrictedto
�

,
this decreasesthe aggregatepacket drop rate for the restof
thetraffic, andallowsFlowsB, C, andD to receive increased
bandwidthat therouter, if thoseflowshavesufficientdemand
to fill theavailablespace.Thisis essentiallytheapproachthat
we follow in thispaper.

Mechanismswith per-flow treatmentthat apply to all high-
bandwidthflows(for somedefinitionof high-bandwidth)can
be thoughtof as closely approximatingfull max-min fair-
ness.In additionto applyinga limited form of max-minfair-
ness,several mechanismsproposeactively punishinghigh-
bandwidthflowsjudgedtobeviolatingend-to-endcongestion
control,asa positive incentive for thecontinueddeployment
of end-to-endcongestioncontrol.

1.1 SchedulingvsPreferential Dropping

The available mechanismsfor per-flow treatmentinclude
both schedulingand preferentialdropping. Schedulingap-
proachesplaceflows in differentschedulingpartitions(there
mightbemorethanoneflow in apartition)andthebandwidth
received by eachpartition is proportionalto that partition’s
schedulingrate.With preferentialdroppingmechanisms,dif-
ferentflows seedifferentdroppingrates,with the dropping
rate as needed(in combinationwith end-to-endcongestion
control) to control the arrival rateof that flow. Scheduling
mechanismsoffer moreprecisecontrol, while someprefer-
ential droppingmechanismsare fair only in the probabilis-
tic sense.However, schedulingmechanismsalsogenerally
havehigherrequirementsfor per-flow statemaintainedat the
queue.Figure1 classifiestheexistingapproachesasbasedon
eitherschedulingor preferentialdropping,andalsoroughly
placesthemalongthecontinuummentionedabove.

WenotethatpreferentialdroppingmechanismssuchasRED-
PD or CSFQhave severaladvantagesover scheduling-based
schemessuchasFQ. In particular, dropping-basedschemes
preserve FIFO scheduling,which is goodfor low-bandwidth
flows with bursty arrival processes,where many per-flow
schedulingmechanismswould introduceunnecessarydelay
for packets from such flows. Per-flow schedulingmecha-
nismscould be amendedto let passsmall burstsfrom low-
bandwidthflows,thoughthismightintroduceadditionalcom-
plexity to theschedulingmechanism.

Second,dropping-basedschemesalreadyincorporateactive
queuemanagementto limit persistentqueueingdelay for
packetswithin any flow; while per-flow schedulingmecha-
nismscouldalsoincorporateactivequeuemanagement,there
is little work outlininghow thismightbedone.

Third,dropping-basedschemes,if desired,caneasilybeused
to actively punish high-bandwidthflows in times of con-
gestionthatarenot usingconformantend-to-endcongestion
control. Again, per-flow schedulingmechanismscould be
amendedto detectflows not using conformantend-to-end
congestioncontrol in a time of high congestion,andto give
suchflows lessthantheir max-minfair share,asa concrete
incentiveto flowstouseend-to-endcongestioncontrol.How-
ever, thereis little work outlininghow thiswouldbedone.

1.2 Overview of RED-PD

Theapproachin this paper, RED-PD(RED with Preferential
Drop), is an identification-basedapproachusingpreferential
droppingto control high-bandwidthflows. Theuseof pref-
erentialdroppingenablesus to useFIFO queuingwhich is
advantageousbecauseof its simplicity, easeof deployment
andpreventionof packetreordering(whichcanhappenwhen
anapplicationhaspacketsin two or moreflows). Themoti-
vationof this work hasbeento developa light-weightmech-
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anismfor identifyingandpreferentially-droppingfrom flows
usingsignificantlymorethantheir‘share’of thebandwidthin
a time of high congestion.We areparticularlymotivatedby
theneedto controlmisbehaving flows not usingconformant
end-to-endcongestioncontrol. However, our mechanismin-
cludesa parameterthat canbe eitheradjusted,or setby the
systemadministrator, to givebehavior in a rangeof placesin
Figure1’scontinuumof per-flow treatment.

Conceptually, thereare two stepsto an identification-based
mechanismto controlhigh-bandwidthflows. Thefirst stepis
to identify high-bandwidthflows themselvesandthesecond
stepis to reducethebandwidthconsumedby theseflows. We
say that the identified high-bandwidthflows are monitored
flows.

Our identificationmechanismis basedonthedropsseenby a
flow at therouter. Theidentificationschemecanbetunedto
identify flows above a bandwidththresholdthat is a function
of the packet drop rateat the congestedqueue. The band-
width thresholdcanbeusedto operateRED-PDalongdiffer-
ent points in the continuumof per-flow treatmentshown in
Figure1.

The preferentialdroppingmechanismis drivenby the iden-
tification process.The droppingprobability of a flow is in-
creasedor decreasedin small quantato control the arrival
rate of the flow to the output queue. A flow’s preferential
droppingprobabilityis increasedeachtimetheflow is identi-
fiedin theoutputqueue,anddecreasedwhentheflow’sdrops
in theoutputqueuearesignificantlybelow the thresholdfor
identification.

In addition,we do not want to invoke preferentialdropping
whenthereis not sufficient demandfrom therestof thetraf-
fic, andthe preferentialdroppingwould result in an under-
utilized link. To avoid anunderutilizedlink, therouterdoes
not invoke preferentialdroppingif theaveragequeuesizeis
small (e.g.,whenthe averagequeuesizeis lessthanRED’s
minimumthreshold).This limits preferentialdroppingwhen
thereis insufficientdemandfrom theunmonitoredpackets.

1.3 Organization

Theorganizationof this paperis asfollows. In thenext sec-
tion wediscussrelatedwork. Section3 discussessometrace-
basedresultswhich justify our belief that controlling just a
few flows givessignificantcontrol over bandwidthdistribu-
tion to a router. This is themain reasonfor effectivenessof
anidentification-basedscheme.Sections4 and5 describeour
identificationandpreferentialdroppingmechanismin detail.
A discussionof someissuesrelatedto RED-PDis contained
in Sections6 and 8. In Section7 we evaluatethe scheme
using simulation. Section9 discussesthe relationshipsbe-
tweenaggregate-basedcongestioncontrol at the router, and
flow-basedcongestioncontrolsuchasRED-PD.Finally, we

concludein Section10.

2 RelatedWork

In this sectionwe briefly describesomeexisting proposals
for achieving completeor limited fairness. Thereare two
differentaspectsof schedulingmechanisms,namelyfairness,
and providing incentives for end-to-endcongestioncontrol
[FF99]. We believethatend-to-endcongestioncontrolis one
of themajorreasonsfor theInternet’ssuccessandwe should
build mechanismsthatnotonly providefairnessamongflows
but also provide incentives for end-to-endcongestioncon-
trol. Per-flow schedulingmechanismshave beendesignedto
achievefairness,but have in generalnotyetaddressedtheis-
sueof incentivesfor theuseof end-to-endcongestioncontrol.

In Fair Queuing(FQ) [DKS89], packetsaresentin the or-
der in which the routerwould have finishedsendingthemif
it could sendeachpacket onebit at a time. Deficit Round
Robin(DRR) [SV95] differsfrom FQ in its implementation,
but achievesasimilareffect. Bothof thesemechanismsoffer
an upperboundon extra delayintroducedover a hypotheti-
cal fluid modelscheme.Both of thesemechanismsalsouse
per-flow queueing,andthereforearesomewhatexpensive to
implement.

StochasticFairnessQueuing(SFQ)[McK90] useshashingto
mapa flow to a queue,thusreducingthelookupcostfor the
source-destinationpair in FQ. This simplificationcomesat
thecostof maintainingmany morequeuesthanactive flows
(at leastconceptually)to avoid collisions; SFQ is compli-
catedto implement,with movinghashfunctionsandavoiding
packet reordering. SFQdoesnot provide completefairness
sincemultipleflowscanbehashedinto thesamequeue.

Thework in thepaperdrawsheavily from Core-StatelessFair
Queuing(CSFQ)[SSZ98] andFlow RandomEarlyDetection
(FRED)[LM97], two approachesthatuseper-flow preferen-
tial droppingin concertwith FIFO scheduling.The goal of
CSFQis to achieve fair queuingwithout usingper-flow state
in the coreof an island of routers(an ISP network, for in-
stance).On enteringthe network, packetsaremarked with
an estimateof their currentsendingrate. A corerouteres-
timatesa flow’s fair shareandpreferentiallydropsa packet
from a flow basedon thefair shareandtherateestimatecar-
ried by thepacket. A key impedimentto the deploymentof
CSFQis that it would requireanextra field in theheaderof
everypacket. Otherdrawbacksof CSFQincludetherequire-
mentthat for full effectiveness,all the routerswithin the is-
landneedto bemodified.

FREDis similar to CSFQin thatit usesFIFOscheduling,but
insteadof using informationin packet headers,FRED con-
structsper-flow stateat therouterfor thoseflowswith packets
currentlyin thequeue.Thedroppingprobabilityof aflow de-
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pendson thenumberof packetsthatflow hasbufferedat the
router. FRED’s fair allocationof bufferscanyield very dif-
ferentfairnesspropertiesfrom a fair allocationof bandwidth
[SSZ98]. In addition,the resultsobtainedby FREDarenot
predictable,asthey dependon thepacketarrival timesof the
individualflows.

StochasticFair Blue (SFB) [FKSS99] doesnot useper-flow
stateto achievefairerallocationsbut reliesonmultiple levels
of hashingto identify high-bandwidthflows. As theauthors
statein their paper, the schemeworks well when thereare
only a few high-bandwidthflows. In the presenceof multi-
ple high-bandwidthflows it endsup punishingeven the low
bandwidthflowsasmoreandmorebinsgetpolluted.

CHOKe [PPP00] is a recentproposalfor approximatingfair
bandwidthallocation.An incomingpacketis matchedagainst
arandompacketin thequeue.If they belongto thesameflow,
both packetsaredropped,otherwisethe incomingpacket is
admittedwith a certainprobability. Therationalebehindthis
schemeis thathigh-bandwidthflows arelikely to have more
packetsin the queue.CHOKe is not likely to performwell
when the numberof flows is large (comparedto the buffer
space)and even the high-bandwidthflows have only a few
packetsin thequeue.Thesimulationsin [PPP00] show that
CHOKe achieves limited performance;for example,in the
simulationsthehigh-bandwidthUDP flows getsmuchmore
thantheir fair share.

Floyd andFall in [FF97] briefly discussmechanismsfor iden-
tifying high-bandwidthflowsusingtheRED[FJ93] drophis-
tory, usingCBQ schedulingmechanismsto partitionmisbe-
having andconformantflows in differentclasses.However,
[FF97] did not presenta completesolution,andthe perfor-
mancewas limited by the choiceof aggregatescheduling-
basedmechanismsinsteadof theper-flow preferentialdrop-
ping mechanismsusedin RED-PD. Our paperis in some
sensea successorto [FF97] usingthe per-flow preferential-
dropping mechanismspreviously explored in FRED and
CSFQ.

3 Why an Identification-Based Ap-
proachWorks?

In this sectionwe presenta few traceresultswhich justify
the identification-basedapproach.The tracesthatwe exam-
inedshow thesameresultsfoundby others,thatasmallfrac-
tion of flows areresponsiblefor a largefractionof theband-
width. We alsoshow thatidentifyingandpreferentiallydrop-
ping from theseflows is useful. The resultspresentedhere
area subsetof thosepresentedin [MFP00] andarediscussed
herefor thesake of completeness.

