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Abstract
Soft state protocols use periodic refresh messages to

keep network state alive while adapting to changing net-
work conditions; this has raised concerns regarding the
scalability of protocols that use the soft-state approach. In
existing soft state protocols, the values of the timers that
control the sending of these messages, and the timers for
aging out state, are chosen by matching empirical obser-
vations with desired recovery and response times. These
fixed timer-values fail because they use time as a metric for
bandwidth; they adapt neither to (1) the wide range of link
speeds that exist in most wide-area internets, nor to (2) fluc-
tuations in the amount of network state over time.

We propose and evaluate a new approach in which timer-
values adapt dynamically to the volume of control traffic
and available bandwidth on the link. The essential mecha-
nisms required to realize this scalable timers approach are:
(1) dynamic adjustment of the senders’ refresh rate so that
the bandwidth allocated for control traffic is not exceeded,
and (2) estimation of the senders’ refresh rate at the re-
ceiver in order to determine when the state can be timed-out
and deleted. The refresh messages are sent in a round robin
manner not exceeding the bandwidth allocated to control
traffic, and taking into account message priorities. We eval-
uate two receiver estimation methods for dynamically ad-
justing network state timeout values: (1) counting of the
rounds and (2) exponential weighted moving average.

1 Introduction
A number of proposed enhancements to the Internet ar-

chitecture require addition of new state (i.e., stored infor-
mation) in network nodes. In the context of various kinds
of network element failures, a key design choice is the man-
ner in which this information is established and maintained.
Soft state protocols maintain state in intermediate nodes us-
ing refreshes that are periodically initiated by endpoints.
When the endpoints stop initiating refreshes the state au-
tomatically times out. Similarly, if the intermediate state
disappears, it is re-established by the end-point initiated re-
freshes [1].

In this paper we propose a new approach of scalable
timers to improve the scaling properties of soft state mecha-
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nisms. Scalable timers replace the fixed timer settings used
by existing soft state protocols with timers that adapt to the
volume of control traffic and available bandwidth on the
link. Scalable timers regulate the amount of control traffic
independent of the amount of soft state.

In the next section we present an overview of state man-
agement in networks. In Section 3 we describe how the
fixed timers are currently used by soft state protocols to ex-
change refresh messages and discard stale state and we mo-
tivate our approach of scalable timers that makes soft state
protocols more scalable. Mechanisms required for the pro-
posed approach of regulating control traffic are discussed
in Section 4 and Section 5. We look at the application of
the scalable timers approach to PIM [2, 3] in Section 6,
followed by the simulation results in Section 7. Section 8
compares the traditional and the proposed approaches. We
conclude with a summary and a few comments on future
directions in Section 9.

2 State Management in Networks
State in network nodes refers to information stored by

networking protocols about the conditions of the network.
The state of the network is stored in a distributed man-
ner across various nodes and various protocols. For in-
stance, a teleconference application might run on top of
multiple protocols. Internet Group Management Protocol
(IGMP) [4] in a host stores information about the multicast
groups in which that host is participating. Based on the
membership information multicast routing protocols such
as DVMRP [5], PIM [2, 3] or CBT [6] create multicast for-
warding state in the routers. A reservation protocol such as
RSVP [7] or ST-II [8] may reserve network resources for
the teleconferencing session along the multicast tree.

The state has to be modified to reflect the changes in
network conditions. The network nodes communicate with
each other to exchange the information regarding change in
the network conditions. Based on these control messages
the network nodes modify their stored state. For instance,
in the event of a change in network topology, the routers ex-
change messages resulting in modification of the multicast
forwarding state if needed.

Based on the roles played by the nodes with respect
to the particular state being referenced, the control mes-
sage exchange among network nodes can be modelled as
an exchange of messages between two entities; the sender
and the receiver. The sender is the network node that
(re)generates control messages to install, keep alive, and



remove state from the other node. The receiver is the node
that creates, maintains and removes state, based on the con-
trol messages that it receives from the sender.
2.1 Paradigms for maintaining state in network

The state maintained by nodes in a network can be cate-
gorized as hard state and soft state. Hard state is that which
is installed in nodes upon receiving a set-up message and
is removed only on receiving an explicit tear-down mes-
sage. The reservation protocol ST-II [8, 9] and multicast
routing protocol Core Based Tree (CBT)[6] are examples
of protocols that use the hard state paradigm. Hard state ar-
chitectures use explicitly acknowledged, reliable messages.
This reliable message transport entails increased protocol
complexity.

Soft state, on the other hand, uses refresh messages
to keep it alive and is discarded if the state is not re-
freshed for some time interval. Resource Reservation
Protocol (RSVP) [7] and Protocol Independent Multicast
(PIM) [2, 3] use periodic refreshes to maintain soft state
in network nodes. The refreshes are sent periodically after
one refresh period. The time that the receiver waits before
discarding a state entry is a small multiple of the refresh pe-
riod1. The multiplying factor is determined by the degree
of robustness required and lossiness of the link or path2.