Figure3 showsresultsfrom aone-hour-longtracetakenfrom
UCB DMZ in August2000. The graphshows the fraction
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of flows responsiblefor eachfraction of bytesand packets
in the trace. A flow hereis definedby the tuple (sourceIP,
sourceport,destinationIP, destinationport,protocol).A flow
wastimedout if it wassilentfor morethan64 seconds.That
meansif aflow didnotsendpacketsfor morethan64seconds,
it wouldbecountedasaseparateflow whenit sendsagain.It
is clearfrom thegraphthatamere1%of theflowsaccounted
for about80%of thebytesand64%of thepackets.Moreover,
about96% of the bytesand84% of the packetscamefrom
just 10% of the flows. Thoughthesenumbersmight seem
very skewed,they aresimilar to thoseobtainedfrom various
headertracestakenfrom NLANR [NLA ], andto otherresults
reportingon theheavy-taileddistribution of flow sizes.The
numbersalso don’t changemuch if we changethe timeout
value. For instance,with a timeoutof 2 seconds1% of the
flows got 78%and57%of bytesandpacketsand10%of the
flowsgot97%and81%of thebytes.
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Figure4: Skewednessover smaller time scales

The graphin figure 4 plots the sameinformation for much
shortertime windows. It shows thefractionof flows respon-
siblefor eachfractionof bytesandpacketsin agiventimein-
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terval. Wecanseethattheskewednessholdsnotonly for long
timeperiodsbut alsofor muchshortertimewindows. This is
ausefulpieceof informationfor identification-basedfairness
approachesasthey arelikely to identify thehigh-bandwidth
flowsonfairly shorttimescales.
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For an identification-basedapproachto be successful,it is
necessarythattheidentifiedhigh-bandwidthflows in a given
interval area goodpredictorof the high-bandwidthflows in
thesucceedinginterval. Figure5 provesthatthis is indeedthe
case.Thegraphplotsthefractionof bandwidthconsumedin
thesubsequentintervalby flowswhichaccountedfor apartic-
ularamountof bandwidth( � -axis)in thecurrentinterval. For
example,from thegraphin Figure4 wecanseethatin atime
window of 5 seconds,1% of the flows sentcloseto 50% of
thebytes.Figure5 tells usthat theseflows wereresponsible
for 36%of thebandwidthin thenext 5 secondwindow. Soif
anidentification-basedschemewasto restrictjust thesesmall
fractionof flows,it couldsaveafair amountof bandwidthfor
otherflows if it neededto.

In thispaperweareparticularlymotivatedby theneedtocon-
trol misbehaving flows at a routerusingcheapmechanisms.
However, in theabsenceof reliabledifferentiationtechniques
betweenconformantflowswith shortround-triptimeson the
onehand,andhigh-bandwidthnon-conformantflows on the
other, our proposedschemecontrolsbothcategoriesof flows
equally. For UDP flows suchas non-congestion-controlled
multimediatraffic, we would expectfor the bandwidthcon-
sumedin oneinterval to bea plausiblepredictorof theband-
width consumedin thesubsequentinterval, but this will not
necessarilybethecasefor all misbehaving flows. Thereis a
greatneedfor moremeasurementdataon the presenceand
behavior of misbehaving high-bandwidthflows in the Inter-
net.

4 Identifying High-Bandwidth Flows

This sectionandthenext describeRED-PDin detail. While
thissectiontalksabouttheidentificationmechanism,thenext
discussesthePreferentialDroppingscheme.

We first list the possibletechniquesto identify misbehaving
or high-bandwidthflows, and then delve into the approach
taken by RED-PD.A routerwith no limitations in termsof
memoryor CPUcyclescould identify high-bandwidthflows
by calculatingdirectlyboththearrival rateandthepacketloss
ratefor eachflow overa giventime interval. In this case,the
routercould usethe direct measurementof the arrival rates
to identify the high-bandwidthflows. Moreover, the router
couldidentify misbehaving flowsby usingthemeasurements
of drop ratesand arrival rates,and plugging theseinto the
TCPthroughputequation.

However, keepingsucha completelist of thearrival rateand
the packet drop rateat the router for eachflow is not nec-
essary. In addition,real routersdo have limitations in terms
of memoryor CPUcycles. We list below someof therange
of possibletechniquesfor identifying high-bandwidthflows
without directly calculatingthe arrival rate for eachflow.
Possibletechniquesincludea randomsamplingof thearriv-
ing traffic; usingthehistoryof packet dropsasa somewhat-
randomsampleof the arrival rate;andusingotherforms of
historybasedonpacketarrivals.� RandomSampling: A routerrandomlysamplesincom-

ing traffic. Thehigh-bandwidthflows arethentheones
with moresamples.� DropHistory: Flowswith higharrival ratesarelikely to
havemorepacketsdroppedattherouter. If a routergoes
back and observes its drop history, it can identify the
high-bandwidthflows asbeingthosewith a largenum-
ber of drops. [FF97] shows that the RED drop history
canbesuccessfullyusedto estimatethearrival rateof a
flow. While notaspreciseaspurerandomsampling,the
useof thedrophistorygivesinformationabouta flow’s
droprateaswell asaroughestimateof theflow’sarrival
rate.� History Data Structur e: A routercouldmaintainsome
historical information, basedon which it can estimate
a flow’s sendingrate. The historical informationitself
is updatedat eachpacket arrival. The zombie list in
[OLW99] is anexampleof suchanapproach.More in-
formationabouta flow in thehistorymeansthata flow
is high-bandwidth.� Bloom Filters or Hashing: Incoming flows could be
hashedinto bins at one or more levels, and the bins
with morehitscouldbeusedto identify high-bandwidth
flows. The identificationmechanismin StochasticFair

5



Blue [FKSS99] is an example of this approach. A
hashing-basedapproachavoids the memory and pro-
cessingrequiredfor full per-flow state,with the risk of
incorrectlyidentifying low-bandwidthflows mappedto
thesamebinsashigh-bandwidthflows.

RED-PD uses the RED drop history to identify high-
bandwidthflows (thoughwe useit in a way different from
[FF97]). We note that by using the RED drop history, we
areidentifyingnotonly high-bandwidthflows,but occasional
lower-bandwidthflows that have beenunlucky, in that their
lossrateat therouteris not anaccuratepredictorof their ac-
tualarrival rate.Thisis discussedin detaillaterin thissection.

4.1 ChoosingIdentification Parameters

In this sectionwe considerthe identificationscheme’s cri-
teria for identifying a high-bandwidthflow. We assumean
environmentdominatedby flows usingeitherTCP or TCP-
compatiblecongestioncontrol.

W
�

Time
�

Congestion
Window

W/2
� W/2 + 1

� W/2 + 2
�

Figure6: TCP’scongestionwindow in steady-state.

Considera queuewith an averagepacket drop rate � over
somerecentinterval of time. Next, considera TCP flow
with an RTT of � seconds.We considera TCP flow where
thereceiversendsaseparateacknowledgementfor everydata
packet (ratherthanusingdelayedACKs, andsendinganac-
knowledgementfor every two datapackets).In thedetermin-
istic modelof TCPwith periodicpacketdrops,thisTCPflow
is doingits sawtoothwith thecongestionwindow varyingbe-
tween ����� and � packets,with a packet droppedeachtime
thewindow reaches� packets,asshown in Figure6. A sin-
gle congestioncycle includesroughly ����� round-triptimes,
andlastsroughly ��������� � seconds.(For a TCPflow thatonly
sendsan acknowledgmentfor every two data packets, the
lengthof a congestioncycle is somewhat longer.) In order
to identify a high-bandwidthflow, we would ideally want to
considerits arrival rateoverseveralcongestionepochs.

We let theaveragesendingrateof a TCPflow with a round-
trip time � anda steady-statepacketdroprate� , in thedeter-
ministic model,be denotedas !"���$#%�&� pkts/sec.From some
simplearithmetic[FF99], wehave thefollowing:

!"���$#%�&�(' ) *,+ -� ) � +
(1)

Onecouldalsousetheequation!�.$�/�$#/�0� givenin [PFTK98],! . ���$#%�&�(1 *�32 4 5687:9 ;=<&> �/?@2 6 5A �B�C� * 7 ?,�D� 4 � (2)

for TCPretransmittimeoutvalue9 ;=<@> , whichcanbeapprox-
imatedas E�� . This equation! . ���$#/�0� incorporatestheeffects
of retransmittimeouts,andis basedona modelof RenoTCP
experiencingindependentpacket drops.We discusstherela-
tive meritsof !"�/�$#/�0� and !�.$�/�$#/�&� , for our purposes,later in
thepaper. For themoment,we simply assumethatour iden-
tificationmechanismuses!"���$#%�&� insteadof !�.$�/�$#/�&� .
A congestionepochcontains .5 packets, so the congestion
epoch lengthCL isFHG 1 *I �/JK#ML@�NL 1 J) *�+O- L
seconds.Thus,given a steady-statepacket drop rate � and
averageround-triptime � , we couldconsiderthearrival rate
of flowsoverseveralCLs.

Of course,thereis notnecessarilya “typical round-triptime”
for theflowsin aqueue,andif therewas,therouterwouldnot
necessarilyknow what this typical round-triptime was. For
ouridentificationmechanism,weconsiderareferenceTCPas
a TCP connection,in the deterministicmodel,with a target
round-triptime P andpacketdroprate� . ThetargetCL gives
theCL for this referenceTCP. Figure7 showshow targetCL
varieswith target RTT R andpacket drop rateat the router.
In an environmentwith a steady-statepacket drop rate � , a
flow sendingat therateof thereferenceTCPcouldreceive a
packet lossroughlyonceperCL.
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Our goal is to identify thosehigh-bandwidthflows that,over
a period of several (e.g., for QR1S? ) CLs, are sendingat
a rate higher than the referenceTCP in the sameenviron-
ment. In addition, we restrict our attentionto thosehigh-
bandwidthflows thathave in factgottenmultiple congestion
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signals(losses)at therouterduringthis interval. Packet loss
sampleshave informationaboutboth thearrival rateandthe
loss rate of flows. Thus, we use the packet loss samples
to roughly estimatethe arrival rateof the flow and to con-
firm thattheidentifiedflow hasin factreceivedmultiple loss
events. We could insteadidentify flows by takinga random
sampleof thetraffic unrelatedto thecurrentpacketdrops,but
thiswouldsufficeonly to estimatethearrival rate,andwould
notalsoconfirmthattheidentifiedflow hadactuallyreceived
lossesduringthatperiod.

Now we canreconsiderour choiceof !"�/PT#/�0� (from thede-
terministicTCP model) insteadof ! . �%PT#/�&� (from the Reno
TCPmodelwith timeouts)for definingthe targetCL. While
theTCPthroughputequation!�.$�%PT#/�&� moreaccuratelymod-
els TCP behavior, it basicallygives the long-termsending
rateof a TCP connection.A conformantTCP flow that has
not suffereda retransmittimeout in the most recentseveral
CLsmightbesendingata ratehigherthan !�.��/PT#/�0� overthat
period. The equationfor !"�/PT#/�0� is closerto the maximum
sendingrateof theTCPflow over theshortterm(of several
congestionepochs).For low tomoderatelevelsof congestion,!"�/PT#%�&� and ! . �/PT#/�0� give similar results,andthedifference
is negligible. However, for higherpacket droprates,whena
CL is quiteshort,aflow couldeasilygofor severalCLswith-
out receiving a retransmittimeout,andin this caseit would
seemimportantto use !"�%PU#%�&� to beproperlyconservative in
our identificationof high-bandwidthflows.

Guidelinesfor thechoiceof the target round-triptime P are
discussedin detail in Sections7.7and8.2. ThisparameterP
is the singlemost importantparameterfor RED-PD’s iden-
tification mechanism,andcanbe chosento make RED-PD
operateat differentpoints along the per-flow continuumof
Figure1.

4.2 The Multiple-List Identification Scheme

RED-PDusesa multiple-list identificationmechanismbased
on the packet drop historiesover several successive drop-
list intervals. For eachdrop-list interval (the interval length
varies,seebelow), theroutercompilesalist of flowsthathave
suffereddropsin that interval. Thehigh bandwidthflows are
thosewhichappearin thesedrop-lists“regularly”.

For RED-PD, we considerthe drop history of flows overQV1W? targetcongestionepochlengths.In orderto definethe
currenttargetCL, we have to first have anestimateof there-
centpacketdroprate� (asmeasuredoveraperiodof roughly
several CLs, for the most recentknown valuefor CL). The
routercan reliably determineits loss rateas the numberof
dropsdividedby thenumberof arrivals. We useexponential
averagingto smooththis drop rateestimateover successive
intervals.

For RED-PDidentification,we restrictour attentionto flows

thathave receivedat least Q separatelosseventsin themost
recentQ CLs. To dothis,wedividetheperiodof Q CLsintoX

separatedrop-listintervals,eachof lengthQX FHG 1ZY[ \) *�+O- L (3)

seconds,andkeepa separatelist of the droppedor marked
packetsin eachinterval. RED-PD identifiesa flow if it has
receiveddropsin at least Q of thelast

X
drop-list intervals.

Note that this implies that the lengthof a drop-list interval
variesasa functionof therecentaveragepacketdroprate� .

Now, we considerour choiceof the valuefor Q , the num-
ber of CLs that make up our identificationperiod. Larger
valuesof Q make the identificationmorereliable,but at the
expenseof an increasein the time requiredto identify high-
bandwidthflows(seeSection5.2). In addition,a largervalue
of Q makesit morelikely that theflow’s arrival ratereflects
the responseof end-to-endcongestioncontrol to the packet
lossesreceivedduringthatperiod.Smallervaluesof Q make
it morelikely to catchunlucky flows, that is, low-bandwidth
flows which happento suffer drops. We usethe absenceof
a dropin all thelists for decreasinga monitoredflow’s drop-
ping probability (Section5); a small valueof K would lead
to frequentchangesin the droppingprobability. For now, a
valueof Q]1^? seemsto give a reasonablypromptresponse
alongwith areasonableprotectionfor unlucky flowsthathave
receivedmorethantheirshareof losses.In particular, avalue
of Q_1`� is considerablymorevulnerableto the identifica-
tion of unlucky flows (even the lossesin the samewindow
canspreadover two lists).

After choosingQ , the next parameterto consideris
X

, the
numberof separatedrop-list intervals. Clearly we need

X
greaterthan Q , becausewe want to only considerflows that
have receivedat least Q separatelossevents.Theminimum
possiblevalueof a drop-listinterval to countthedropsin the
samewindow asa singleevent is the typical roundtrip time
of flowsin thequeue.Onewouldwanteachdrop-listinterval
to be longerthanthis typical round-triptime to avoid over-
countingnumberof separateloss eventsreceived by many
flows. Given our choiceof Qa1b? , a valueof

X 1 -
has

workedwell for thenumberof separatedrop-listintervals.

In any identificationmechanism,it is importantto strike a
balancebetweenthenumberof falsepositivesandfalseneg-
atives,and this desiredbalancealsodependson the conse-
quencesof thesefalsepositives and falsenegatives. False
positivesoccurfor unlucky flowsthatreceivemorethantheir
shareof packet losses. If the consequencesof a falseposi-
tive is severe,thenfalsepositivesshouldbeavoidedasmuch
aspossible.If desired,theroutercouldprotectitself against
falsepositivesby directlymeasuringthearrival rateof moni-
toredflows, ratherthanrelying solelyon thepacket lossrate
asan indicatorof the arrival rate. However, bad luck for a
flow is a temporaryphenomenon.In addition, the conse-
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quencesof a flow being identified for the first time arenot
draconian,andfurtherreduceits chancesof beingincorrectly
identifiedagain.Thus,wehavenotaddedextramechanisms,
suchasthe direct measurementof the arrival rateof moni-
toredflows, to avoid falsepositivesin ourscheme.

Falsenegativesin ouridentificationschemewouldresultfrom
flows thatget lucky, in that they receive lessthantheir share
of packet losses.However, we rely on theunderlyingqueue
managementmechanismto ensurethathigh-bandwidthflows
donotgetconsistentlylucky, thatis, they donotconsistently
receive lessthantheir shareof packet drops. Thus,we can
restrictourattentionto flowsthathaveactuallyreceivedindi-
cationsof congestionfrom this router.

4.3 Multiple Lists or a SingleList?

Themultiple-list identificationschemeidentifiesaflow if the
flow receiveslossesin Q out of

X
drop-list intervals. This

multiple-list identificationcould be comparedto single-list
identification, which would identify flows that receive the
largestnumberof dropsin a single,largerinterval. Themain
advantageof multiple-list identificationover single-listiden-
tification is thatmultiple-list identificationignoresflows that
suffereddropsonly in onelist.

Thereareseveralreasonswhyaflow mighthaveseveraldrops
in onelist, but no dropsin otherlists: becausea singlecon-
gestionevent for that flow wascomposedof multiple drops
from a window of data;becausetheflow reducedits sending
rateafter several round-triptimeswith drops;or becauseof
simplebadluck unrelatedto theflow’ssendingrate.

In anenvironmentwith REDandamoderatepacketdroprate,
a flow is unlikely to receive multiple dropsin a singlewin-
dow of data,andthereforeeachlossevent for a flow would
be likely to consistof a singlepacket loss. In suchan envi-
ronment,theremightbelittle differencebetweenasingle-list
identificationschemebasedon individual lossesor on loss
events,and therealso might be little differencebetweena
single-list and a multiple-list identificationscheme. How-
ever, in environmentswith higherdropratesor with a highly
bursty arrival pattern,a multiple-list identification scheme
couldhavesignificantadvantagesover thesingle-listscheme
basedon lossevents,which would itself have considerable
advantagesover a single-list identificationschemebasedon
individual losses.

In a setof simulationswe createdan environmentlikely to
show theadvantagesof amultiple-listschemeoverthesingle-
list scheme.Thecongestedlink hada smallbuffer spaceand
a high cedgf=h/i (half of thebuffer space).Figure8 shows the
fractionof timesa TCPflow with thegivenRTT wasidenti-
fied by the two schemes.Thesingle-listschemeidentifiesa
flow whenit experiencesK or moredropsin the lastK*CL
seconds.It canbeseenthat in this environmenta single-list
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Figure8: The probability of identification for single and
multiple list identification schemesfor a bursty lossenvi-
ronment. ThetargetRTT was40ms.

schemebasedonlossesratherthanlosseventsidentifiesflows
with round-triptimesmuchgreaterthan P with a significant
probability. On theotherhandthemultiple list schemedoes
a betterjob of identifyingonly thehighbandwidthflows.

There is anotherpossibility for a single-list schemewhich
would do better than the simple schemeabove. This is a
single-list schemethat identifiesa flow if the flow receivesQ or morelosseventsin a singledetectioninterval of dura-
tion Qkjmlon , wherea lossevent is definedasoneor more
lossesin a shortperiodof time (suchasa typical round-trip
time). Thisschemelendsitself to amorecomplex implemen-
tationastiming informationis requiredwith every drop. We
have not exploredthis loss-event-basedsingle-listidentifica-
tion scheme;but we believe that it would beroughlyequiva-
lenttoamultiple-listidentificationschemewith adrop-listin-
terval equalto thetimesingle-listschemeusesto filter drops
into events.

4.4 Probability of Identification

In this sectionwe computeRED-PD’s probabilityof identi-
fying a flow sendingat a givenfixedrate.We’ll seethat this
probability is dependentnot only on the flow’s sendingrate
but alsoontheambientdroprate.Notethatin thissectionwe
areonly investigatinga flow’s probabilityof beingidentified
in asingleroundof theidentificationmechanism;thesteady-
statebandwidthreceivedby a flow underRED-PDdepends
onwhetheror not theflow is persistentlyidentified.Thesim-
ulationsin Section7.1show thebandwidthactuallyreceived
underRED-PDby a flow sendingata fixedrateinto a queue
with a fixedambientdroprate.

Considera flow sendingat a rate of p8jT!"�%PU#%�&� pkts/sec,
where � is the ambientdrop rate and P is the target RTT
chosenat therouter. Assumethat the lengthof thedrop-list
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interval length is chosenaccordingto the guidelinesof the
previoussection.In thiscase,theflow is sendingq$rs 5 packets
per interval. Theprobability tu� * � thata flow suffersat least
onedropin a drop-listinterval is asfollows:tu� * �(1 *wv � *xv �&�,yDz{(| +
For a flow to be identified,it hasto suffer at least Q drops
in

X
drop-list intervals. So the flow’s probability of being

identifiedistC}�~��N��h�}���}��N��h�}��M� 1 l�� X #MQ�� tu� * � r tm��� * � s�� r 7l�� X #MQ 7 * ��tu� * � rw� . t � � * � s�� r � . 7����� 7 l�� X # X � tu� * � s (4)
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Figure9: The probability of identification of a flow send-
ing at a rate puj�!"�/PT#/�0� for Qe� X 1�?�� -
Figure9 showsaflow’sprobabilityof identificationasafunc-
tionof its sendingrate,asgiventheEquation4. Separatelines
show theprobabilityof identificationwhentheambientdrop
rateis 1%, 5%, and10%respectively. While theprobability
of identificationapproaches1 for flows with highersending
rates,it is alsonon-zerofor flowssendingat lessthan !"�/PT#/�0�
pkts/sec.Simulationsof the identificationof CBR flows, in
a scenariowhereeachpacket is droppedindependentlywith
probability � , giveessentialthesameprobabilitiesof identifi-
cationasthoseshown in Figure9.

Figure9 shouldbeinterpretedcarefully, becausethe � -axisis
theratemultiplier of !"�/PT#/�0� , and !"�/PT#/�0� is itself a function
of theambientdroprate � . That is, a CBR flow sendingat a
fixed ratein pkts/secmight be sendingat ��jo!"�%PU#%�&� when
theambientdroprateis �e1 *��

, but thatsamefixedsending
ratewill be p�jo!"�/PT#%�&� for a muchlarger valueof p when
theambientdroprateis ��1 -,�

. Therefore,astheambient
droprateincreases,a flow sendingat a fixedratein pkts/sec
becomesmorelikely to beidentified.

Figure9 showsthataflow canbeidentifiedevenif it is send-
ing at lessthan !"�%PU#%�&� pkts/sec.This occurswhentheflow

hasbeenunlucky, and hasreceived more than its shareof
packet drops. The consequencesof a flow getting identi-
fied oncearenot severe; it is monitoredwith a small initial
droppingprobability. Monitoringthisflow furtherreducesits
chancesof being identified againand thus this flow would
soonbe unmonitored.Also, the sameflow is unlikely to be
consistentlyunlucky in its packetdropsasREDis notbiased
in any way towardsa particularflow. Thesefactorsensurea
bandwidthdistribution thatis fair in average.