During steady conditions, hard state protocols require
less control traffic as there are no periodic control mes-
sages. Soft state protocols provide better (faster) adaptation
and greater robustness to changes in the underlying network
conditions, but at the expense of periodic refresh messages.
However, when the network is dynamic, hard-state control
messages must be generated to adapt to the changes. In such
a scenario the bandwidth used by control messages would
be comparable for both paradigms.

3 Timers in Soft State Protocols
Soft state protocols have two timers associated with the

control traffic, one at the sender and one at the receiver.
The sender maintains a refresh timer that is used to clock
out the refresh messages for the existing state. The receiver
discards a state entry if it does not receive a refresh message
for that state before the state timeout timer expires.

Traditional protocols have fixed settings for the timer
values. The values of the refresh and timeout timers are
chosen by empirical observations with desired recovery and
response in mind. These values are then used as fixed timers
for sending the periodic refreshes. Such fixed refresh timers
for the state update fail to address the heterogeneity of the
networking environments (e.g. range of link bandwidths)
and the growth of network state.

As the size and usage of the networks grow the amount
of state to be maintained also increases. State in the net-
work might exist even when data sources are idle (e.g. state
related to shared trees in PIM routers, or IGMP member-
ship information in Designated Routers). With fixed timers

1We assume for simplicity that the soft state protocols do not use ex-
plicit tear-down messages. A soft state protocol might optionally use ex-
plicit tear-down messages to achieve faster action.

2Degree of robustness is a tradeoff of tolerance to dropped packets and
overhead of maintaining state that may no longer be required.

the control traffic grows linearly with the increase in the
amount of state in the network. In the center of the net-
work aggregate traffic levels will contribute to large quan-
tities of state and traffic. At the edges, lower speed links
make even a lower traffic level a concern. The primary goal
of a data network is to carry data traffic. Unconstrained
growth of control traffic can jeopardize this primary goal.
This is exacerbated by the fact that traffic levels are higher
when congestion and network events are reducing overall
network resource availability. Soft state protocols can be
made scalable only if control messages can be constrained
independent of the amount of state in the network.

To date when the overhead becomes excessive the fixed
timer values have to be changed globally. In summary,
fixed timer settings fail because they use time as a metric
for bandwidth and do not address the range of link speeds
present across the network.

3.1 Scalable Timers
Our scalable timers approach fixes the control traffic

bandwidth instead of the refresh interval. The control
traffic is regulated by dynamically adjusting timer values to
the amount of state, using mechanisms similar to those for
regulating control traffic in RTP [10]. The design objective
is to make the bandwidth used by control traffic negligible
as compared to the link bandwidth and the data traffic. Con-
sequently, a fixed portion of the link bandwidth is allocated
to the control traffic. The sender adjusts the refresh interval
according to the fixed available control traffic bandwidth
and the amount of state to be refreshed. Because the refresh
interval is no longer fixed, the receiver has the additional
job of estimating the refresh rate used by the sender.
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Figure 1: Fixed Timers v/s Scalable Timers

Figure 1 compares the changes in the refresh interval and
control bandwidth for fixed and scalable timers. Figure 1
has a line for the scalable timers approach and a line for the
fixed timers approach, showing how the amount of band-
width used by control messages and refresh period vary as
the amount of state to be refreshed increases. In the fixed
timers approach the amount of bandwidth used by control
messages increases as the amount of state to be refreshed



increases. However, in our scalable timers approach the re-
fresh interval increases with the increase in amount of state,
keeping the volume of control traffic constant. Scalable
timers address the wide range of link speeds as the band-
width allocated to control traffic is proportional to the link
speed. In the next section we present the mechanisms re-
quired for applying scalable timers to soft state protocols.

4 Mechanisms for Scalable Timers
The essential mechanisms required by scalable timers

are twofold: (1) the sender dynamically adjusts the refresh
rate, and (2) the receiver estimates the rate at which the
sender is refreshing the state, in order to determine when
state can be considered stale and deleted.

In this section we discuss these mechanisms for servic-
ing the control traffic and timing out state at network nodes
for point-to-point links. These mechanisms can be extended
to multiaccess LANs by treating each of them as multiple
point-to-point links3.
4.1 Servicing the control traffic at the sender

The sender needs to generate refreshes for its state en-
tries such that the bandwidth allocated for control traffic is
not exceeded. A simple model for generating refreshes at
the sender is to equally divide the allocated control band-
width ( ���������	�	
 ������������ ) among all the state entries by ser-
vicing them in a round robin fashion. We need to modify
this simple model to accommodate control messages with
different priorities. For instance, control messages that are
generated to create new state (trigger traffic) should be ser-
viced faster than control messages that refresh already ex-
isting state (refresh traffic). Simple round robin servicing
of the control messages fails to include such priorities asso-
ciated with various control messages for a protocol.

However, a simple priority model is also not suitable, as
it can lead to starvation of the lower priority messages. In-
stead, isolation of bandwidth for various classes of traffic
is required, such that each class receives a guaranteed share
of the control bandwidth even during heavy load. There is
no starvation as each class of control traffic is guaranteed a
share of the control bandwidth. When bandwidth allocated
to a class is not being used, it is available to other classes
sharing the control traffic bandwidth. The class structure of
the control messages in different protocols can be set differ-
ently based on the requirements of that protocol. This use
of isolation to protect the lower classes from starvation is
similar to the link sharing approach in Class based Queue-
ing (CBQ) [11].