5 Preferentially Dropping High-
Bandwidth Flows

After having identified high-bandwidthflows, we needto
preferentiallydrop themto bring down the bandwidthcon-
sumedby them. We would like a differentiationmechanism
to belight-weight,sothata numberof flows couldbemoni-
toredat thesametime. Wewould likeadifferentiationmech-
anismto becompatiblewith FIFOscheduling,which is used
by mostroutersin theInternet.

In addition,we would like a differentiationmechanismthat
not only protectsother traffic from the monitored traffic,
but also that provides relative fairnessamong the moni-
toredflows,protectingmonitoredflowsfrom othermonitored
flows. Thisrulesoutasolutionthatlumpsall monitoredflows
together.

Finally, the differentiationmechanismshouldnot only not
starve the monitoredflows, but also shouldnot protect the
monitoredflows by giving themmorebandwidththan they
wouldhaveobtainedin theabsenceof monitoring.This rules
outsolutionsthatonly give“leftoverbandwidth”to themon-
itored flows, or that give a fixed amountof bandwidthto a
monitoredflow without regard to the level of unmonitored
traffic.

Beforegoing into our preferentialdroppingmechanism,we
discusswhy existing packet-droppingmechanismsintended
for aggregatesare not suitablefor our needsfor per-flow
differentiation.Two populardifferentiationmechanismsare
RIO [CF98] andWRED [Cis98]. In RIO, differentaverage
queuesizesare maintainedfor two categoriesof traffic, in
andout. A RIO-like techniquein ourcasewouldclassifythe
identifiedhigh-bandwidthasout traffic andtherestasin traf-
fic. A separateaveragequeuesizefor the in traffic protectsit
from excessive out traffic. By puttingtogetherall monitored
flows into the out category, RIO would fail to provide rela-
tive fairnessbetweenmonitoredflows. RIO alsocanleadto
starvationof out traffic in somecases[BSP00].

WRED maintainsonly oneaveragequeuesizeandprovides
differentiationby having differentdrop probabilities( ce��� 5
in RED) andmin andmaxthresholdsassociatedwith differ-
entcategoriesof traffic. WRED fails to provide relative fair-
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nessbetweenmonitoredflows if thereis toomuchbadtraffic
andtheaveragequeuesizeexceedscedgf 9�� for thegoodtraf-
fic [BSP00]. WRED will alsoclub togethermultiple moni-
toredflows into thesameclassandthusfail to protecthigh-
bandwidthflowsfrom oneanother. It shouldbenotedthatthe
effectivenessof WREDgoesdown asmoreclassesareintro-
duced,so a differentclassfor eachmonitoredflow is not a
goodoption.A largeamountof goodtraffic will leadto star-
vationof monitoredflows astheaveragequeuesizeexceedsced�f 9�� of goodtraffic, which mustbegreaterthanor equal
to ced�f 9�� for thebadtraffic [BSP00].

We now describea technique,per-flow preferentialdrop-
ping, which hasall the requiredproperties.Themechanism
we use involves placing a pre-filter in front of the output
queue(whichusesFIFOscheduling).All themonitoredhigh-
bandwidthflowspassthroughthispre-filter, aredroppedwith
a certainprobability, and then are put in the outputqueue.
Differentmonitoredflows have differentdroppingprobabili-
ties.Theunmonitoredtraffic wouldbeputin theoutputqueue
directly. Figure10 shows this process.This simplemech-
anismprovidesrelative fairnessbetweenmonitoredflows; a
high-bandwidthflow is droppedin proportionto its excessar-
rival rate,makingits arrival ratein theoutputqueueroughly
thesameasthatof thehighest-bandwidthunmonitoredflow.
Per-flow preferentialdroppingdoesnotprotectthemonitored
flows from the generalcongestionat the link, becausethe
outputqueuedoesnot differentiatebetweentheflows in any
manneroncethepre-filterhascutdownonthemonitoredtraf-
fic.

Dropping?

In
Monitored?

                 Pre-filter

  droppping probability)

RED

Engine
Identification

Yes

No

Packets surviving 
the Pre-filter

No

Yes

Out
FIFO

(drops packets with flow specific

Figure10: The dropping mechanism.

An importantpartof theaboveschemeis thedroppingprob-
ability of eachmonitoredflow in thepre-filter. We consider
severalpossibilitiesfor thepre-filter.

Token-Bucket-BasedPreferential Dropping

In an ideal settingwe would know the target bandwidthto
whicheachmonitoredflow is to berestricted.Onepossibility
for thedroppingmechanismwould bea tokenbucket or vir-
tual queuerestrictingthemonitoredflow to the 9 �,���3� 9 ��� 9 �
beforeits packetsentertheoutputqueue.A possiblevaluefor
the 9 ���K�3� 9 �$� 9 � would be the arrival rategivenby the TCP

responsefunction for a flow with a default packet size, the
round-triptime P usedby the identificationprocedure,and
thecurrentsteady-statepacket droprateat theoutputqueue.
In fact, this is the target rateimplicitly usedin our preferen-
tial droppingmechanism.While thiswouldrestricttheflow’s
arrival rateto theoutputqueueto thedesiredvalue,it could
leadto a somewhatburstypatternof dropsfor themonitored
flow. Also, thefast-pathprocessingrequiredfor implement-
ing a token bucket is more than just the probability lookup
anddroprequiredfor theschemewedescribein Section5.1.

Equation-BasedPreferential Dropping

A secondpossibility for the dropping mechanismwould
be preferentialdropping with drop probability �S1 * v� 9 �����3� 9 �$� 9 ���$������d�¡¢�¢£ �$� 9 �$� . This requiresestimationof the
flow’s arrival rateat therouter. Theflow’s arrival ratecould
be estimatedfrom the packet drop history or measureddi-
rectly, if thereareonly a small numberof monitoredflows.
A direct measurementof the arrival rateof monitoredflows
would protectmonitoredflows that weresimply unlucky in
theirpacketdrops.Thearrival ratefor aflow usingend-to-end
congestioncontrolchangesin responsetopacketdropsandso
doespacketdropprobabilitygiveby theequationabove.

5.1 Identification-Based Preferential Drop-
ping

A third possibility for thedroppingmechanism,andtheone
exploredin this paper, is preferentialdroppingdrivenby the
identificationmechanism.Thatis, if amonitoredflow contin-
uesto beidentifiedfrom its packetdropsin theoutputqueue,
thenits droppingprobabilityin thepre-filteris increased,and
when a monitoredflow’s packet dropsin the output queue
drop below a certainlevel, then its droppingprobability in
thepre-filteris decreased.

Whena flow is identifiedasa flow to be monitored(asde-
scribedin Section4) for thefirst time,westartmonitoringthe
flow, andpacketsfrom theflow aredroppedin the pre-filter
with asmallinitial droppingprobability. Weshouldpointout
herethat theonly dropsconsideredby theidentificationpro-
cessarethosesufferedattheentryto theoutputqueue(shown
by RED Dropping in Figure10), not in the pre-filter. This
meansthat the identificationprocessis only concernedwith
the flow’s arrival rate to the outputqueue,not to the router
itself; the two quantitieswould be differentfor a monitored
flow. If the monitoredflow is still identifiedby the identi-
ficationprocess,it meansthat its arrival rateinto the output
queueis still on the high side. For suchflows we increase
the their droppingprobability in the pre-filter. If the flow
cutsdown its sendingrateanddoesnot appearin any of ¤
successive intervalsin theidentificationprocess,wedecrease
its droppingprobability in the pre-filter. Oncethe dropping
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probabilityof flow reachesa negligible value,theflow is un-
monitored. With thesesmall increasesanddecreasesof the
droppingprobability, theroutershouldsettlearoundtheright
droppingprobabilityfor theflow.

Thedroppingprobabilityfor amonitoredflow is notchanged
whenthetheflow appearsin at leastonebut lessthan � of ¤
successive drop lists. This providesthenecessaryhysteresis
for stabilizingthedroppingprobability. Changesto thedrop-
ping probabilityarenot madeuntil a certaintime periodhas
elapsedafter the last change.This ensuresthat theflow has
hadtime to reactto thelastchange.

Now we specifyhow the router increasesanddecreasesthe
monitoredflow’s droppingprobability. Whendecreasingthe
droppingprobability, we just halve the droppingprobability
for a flow. The reductionis boundedby a maximumallow-
abledecreasein onestep. So if halving the droppingprob-
ability reducestheflow’s droppingprobabilityby morethan
thisfixedbound,it is reducedby thisboundinstead.Theup-
perboundonthereductionreducesoscillations.Theabsence
of the flow in all the drop-listscould just be the resultof it
getting lucky and not from the flow’s reductionin sending
rate. In suchcasestheupperboundensuresthatcontrolover
a flow beingmonitoredwith highdroppingprobabilityis not
loosenedby a largeamountin onestep.

When increasinga flow’s droppingprobability, two factors
have to beconsidered,thedropratein theoutputqueue,and
thearrival rateof themonitoredflow. If thedropratein the
outputqueueis high,thearrival rateof monitoredflowsneeds
to be broughtdown soonerand hencethe increasequanta
shouldbe high. Second,even amongthe monitoredflows
differentflows have differentsendingrates,so the increase
quantashouldbedifferentfor differentflows. Thatis, among
the monitoredflows, thoseflows with higherarrival ratesto
theoutputqueueshouldreceive higherdropratesin thepre-
filter. (Flowswith higherarrival ratesto theoutputqueuecan
bedetectedby theirhigherdropratesin thesamequeue.)

At a giveninstantwe have a groupof identifiedflows whose
droppingprobabilitieshaveto beincreased.Let thedroprate
in the outputqueuebe � , andthe averagenumberof drops
amongtheflows identifiedin this roundbe ��¡,� ¥,�$¦�� §D¦�¨&f 9 .
One possiblemethodfor decidinga flow’s increasequanta
thattakesinto accountboththeambientpacketdroprateand
the relative sendingrateof the differentmonitoredflows is
thefollowing:t ~��g©ªh/��«M¬O­�® 1¯�/¥,��¦�� �K©°��± ����¡�� ¥��$¦�� §D¦�¨@f 9 �²j³� (5)

where ¥,��¦��0�K©°��± is the numberof dropsof this flow. If this
increasequantumis morethanthe flow’s existing drop rate,
thenwe just doubletheflow’s droppingprobability(to make
surewedon’t increaseaflow’sdroprateall of asudden).The
existingdropratefor a flow is thesumof thedroprateat the
pre-filter(zerofor unmonitoredflows)andthedroprateat the
outputqueue.Thisdroppingschemehasafastreactionwhen

dropratesarehigh,anddifferentialtreatmentfor flowsbased
on their relativearrival rates.

5.2 ResponseTime

In this sectionwe do a simplifiedanalysisof the time taken
by RED-PDto bring down a high bandwidthflow aswell as
thetimetakento releaseaflow whichhasreducedits sending
ratebelow threshold.

Assumethata flow increasesits sendingrateall of a sudden
to p´jT!"�/PT#%�&� pkts/sec �Bp¶µ * � , where � is the prevalent
droprateat theoutputqueueandR is thetargetRTT. !"�/PT#/�0�
is givenby equation1. We make the following simplifying
assumptionsin theanalysis

1. The lossrateat theoutputqueueis independentof this
flow’s arrival ratein the queue.In reality, the lossrate
cango up whena flow startssendingat a high ratesud-
denlyandcomedown asthedroppingprobabilityof this
flow is increasedin thepre-filter.

2. Thisis theonlyflow whosedroppingprobabilityis being
increased.Fromequation5, thismeansthattheincrease
quantaof thedroppingprobabilitywouldbe � .

3. Theflow is successfullyidentifiedin eachround.This is
likely to betrueuntil theflow is broughtdown to about
twiceof !"�%PT#/�&� . As seenin Figure9, theprobabilityof
identifying the flow is high for a flow sendingat twice!"�%PU#%�&� . Theanalysiscanbemademoreaccurate(and
complex) by assuminga lesserprobabilityandelongat-
ing the length in time requiredfor eachround,but we
feel that is not necessaryaswe aremainly interestedin
a roughestimation.

Thefirst assumptioncanleadto anoverestimationof there-
sponsetimeif theincreasein aflow’ssendingrateis responsi-
blefor anincreaseddroprateattherouter, aswouldbetypical
in anenvironmentwith a low level of statisticalmultiplexing
(seeSection7.3).Thesecondassumptionleadstoanoveresti-
mationof theresponsetimefor flowswith anincreasequanta
of morethan � . This would be thecasefor flows sendingat
a very high rate,andhencethenumberof dropssufferedby
theseflowswouldbemorethantheaverageamongidentified
flows. Thethird assumptionleadsto a slightunderestimation
onlywhenweusetheanalysisbelow tocalculatetheresponse
time to bringdown theflow below �xj�!"�/PT#/�0� .
We calculatethetime requiredto bring down thearrival rate
of theflow in theoutputqueueto ·ejw!"�%PT#/�&� . Thedropping
probabilityrequiredin thepre-filter in this caseis q �0¸q . Be-
causeof Assumption2, thedroppingprobabilityincreaseis in
quantumof � . Hencethenumberof roundsrequiredare q �0¸qK5 .
Eachroundis

X vW*
intervals long becauseafter increasing

theprobability, we wait for
X v�*

intervalsandseeif there
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aredropsin Q lists out of last
X

. This just speedsup the
probabilityincreasingphasewhile maintainingthenecessary
time betweentwo subsequentincrements. Substitutingthe
lengthof aninterval from Equation3, thetotal time required
is 9 �g¹�h/~��M±=�T1 �Bp v ·"� PoQº� X v»* �p�� ) *,+ - � X (6)

Wedid asimplesimulationto testEquation6. A CBRsource
wasmadetopassthroughaqueuewith afixedconfiguredloss
rate. The CBR sourceinitially sendsat ¼ + � - jm!"�/PT#%�&� and
increasesits sendingrateto E�j�!"�%PU#%�&� at 9 1 - ¼,½ . Figure
11 shows the results. The line marked “equation” is based
on Equation6, andtherestof thelinesaresimulationresults
for receivedbandwidthaveragedover1-secondintervals.The
targetR usedwas40ms.It is clearthattheequationpredicts
thesimulationresultsvery closelytill about ·W1 *,+ -

, below
which Assumption3 ceasesto hold. The simulationline is
slightly below theline of theequationbecausethesimulation
line plots the actualbandwidthreceived,while the equation
plots the arrival rate into the outputqueue(after which the
flow furthersufferstheconfiguredlossrate).

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350

R
ec

ei
ve

d 
B

an
dw

id
th

 M
ul

tip
lie

r 
of

 f(
R

,p
)

¾

Time (seconds)

Equation for p=1%
p=1%
p=2%
p=3%

Figure11: The responsetime of RED-PD. In thissimulation
the CBR sourceincreasesits sendingrate to E�jm!"�/PT#/�0� at9 1 - ¼,½ andreducesit backto ¼ + � - j�!"�/PT#/�0� at 9 1¿� - ¼�½ .
Figure12showstheimportanceof Equation5 andprovesthat
Assumption2 leadsto anoverestimationof thetimerequired
to cutdown thearrival rateof theflow. In thissimulationtwo
CBRflowswerestarted.At 9 1 - ¼,½ oneof themincreasesits
sendingrateto EÀj�!"�%PU#%�&� , theotheroneto �xjw!"�%PT#/�&� . The
line marked “2 flows” shows the bandwidthreceivedby the
formerflow. Theline marked“1 flow” is thesameasthat in
Figure11 andshown herefor comparison.Sowhenmultiple
flows areidentifiedat thesametime, a larger increasequan-
tum for the highersendersleadsto a quicker responsefrom
RED-PDandat thesametime protectsthelow sendersfrom
a high increasequantum.

We now estimatethe time requiredto releasea flow, that is,

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350

R
ec

ei
ve

d 
B

an
dw

id
th

 M
ul

tip
lie

r 
of

 f(
R

,p
)

¾

Time (seconds)

1 flow
2 flows

Figure12: Effect of Equation 5 and overestimation of re-
sponsetime becauseof Assumption2.

the time taken to transfera monitoredflow to the unmoni-
toredcategory after it cutsdown its sendingrate. The time
estimatetellsusnotonly how longthisflow will bepenalized
aftera ratereduction,but alsothetime requiredby RED-PD
to forget a monitoredflow which ceasesto exist. The only
assumptionwe make in this computationis that the flow is
no longer identifiedafter it cutsdown its sendingrate. The
assumptionholdsaslong asthereducedsendingrateis way
below !"�%PT#/�&� .
Considera flow beingmonitoredwith a pre-filter dropping
probabilityof t . Thisflow wouldbeunmonitoredwhenthis
droppingprobabilitygoesbelow t³Á�}�� < iKÂ�� Ã i . In eachround
the probability is reducedby eithera factorof Ä or a fixed
amount� ~ , whicheverleadsto lesserreduction.Assumethere
are f subtractivereductionroundsfollowedby c multiplica-
tive reductionrounds.

The subtractive reductionroundsgo in the series t�#Åt v� ~ # +�+�+°+ #Mt v f3� ~ and end when the dropping probabilityt v f3�0~ goesbelow �xj³�0~ . Roughly, thisgivesus

f�ÆÈÇ ¼ if tÊÉÀ1��xj³�0~Ë5KÌ v � otherwise

Themultiplicative reductionof theflow would go in these-
ries t v f3� ~ # Ë"� � 5KÌÍ # Ë"� � 5KÌÍ,Î # �K��� # Ë"� � 5KÌÍ�Ï , where

ËÐ� � 5KÌÍ,Ï Ñt ÁH}�� < i�ÂÅ� Ã�i . Thisgivesus

cÒÆ £%¦��0� ËÐ� � 5KÌË Ï²Ó°ÔKÕ�ÖÅ×NØ�Ù%Ö �£%¦��0�/Ä³�
Thetimerequiredfor eachroundis £ intervals(minimumwait
betweentwo successive decrements).Taking interval length
from Equation3, thetotal releasetime is

9 Â��g©°� �DÃ�� 1 ��c 7 fÚ��£/PoQ½�Û�� 9 � *,+ - �&� X (7)
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We use ��Ä(#%�&~,#MtCÁ�}°� < i�Â�� Ã i@#M£�� 1 �%�Ü#M¼ + ¼ - #M¼ + ¼,¼ - #M?,�
for responsive flows and ��Ä(#%�&~,#MtCÁ�}°� < i�Â�� Ã i@#M£�� 1� *,+ - #M¼ + ¼ - #M¼ + ¼,¼,� - # - � for unresponsive flows, which makes
the releaseslower for unresponsive flows (seeSection6.2).
For the simulationin Figure11, tV1Ý¼ +OÞ�-

andthe sending
rateis ExjH!"�/PT#/�0� , soweget f�1 * ? and c¶1 -

. Therelease
time for �81 *��

comesout to be
* ¼ + -�ß

secondsandis very
closeto whatwegetfrom thesimulations(immediatelyafter
thebandwidthcutdown at 9 1à� - ¼,½ ).
6 Discussion

In this section we discusssome issuespertaining to the
schemewehavedescribedabove.

6.1 Max-min Fairness

Thefairnesspropertiesof thenetwork aredeterminedby the
fairnesspropertiesof the routersandthe congestioncontrol
algorithm usedat the end hosts. In a network with FIFO
queuesandTCP, therelativebandwidthreceivedby two con-
formantTCP flows dependson factorssuchastheir round-
trip times, and the numberof congestedlinks traversedby
eachflow. This sectiontalksaboutthefairnesspropertiesof
RED-PDandhow it achievesa limited form of max-minfair-
ness.

FIFO queues,without per-flow differentiation,cannotpro-
vide max-minfairness;the bandwidthreceived by a flow is
proportionalto thearrival rateof thatflow. In contrast,a full
max-minfairnessschemelikeFQdoesnotlet aflow getmore
bandwidththananotherflow whosedemandhasnotbeenmet.
RED-PDaimsto provide limited max-minfairness,in which
we control the bandwidthallocatedto the high-bandwidth
flows. The high-bandwidthflows are definedusing Equa-
tion (1) for a selectedtarget RTT P andexisting drop rate� . RED-PDchangesthefairnesspropertiesof thesystemby
controlling the arrival rateof selectedflows into the output
queue,by droppingfrom the identifiedflows in thepre-filer.
Thus,theoverallfairnesswouldbesimilarto onein whichno
flow wassendingata rategreaterthan !"�/PT#/�0� .
To put it clearly, in environmentswhere all of the high-
bandwidthflows are using conformantend-to-endconges-
tion control, and have round-trip times considerablylarger
thanthetargetround-triptime P , preferentialdroppingmight
never be invoked, leaving the fairnesspropertiesof the un-
derlyingsystemunchanged.Thatis, for suchanenvironment
with FIFO schedulingandTCP or TCP-compatibleconges-
tion controlmechanisms,thiswouldmeanthefamiliarbiases
in favor of flowswith smallerround-triptimes.

However, in environmentswith non-conformantflowsor with
flowswith round-triptimeslessthanthetargetround-triptime

P , RED-PDchangesthebandwidthallocationof theunderly-
ing system.In particular, RED-PDpreferentiallydropsflows
till their arrival rateinto thequeueis not morethan !"�/PT#/�0� .
Concomitantwith the controlling the high bandwidthflows
is thereductionof theambientdroprate,definedasthedrop
rateat the outputqueue.The ambientdrop rateis the drop
rateseenby unmonitoredflows, andalsothe drop rateseen
by monitoredflowsafterpassingthroughthepre-filter. RED-
PD reducesthe ambientdrop rateby controlling the arrival
rateto the outputqueue.The extent of the reductionin the
ambientdroprateq dependson thetargetRTT P usedat the
router (seesection7.7). The bandwidthabove which flows
aremonitoredalsodependson theambientdroprate. A de-
creasein the ambientdrop rateresultsin an increasein the
bandwidthallowed for an individual unmonitoredflow. Ex-
tendingthis to thescenariowherethedroprateis negligible,
RED-PDhasvery little effect in sucha scenario.This is the
reasonwhy we sayRED-PDcontrolshigh-bandwidthflows
at thecongestedrouter.

6.2 Unresponsive Flows

It is important for schemesthat provide differential treat-
mentfor flowsto provideincentivesfor endto endcongestion
control. Theidentificationandpreferentialdroppingmecha-
nismsof RED-PDdescribedsofarmakeno judgmentsabout
whetheranidentifiedflow is or is notmisbehaving - identified
flows are treatedthe same,whetherthey are unresponsive,
or simply TCP flows with shortround-triptimes. However,
to provide a concreteincentive to end-usersto useconfor-
mantend-to-endcongestioncontrol,oneshouldactively pun-
ish high-bandwidthflows that are judgedby the congested
routerasunresponsive. In this work, we have addressedthe
issueof identifyingunresponsiveflowsonlybriefly, andatthe
momentRED-PD’s only responseto the identificationof an
unresponsiveflow is to bring theflow down to its “f air share”
somewhat morequickly that it would for a monitoredflow
thatwasnot identifiedasunresponsive.

However, by performing the experimentof increasingthe
drop rate of an identified flow, the preferentialdropping
mechanismof RED-PDgivesustheidealframework for test-
ing whetheranidentifiedflow is or is not responsive. Investi-
gationsof possibilitiesfor decreasingthe throughputfor un-
responsivemonitoredflowsto significantlylessthantheir fair
share,asa concreteincentive towardsthe useof end-to-end
congestioncontrol, will be addressedin future work. Some
potentialpoliciesaredroppingfrom unresponsiveflowswith
aprobabilityhigherthanthatsettledatby RED-PDdynamics
or restrictingunresponsive flows to bandwidthmuch lower
than !"�/PT#/�0� .
To performthetestfor unresponsiveness,wekeepahistoryof
thearrival rateanddropratefor eachmonitoredflow, where
the drop rate is the sum of the pre-filter and output queue
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drops. Note that this would requirethe additionaloverhead
of measuringthe arrival ratefor monitoredflows. Our sug-
gestionwould be to recordthe arrival and drop ratesover
successiveperiodsof ¤¢á seconds,whichcorrespondsto sev-
eralcongestionepochsfor any conformantTCPflows likely
to identified.

Oncewe have a numberof arrival/loss-ratepairsin a moni-
toredflow’s history, we cancheckif thepacket dropratefor
the flow hasincreasedsubstantiallywhile the flow wasbe-
ing monitored. If the flow’s packet drop ratehasincreased
substantially, but the flow’s arrival rateat the routerhasnot
decreasedin response,then the routercan reasonablyinfer
that theflow is not responsive. FromEquation(1), theTCP
responsefunction !"�%PU#%�&� impliesthatif thelong-termpacket
drop rateof a conformantflow increasesby a factor � , then
the arrival rateof the flow shoulddecreaseby roughly

) � ,
thatis, to roughly

* � ) � of its previousvalue.

We would note that this test for unresponsivenesscanhave
falsepositives, it could identify someflows that are in fact
responsive. The arrival rateof a flow at the routerdepends
not only on thedropsat that router, but alsoon the demand
from theapplication,andthedropselsewherealongthepath.
In addition,the routerdoesnot know the round-triptime of
theflow, or theotherfactors(e.g.,multicast,equation-based
congestioncontrolmechanisms)thataffect the timelinessof
the flow’s responseto congestion. Thus, the router should
takesomecarein applyingtheresultsof theunresponsiveness
test,anderrof thesideof caution.

The test for unresponsivenesscanalsohave falsenegatives,
in thatit mightnotdetectmany high-bandwidthflowsthatare
unresponsive.However, this is notaproblem,sinceRED-PD
controlsthe bandwidthreceived by theseflows at any rate.
Thegoalis simply thatthemostblatantanddisruptiveof the
unresponsiveflowswouldbeidentifiedasunresponsive.

To test for unresponsiveness,we simply testhow a flow re-
ducedits sendingratein responseto an increaseddrop rate.
If amonitoredflow did notreduceits sendingratein response
to an increaseddrop rate,we declarethe flow asunrespon-
sive.Whenamonitoredflow is identifiedasunresponsive,the
routeris morewary of it thanof othermonitoredflows. The
routerincreasesthedroppingprobabilityof theunresponsive
flow in biggerquantaanddecreasesit in smallerquanta(the
resultof which canbeseenin Section7.3). Theresultis that
we reachthe right droppingprobability for an unresponsive
flow sooner, andkeepit undertighter control. If the unre-
sponsive flow becomesresponsive, the flow will cut down
its sendingrate, and the router would slowly decreasethe
flow’s droppingprobability. Whenthe droppingprobability
becomesnegligible, we unmonitor the flow altogetherand
loseall historyof theflow beingunresponsive. Thuswe do
not have to do anything specialto discover thatanunrespon-
siveflow hasbecomeresponsiveagain.

6.3 EvasiveFlows

Given a completeknowledge of the identification mecha-
nisms at the router, a high-bandwidthflow can possibly
evadethe identificationprocedure.To evadethe identifica-
tion mechanism,theevasiveflow wouldhave to sendin such
amannerthatit receivesdropsin atmost Q v�*

of
X

succes-
sive identificationintervals.A flow is not likely to beableto
do this preciselywithout knowing the lengthandstarttimes
of the identificationintervalswhich arenot fixedbut change
with droprateat therouter. However, it is truethatthemore
bursty the sendingpatternof a flow over successive identi-
fication intervals, the lesslikely it is to be detectedby the
identificationmechanism.

To protect againstbursty flows, the identification mecha-
nismcouldincludeadditionalproceduresfor detectinghigh-
bandwidthbut bursty flows. In particular, the identification
mechanismcouldextendto flowsthatreceivedropsin atmostQ v»*

of
X

successive identificationintervals,but thathave
a veryhighnumberof packetdropsin theseintervals.

6.4 PacketsvsBytes

So far, we have describedRED-PDonly in termsof pack-
ets,asa resultof which a flow sendingfewer largerpackets
can get away with more bandwidththan a flow with same
bandwidthin bytes/secbut sending(more)smallerpackets.
Since there is no consensusin the networking community
aboutwhetherflowsshouldbechargedperpacketor perbyte,
onewould desirea schemewhich canbe operatedin either
mode.Thebiasagainstsmallerpacketsin RED-PDcaneas-
ily bereducedby runningtheunderlyingRED queuein byte
mode,wherea flow’s packetsaremarkedin proportionto its
arrival ratein bytes/sec,ratherthanin proportionto its arrival
ratein packets/sec.For a RED queuerunningin bytemode,
thecountingof dropsin Equation5 shouldbedonein terms
of bytesinsteadof in termsof packets. With thesechanges,
RED-PD’sbiasagainstsmallerpacketsgoesaway. Wetested
this usingsimulationsin which two groupsof flows, with a
packet size ratio of two, were sendingat the samerate (in
bytes/sec)over a commonRED-PD queuewith the above
mentionedchanges. One group of flows was sendingat a
ratemorethan !"�%PT#/�&� andtheotherat lessthanit (this is in
somesensetheworstcasefor thebias).In all thesimulations
we did, underdifferent loss rate conditions,the bandwidth
obtainedby onegroupof flowswaswithin 10%of another.

7 Evaluation

In thissection,wedetermine,usingsimulation,theimpactof
RED-PDandits effectivenessin controllinghigh-bandwidth
flows. Simulationswerecarriedout using the NS network
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simulator[NS]. RED-PDhasbeenaddedto the NS distri-
bution, andwe planto make our simulationscriptsavailable
shortly. Mostof thesimulationsin thissectionuseTCPflows
that senda separateACK for every datapacket; futuresim-
ulationswill alsoincludeTCPflows usingdelayedacknowl-
edgements.

7.1 ReceivedBandwidth

The simulationsin this sectionexplore the bandwidthre-
ceivedby flows sendingat a fixedrate,givenRED-PDanda
specifiedpacketdroprateat thecongestedqueue.Theband-
width reduction(by dropping)occursin thepre-filterandout-
put queuefor monitoredflows and just in the outputqueue
for unmonitoredflows. In order to have a controlledenvi-
ronment,the RED-PDoutputqueuewasconfiguredto drop
eacharriving packetwith a fixedprobability � , ratherthanas
determinedby RED dynamics. A CBR sourcewas started
with a sendingrateof pejo!"�%PT#/�&� pkts/sec�Bpâµ`¼,� , whereP is thetargetRTT (40 ms)and� is theconfigureddroprate
at the queue.Figure13 shows the results. The line labeled
“precise”shows thetargetupperboundon thearrival rateof
a monitoredflow to theoutputqueue,wherethe � -axisgives
thesteady-statearrival rateof themonitoredflow to thepre-
filter. The line labeled“p=1%” shows theactualthroughput
received by the CBR flow after the outputqueue,whenthe
ambientpacket drop rate is 1%. Therearetwo reasonsfor
the lines with the simulationresultsbeing below the “pre-
cise” target line. First, flows with an arrival rateof !"�/PT#/�0�
pkts/secto theoutputqueuestill have a non-zeroprobability
of beingidentified,andof beingpreferentiallydroppeduntil
they reducetheir sendingratefurther. Second,thetargetline
specifiesthetargetarrival rateto theoutputqueue,while the
simulationline givesthe throughputafter the dropsin both
thepre-filterandtheoutputqueue.
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Figure13: Bandwidth receivedby a flow.

Thesimulationlinesin Figure13show thatthereceivedband-
width of theCBR flow doesnot increasewith theincreaseof

the sendingrateabove
* jm!"�/PT#%�&� . This shows that a flow

is not able to consumea large amountof bandwidthby in-
creasingits sendingrate.Anotherinferencethatcanbedrawn
from thefigureis thatRED-PDsuccessfullyprotectsthelow-
bandwidthsenders.This is evidentby a relatively smallde-
creasein bandwidthreceivedby theflowswhosesendingrate
is low. Theonly dropssufferedby thelow-bandwidthsenders
arethosein theoutputqueue.Thus,it becomesimportantto
reducetheambientdroprateby controllingthearrival rateof
thehigh-bandwidthflows into thequeue.

7.2 Fairness

The previous sectionshowed that RED-PDcan control the
bandwidthallottedto high-bandwidthflows, andthat there-
ceivedbandwidthis roughlysamefor all thehigh-bandwidth
senders.Thelastsimulation,with just oneflow passingover
the queuewith a fixed drop rate,wasa “toy” simulationto
prove themainpropertiesof RED-PD.Therestof thesimu-
lationsin thepaperarenormalsimulationsdonewith theun-
derlying outputqueueasRED andhence,the ambientdrop
ratedeterminedby REDdynamics.Fromthispointonwards,
we’ll talk abouta flow’s throughputin termsof Mbps be-
causethereis nofixeddroprate� for calibratingthethrough-
put in termsof !"�%PT#/�&� . The capacityof the congestedlink
is 10 Mbps in all the simulations. Flows werestartedat a
randomtimewithin 10secondsandaggregatedresults,when
presented,weretakennot before20secondsafterthestartof
of thesimulation.Unlessotherwisespecified,thetargetR is
40ms. Exceptfor the web traffic simulationin Section7.4,
thepacket sizeusedin simulationsis 1000bytes. RED was
runningin packet modeandthe SACK versionof TCP was
usedin all simulationsinvolving TCP.

The simulationin Figure 14 shows that RED-PD approxi-
matesmax-minfairnessamonghigh-bandwidthflows(which
aresendingsimultaneouslyandatdifferentrates)by increas-
ing anddecreasingthedropprobabilitiesin theiterativeman-
ner explainedin Section5. The simulationconsistsof 11
UDP CBR flows. The sendingrate of the first flow is 0.1
Mbps,thatof secondflow is 0.5Mbps,andeverysubsequent
flow sendsat a ratewhich is 0.5 Mbps morethanits previ-
ousflow (so the lastUDP flow sendsat 5 Mbps). Figure14
shows thebandwidthreceivedby eachof the 11 CBR flows
with RED andwith RED-PD,while a third line shows each
flow’s max-minfair share.Thegraphshows that with RED
eachflow receivesabandwidthshareproportionalto its send-
ing rate, while with RED-PD all the flows receive roughly
their fair share. The simulationshows RED-PD’s ability to
control thehigh-bandwidthflows,protectthelow bandwidth
flows (1 and2), andprotecthigh-bandwidthflows from each
other. With RED-PDthe ambientdrop ratewasreducedto
roughly 4%, while without RED-PDthe ambientdrop rate
wouldhavebeenabout63%.
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Figure14: Simulation with multiple UDP flows. Flow 1 is
sendingat0.1Mbps,flow 2 at0.5Mbpsandeverysubsequent
flow is sendingatarate0.5Mbpsmorethanthepreviousflow

The simulationin Figure 15 consistsof a mix of TCP and
UDP flows. Theaim is to studytheeffectof high-bandwidth
UDPflowsonconformantTCPflows. Thereare9 TCPflows
and3 UDP flows. The TCP flows have differentround-trip
times;thefirst threeTCPflowshaveround-triptimescloseto
30 ms (thereis somevariationin the actualRTTs), thenext
threehave RTTs around50 ms,andthe last threehave RTT
of 70 ms. The UDP flows, with flow numbers10, 11 and
12, have sendingratesof 5 Mbps, 3 Mbps and1 Mbps re-
spectively. Again, Figure 15 shows the bandwidthof each
of the 12 flows with RED and with RED-PD. With RED,
thehigh-bandwidthUDP flows run away with almostall the
bandwidth,leaving little for theTCPflows. In contrast,RED-
PDis ableto restrictthebandwidthallottedto theUDPflows
to neartheir fair share.With a targetR of 40 ms, RED-PD
monitorsnot only the UDP flows but alsothoseTCP flows
with RTTs around30ms(andoccasionallythosewith 50 ms
aswell). Clearlyeachof theUDP flows receiveda different
pre-filterdroppingrate,becauseeachUDPflow wassuccess-
fully restrictedto its max-minfair share.It is interestingto
notethat theTCPflows with RTT of 70 msstill get slightly
lessbandwidthcomparedto otherflows. We delve into the
reasonsfor this in detail in Section7.7.

7.3 Adapting dropping probability

Thesimulationin Figure16showsRED-PD’sability to adapt
to thevaryingsendingrateof aflow. Thesimulationis similar
to thatpresentedin Section5.2but it hasaREDqueueinstead
of a queuewith a fixeddroprate,andis donein thepresence
of backgroundtraffic. A UDPflow wasstartedwith theinitial
rateof 0.25 Mbps. At 9 1 - ¼�½ the UDP flow increasesits
sendingrateto4 Mbps,andat 9 1à� - ¼ it decreasesits sending
ratebackto 0.25Mbps. Othertraffic on thelink consistedof
9 TCPflows with thesameRTTs asabove. Figure16 shows
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Figure15: Simulation with a mix of TCP and UDP flows.
Flows 1-9areTCPflows,1-3 with RTT 30ms,4-6 with RTT
50msand7-9 with RTT of 70ms. Flow 10, 11 and12 are
UDPflowswith sendingrateof 5 Mbps,3 Mbpsand1 Mbps
respectively

the bandwidthreceived by the UDP flow averagedover 1-
secondintervals.Figure16shows theresultsof two separate
simulations,onewith thetestfor unresponsivenessdisabled,
andonewith it enabled.Thebottomgraphof Figure16shows
theexponentialaverage(with ·à1å¼ +O- ) of theambientdrop
rate.

The responsetime for cutting down is much lessthan that
computedin Section5.2 mainly becauseAssumption1 of
a fixed ambientdrop ratedoesnot hold in this scenario,as
shown in the bottom graphof Figure 16. The graphalso
shows that if theunresponsivetestis on, theUDP flow is cut
down muchsoonerandreleasedlater, asdiscussedbefore.In
thissimulationit tookaboutthreesecondsfor RED-PDto de-
claretheUDPflow unresponsiveafterit increasedits sending
rate.

As we saidearlier, thespeedof RED-PD’s reactiondepends
on theambientdroprateandthearrival rateof themonitored
flow. If the ambientdrop rate is high, the increasequanta
is large andthe right droppingprobability is reachedmuch
faster. In asimilarfashion,RED-PDadaptsitsdroppingprob-
ability whentheconditionsat therouterchange;for instance,
if thearrival of a significantnumberof new flows leadsto an
increasedambientdroprate.

7.4 WebTraffic

Thesimulationin Figure17showstheeffectivenessof RED-
PD in a dynamicenvironmentin thepresenceof web traffic
(asrepresentedby thewebtraffic generatorin ns). Thepacket
sizein this simulationwas500bytes.Theobjectsizedistri-
bution usedwas paretowith average24 packets and shape
parameter1.2. The long term averageof the generatedweb
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Figure16: Adapting Dropping Probability. Thetop graph
showsthebandwidthreceivedby aUDPflow whichchanges
its sendingrateto 4 Mbpsat 9 1 - ¼,½ andbackto 0.25Mbps
at 9 1à� - ¼,½ . Theline labeled!"�/PT#/�0� is basedontheambient
droprateseenover thewholesimulation.Thebottomgraph
plotsthevariationof ambientdropratewith time.

traffic wasabout5 Mbps,roughly50%of thelink bandwidth.
A dumbbelltopologywith 5 nodeson eachsidewas used.
TheRTTs for flows on this topologyrangedfrom 20 to 100
ms. In additionto theweb traffic, traffic includedoneUDP
flow with a sendingrateof 2 Mbps andten infinite demand
TCP flows. Two simulationswere run, one with and one
without RED-PD.Figure 17 shows the cumulative fraction
of webrequestscompletedby agiventime. Thereis asignifi-
cantgainfor thewebtraffic with RED-PD,in spiteof thefact
thatshort-RTT TCPflows carryingwebtraffic arealsoocca-
sionallymonitored(if they lastsufficiently long to beidenti-
fied). By monitoringtheUDPflow andshort-RTT TCPflows,
RED-PDreducestheambientdrop rate,which doesa lot of
good for other traffic. Figure 18 shows the bandwidthob-
tainedby eachof the infinite-demandflows. Apart from the
UDP flow, RED-PDalsoreducesthebandwidthobtainedby
theshort-RTT TCPflows (1 and2), astheir RTT is lessthan
thetargetR of 40ms.

7.5 Multiple CongestedLinks

Thesimulationin Figure19 explorestheimpactof RED-PD
with multiple congestedlinks. Eachcongestedlink hasa ca-
pacityof 10 Mbps. On eachlink eightTCPsourcesandtwo
UDPsourceswerestarted,with round-triptimesrangingfrom

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 F
lo

w
s

æ

Time in Seconds to Complete the Request

RED
RED-PD

Figure17: Simulation with Web Traffic. The cumulative
fraction of requestswhich were completedbeforea given
time
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Figure18: Simulation with WebTraffic. Thebandwidthby
the long flows. Flow numbers1-10 areTCP flows, 2 each
with RTT in msof 20,40,60,80and100.Flow 11 is a UDP
flow sendingat2 Mbps.

20 to 80 ms. TheUDP flows wereeachsendingat 5 Mbps.
We studythebandwidthobtainedby a flow passingthrough
all thecongestedlinks, asthenumberof congestedlinks in-
crease.Theflow passingthroughmultiple congestedlinks is
eithera UDPflow with sendingrateof 1 Mbpsor (in a sepa-
ratesimulation)a TCPflow with anRTT of 80ms.TheRTT
of theTCPflow waskeptthesameirrespectiveof thenumber
of congestedlinks it passedover, by adjustingthe delayof
theconnectingnode,to factorout a throughputdecreasedue
to anincreasingRTT.

Figure19 shows thebandwidthobtainedby theflow passing
throughmultiplecongestedlinks, with andwithoutRED-PD.
Eachmark in Figure 19 shows the resultsof a single sim-
ulation, with eithera UDP or a TCP flow, with or without
RED-PD,and with the numberof congestedlinks ranging
from oneto five. The throughputfor themultiple-linksflow
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goesdown asthenumberof links increases,but is muchbet-
terwith RED-PDthanwith RED,becauseRED-PDdecreases
theambientdropratefor eachof thecongestedlinks. Unlike
completeallocationschemeslike FQ,RED-PDhasa goalof
limited max-minfairness,anddoesnot bring down the am-
bient drop rate to zero. However, by controlling the high-
bandwidthflows,RED-PDbringstheambientdropratedown
to manageablelevels. Thedecreasein theambientdroprate
dependson the targetR (higherR leadslower droprate),an
issuewediscussin moredetailin Section7.7.
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Figure19: Multiple CongestedLinks. Thegraphshows the
throughputof theUDP or theTCPflow which goesover all
thecongestedlinks.

7.6 Other CongestionControl Models

In the simulationin Figure 21, we explore RED-PD’s im-
pact on congestioncontrol modelsother than TCP. TFRC
[FHPW00] is a TCP-friendly rate-basedprotocolwhich at-
temptsto smooththesendingratewhile maintainingthesame
long termsendingrateasTCP, asgivenby theTCPequation
in [PFTK98]. Insteadof halvingits sendingratein response
to eachcongestionindication, TFRC estimatesthe average
lossrate,andadaptsits sendingrateaccordingly. To maintain
asmoothersendingrate,TFRCrespondsmoreslowly to con-
gestionthatdoesTCP. Thiscanresultin RED-PDpenalizing
a TFRCflow morethanit would a correspondingTCPflow,
whenthe levelsof congestionat therouterincreaseat a rate
fasterthantheTFRCresponsetime. However, we donot ex-
plorethesetransientsin thiswork but restrictourattentionto
observinghow thelong termthroughputof TFRCis affected
with RED-PDinsteadof RED.

In the simulationwe startedEujmf sources,f eachof TCP
andof TFRCwith anRTT of 30 msand f eachof TCPand
of TFRC with an RTT of 120ms. The targetR was60 ms.
Figure20 shows the total throughputreceivedby 30-msand
120-msTCPandTFRCsources,averagedover5 simulations,
asthenumberof flows increase.Figure21 shows theTFRC

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t

Total Number of Flows

TCP (30ms, RED)
TFRC (30ms, RED)

TCP (30ms, RED-PD)
TFRC (30ms, RED-PD)

TCP (120ms, RED)
TFRC (120ms, RED)

TCP (120ms, RED-PD)
TFRC (120ms, RED-PD)

Figure20: The thr oughput of TCP and TFRC flows. The
graph plots the total thoughputreceived by that category
(TCPor TFRC,RTT, REDor RED-PD)of flows

thoughputnormalizedw.r.t. to throughputof the TCP flow
with thesameRTT. In the top two graphsof Figure21 each
markis from a separatesimulationandtheline joining them
is the average.An increasein the numberof sourcesis ac-
companiedby a correspondingincreasein theambientdrop
rateasshown by thebottomgraph.

It is evidentthattheperformanceof theshortRTT TFRCflow
deterioratesas the drop rate increases,with both RED and
RED-PD.TherelativeTFRCthroughputis betterwith RED-
PD. Inspectionof Figure 20 reveals that this improvement
is largely becauseof the reductionin throughputof the 30-
msTCPflowswith RED-PD.Thedropin theabsoluteband-
width obtainedby the short-RTT TFRC flows is not signifi-
cant(asthey arealreadysendingata ratelowerthantheTCP
of sameRTT). Thereis a bandwidthgainseenby bothlong-
RTT TFRCandTCPflowsbecauseof RED-PD.Thedifferent
relativegainschangesthebandwidthdistributionfrom amild
biastowardsTFRC(with RED) to a mild biastowardsTCP
(with RED-PD).

The broadconclusionfrom thesesimulationsis that in gen-
eral, RED-PDdoesnot have an undesiredimpacton either
TCPor TFRCin thepresenceof theotherandtheschemeis
not vulnerableto TFRC, a TCP-friendlycongestioncontrol
algorithm.

7.7 Simulations on Choosing ç , the Target
RTT

The simulationsin this sectionillustratehow the choiceof
theconfiguredround-triptime P affectsthe identificationof
flows for monitoring as well as the bandwidthreceived by
monitoredflows. Eachcolumnin Figure22 representsa dif-
ferentsimulation,with a differentvaluefor P , rangingfrom
10 ms to 170 ms. In eachsimulation14 TCP connections
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Figure21: TFRC performance compared with TCP. The
top graphplots the throughputof the30-msTFRC,normal-
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werestarted,two eachwith RTTs of 40 ms,80 ms and120
ms, and the rest with RTTs of 160 ms. The top graphof
Figure22 shows theaveragebandwidthreceivedby theTCP
flowswith round-triptimesfrom40-120ms,while thebottom
graphof Figure22showstheambientdroprate.For thesim-
ulationswith P lessthan40 ms,RED-PDdoesnot identify
any flows, and the bandwidthdistribution is essentiallythe
sameasit would bewith plain RED.However, for thesimu-
lationswith P of 40 msor higher, theshortTCPflows with
a40msRTT startto beidentifiedandpreferentiallydropped.
Note that as P is increased,the bandwidthreceived by the
shortTCPflows is decreasedaccordingly. This makessense,
becausethetargetbandwidthfor amonitoredflow is !"�/PT#/�0� ,
andthis decreaseswith anincreaseof P . In addition,as P is
increasedtheambientdropratedecreasesandthethroughput
for the long TCP flows increases(thoughthis is not shown
in Figure22). Similarly, as P is increasedabove 80 ms, the
80 ms TCP flows begin to be monitoredand preferentially
dropped.

As thesesimulationsillustrate,increasingRED-PD’s config-
uredvalueof P resultsin moreandmoreflows beingmon-
itored, with moredropsoccuringin the pre-filter usingper-
flow state. Thus,as P is increased,RED-PDgetscloserto
full max-min fairness. In addition, increasingP decreases
theambientdroprate,andthereforeincreasesthebandwidth

availableto webmiceandothershortflows.

Thesimulationsin Figure22alsoshow that,with averysmall
valuefor P , RED-PDhaslimited impactat the router, and
can be usedwith the goal of controlling only egregiously-
misbehaving flowsor thoseconformantflowswith veryshort
round-triptimes.
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Figure22: The Effect of Target R. Thetop graphshows the
bandwidthreceivedby 40 ms,80 msand120 ms RTT TCP
flows asR is increased.Thebottomgraphplots theambient
droprate.

8 Other Issueswith RED-PD

In this sectionwe make explicit the staterequirementsof
RED-PD,andalsodiscusstheissuesrelatedto choosingthe
right targetround-triptime P for aRED-PDqueue.

8.1 StateRequirements

In additionto thestateneededby aregularREDqueue,RED-
PDrequiresstatefor theidentificationengineandfor keeping
trackof monitoredflows. For theidentificationengine,RED-
PDstores

X
listsof flowswhichhavesuffereddropsoveran

interval lengthgivenby Equation3. Theamountof memory
requireddependsonboththeambientdroprateandthenum-
ber of flows competingat that queue. The drop rateat the
routeris dependenton theconfiguredvaluefor P , which we
discussmorein thenext section.As anexample,for aninter-
val lengthof 150ms,and

X 1 -
, therouterstoredinforma-

tion aboutdroppedpacketsover thepast750ms.Thisshould
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not bea problemevenfor high-speedrouters.It shouldalso
benotedthat this doesnot requirefastmemory, asthe iden-
tification processdoesnot run in the forwarding fast path.
In rarecaseswhentherouterdoesnot have enoughmemory
to storeheadersfor all the drops,it cansort, andstorejust
thedropsfrom thehigh senders(asrepresentedby theflows
with the mostdrops)whenretiring the currentlist to starta
new one.Thiswouldrestrictidentificationto just thehighest-
bandwidthflows,andshouldnot leadto any majorchangein
thebehavior of RED-PD.

RED-PDalsorequiresstateto keeptrackof monitoredflows.
Upon the arrival of a packet at the router, RED-PD hasto
determineif this packet belongsto a monitoredflow. If so,
then RED-PDappliesthe appropriatepreferentialdropping
to that packet beforeaddingit (if it is not dropped)to the
outputqueue. This preferentialdroppingoccursin the fast
pathandhencehasto usememorythatcankeepup with the
forwardingspeedneeded.Using a sparselypopulatedhash
table (or perfecthashfunctions),fast lookupsarepossible.
The speedrequiredin this operationcanbe a decidingfac-
tor in how big a configured P a router can use. A largerP meansthat the router would be monitoring more flows,
leadingto largerhashtablesandpotentiallyslower lookups.
While RED-PDcould be configuredto monitor many flows
at onetime,our own interestis in usingRED-PDto monitor
egregiously-misbehaving flows in timesof high congestion.
For this purpose,a fairly low valueof P would be config-
ured,andwe would expectonly a small numberof flows to
be monitoredat onetime. For this purpose,we do not ex-
pectthatthestaterequirementsfor monitoredflowsto posea
problem.

8.2 Choosing ç , the Target RTT

As was illustrated by the simulationsin Section7.7, the
choiceof thetargetround-triptime P determinesRED-PD’s
operatingpoint alongthecontinuumof greateror lesserper-
flow treatmentat thecongestedqueue.A largervaluefor P
resultsin greaterper-flow treatment,requiresmore stateat
therouter, andcomescloserto full max-minfairness.In con-
trast,asmallervaluefor P leadsusto theoppositeendof the
spectrum.In addition,thedesiredchoiceof P dependsonthe
likely mix of round-triptimesfor theconformantflowsonthe
congestedlink.

Insteadof afixed,configuredvaluefor P , anotherpossibility
would be for P to be varied dynamically, as a function of
theambientdroprateandof thestateavailableat therouter.
Weplanto explorepossibilitiesfor dynamicallyvarying P in
laterwork.

9 Aggregate-basedCongestion Con-
tr ol

RED-PD can be supplementedat the router by aggregate-
basedcongestioncontrol,whereanaggregatemightbetraffic
from a distributeddenial-of-serviceattack,or a flashcrowd
of legitimate traffic to a web site relatedto a news-worthy
event. With aggregate-basedcongestioncontrol,whenthere
is a rise in thepacket drop rate,andRED-PDdetectsno in-
dividual flows responsiblefor this rise, then the router can
checkto seeif theincreasedcongestionis dueto anincrease
in traffic from a traffic aggregatethat is a subsetof the traf-
fic of the congestedlink. If the router is able to identify a
traffic aggregatelargely responsiblefor the traffic increase,
theroutermightwantto preferentiallydroppacketsfrom that
aggregate,to protectthe restof the traffic on that link from
anoverall increasein thepacketdroprate.Coupledwith this
preferentialdroppingatthecongestedrouter, theroutermight
invokePushback to requesttheimmediateupstreamroutersto
alsodroppacketsfrom this aggregate.This useof Pushback
preventsanunnecessarywasteof bandwidthby packetsthat
will only be droppeddownstream. In the caseof a denial-
of-serviceattack,Pushbackcouldhelpfocusthepreferential
packet-droppingon themalicioustraffic within theidentified
aggregate[BFM � 00].

At somelevel, aggregate-basedcongestioncontrol can be
thought of as a variant of RED-PD applied to aggregates
ratherthanto individual flows, in that aggregate-basedcon-
gestioncontrol enforcesan upperboundon the bandwidth
givento anidentifiedaggregateat therouterin a timeof con-
gestion. However, therearesubstantialdifferencesbetween
flow-based(i.e., RED-PD)and aggregate-based(i.e., Push-
back)congestioncontrolat therouter. As anexample,theuse
of theTCPthroughputequationis appropriatefor individual
flows (asdefinedby sourceanddestinationIP addressesand
portnumbers)but notfor aggregatesof flows. Thedistinction
betweenconformantandnon-conformantaggregatesis con-
siderablyharderto pin down that that betweenconformant
andnon-conformantflows. For example,a conformantag-
gregatecomposedof many very shortflows will responseto
preferentialdroppingdifferentlythanwill anaggregatecom-
posedof a smallernumberof largeflows.

The identificationmechanismis alsosomewhatdifferentfor
flow-basedandaggregate-basedcongestioncontrol.An iden-
tification mechanismbasedon multiple lists of packet drops
over successive time intervals is most appropriatefor indi-
vidualflows,wheremultiplepacketswithin a round-triptime
aredefinedasa singlecongestionevent,but lessappropriate
for identifying a traffic aggregate;an identificationscheme
basedon a singlelist of recentpacket dropsshouldbesuffi-
cientfor identifyinganaggregate.In addition,while thetraf-
fic at the routerbreaksdown into a numberof well-defined,
mutually-exclusiveflows,this is notnecessarilythecasewith
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aggregates;a router’s job could be to identify the aggregate
responsiblefor high congestion,if thereis one,from a large
overlappingsetof possibleaggregates.

While Pushbackis akey componentfor aggregate-basedcon-
gestioncontrol,it is not socrucialfor flow-basedcongestion
controlschemes.For a flow-basedcongestioncontrolmech-
anismsuchasRED-PD,whenappliedto aflow usingconfor-
mantend-to-endcongestioncontrol,thereis noneedto push-
backpreferentialdroppingto anupstreamrouter; increasing
thepacketdroprateat thecongestedrouteritself will besuf-
ficient to reducethe arrival rate from that flow. When ap-
plying flow-basedcongestioncontrol to a misbehaving flow,
therecouldbesomebenefitin pushingbackpreferentialdrop-
ping to anupstreamrouter, but evenso,theupstreamrouters
for thatflow arelikely to beseeingall thepacketsfrom that
flow, andcouldsimply run RED-PDthemselvesandprefer-
entially drop from that flow if it is causingsignificantcon-
gestion. In contrast,for aggregates,pushingbackpreferen-
tial droppingupstreamcanbea powerful tool, asaggregates
changetheircompositionfrom onerouterto thenext. For ex-
ample,atarouter, thetraffic aggregatedefinedby acertainIP
address(sourceor destination)prefix could becomposedof
flows from a numberof incominglinks, so the traffic aggre-
gatewith that definitionat a routeronehop upstreamcould
havearatherdifferentcomposition.

10 Conclusions

In this paperwe have presentedRED-PD,a mechanismthat
usesthe packet drop history at the router to detecthigh-
bandwidthflows in timesof congestion,andto preferentially
drop packets from thesehigh-bandwidthflows in order to
control the bandwidthreceived by theseflows at the con-
gestedqueue.We showed the effectivenessof the proposed
mechanismthroughextensivesimulation,andwe planto run
additionalsimulationsin thefuture. In futurework, we hope
to exploreanexperimentaldeploymentof RED-PD.
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