One possible class structure divides the control messages
into two classes, trigger messages and refresh messages.
The trigger traffic class is guaranteed a very large frac-
tion (close to 1) of the control bandwidth so that trigger
messages can be serviced very quickly for better response
time. Refresh messages are allocated the remaining non-
zero fraction of bandwidth. Guaranteeing a non-zero frac-
tion of the control traffic bandwidth to refresh messages
precludes starvation and premature state timeout at the re-
ceiver. In this class structure there is a tradeoff between the
latency in establishment of new state and delay in removing

3It might require additional mechanisms for sharing the bandwidth.

stale state. If a larger fraction of control bandwidth is allo-
cated to trigger traffic the latency in establishing new state
is less, but there might be more delay in discarding stale
state.

A token bucket rate limiter can be used to serve bursts in
trigger traffic. The sender generates refreshes for the exist-
ing state in a round robin fashion. To avoid sending refresh
messages too frequently all protocols have a minimum re-
fresh period �	�����	�	��� �����������! "
�#�$&% that is the same as the
refresh period used by the fixed timers approach.
4.2 Timing out network state at the receiver

In the fixed timer approach, the receiver has prior knowl-
edge of the refresh period and can compute the timeout in-
terval a priori (e.g., a small multiple of the refresh period to
allow for packet loss). In contrast, in the scalable timers ap-
proach the rate at which the sender refreshes the state varies
based on the total amount of state at the sender, and the
receiver has to track the refresh frequency and update the
timeout interval accordingly. One possibility would be for
the sender to explicitly notify the receiver about the change
in the refresh period in the control messages. Another pos-
sibility is for the receiver to estimate the refresh frequency
from the control message arrival rate.

If the receiver relies on information conveyed by the
sender, the receiver is implicitly putting trust in the sender
to behave properly. This is not an issue of maliciousness but
of lack of adequate incentives to motivate strict adherence.
In addition, the sender cannot foresee the changes in the re-
fresh period and hence might convey incorrect information
to the receiver. For example, when a link comes up there
could be a big burst of trigger traffic resulting in changes
in refresh intervals not foreseen by the sender. Therefore,
even if information is sent explicitly by the sender, the re-
ceiver still needs alternate mechanisms to avoid premature
state deletion. If the receiver does not trust the sender and
has its own mechanism for the estimation of the timeouts,
then the information sent by the sender is redundant.

In summary, the explicit notification approach unneces-
sarily couples system entities. We adopt a general architec-
tural principle to place less trust in detailed system behavior
in order to make the architecture more robust.

In the absence of explicit notification of change in the
refresh interval, the receiver needs to estimate the current
refresh interval and adjust the timeout accordingly. In the
next section we discuss mechanisms for estimation of the
refresh interval at the receiver.

5 Estimating the Refresh Periods
The receiver estimates the refresh period from the time

between two consecutive refresh messages and must adapt
to the changes in this refresh period over time. The receiver
might observe changes in the refresh interval due to trigger
messages, new state and packet loss.

Unlike the fixed refresh period approach, where the
timeout interval has to be robust only to deal with dropped
packets, the estimator used in scalable timers has to be more
carefully designed to be both adaptive and efficient. We
need timers to be robust not only in the presence of an oc-
casional dropped update, but also in the presence of a rapid



non-linear increase in the inter-update interval.
Receivers use the estimate of the refresh interval for dis-

carding old state. The estimate must be conservative so as
not to timeout state prematurely. The consequences of tim-
ing out state prematurely are generally more serious than
the consequences of moderate delays in timing out state.

In this section we discuss two approaches that can be
used at the receiver to age the old state.

5.1 Counting of the Rounds
The first approach that we discuss is counting of the

rounds. A round refers to one cycle of refreshes at the
sender for all the state that it has to refresh. In this ap-
proach, instead of trying to estimate the refresh period and
then using a multiple of this period to throw away the state,
the state is thrown away if the receiver does not receive the
refresh for a particular state for some  rounds (where  is
a small integer and is set to provide robustness to lost pack-
ets, as with the fixed timers). Thus by counting the rounds
the receiver can track the sender closely.

When the sender is servicing the states in a round robin
fashion, all the state will have been serviced by the sender
at least once between any two consecutive refreshes for a
particular state entry. The receiver marks the beginning
of a round by a round marker. For each state the receiver
maintains the last time that a refresh was received for that
state. If two refresh messages are received for a particular
state since the beginning of the current round, a new round
marker is set to the current time. This marks the completion
of a new round, during which the sender should have sent
at least one refresh message for each state to be refreshed.

The receiver maintains round markers for each link. Ev-
ery time a new round starts, checks are made to see if any
state has to be discarded. The receiver can count the rounds
easily using this algorithm. The algorithm is further ex-
plained in the pseudocode below.

For state � , let previous refresh[ � ] denote the
last time that a refresh was received for state � .

On receiving a refresh message for state
�
:

if (previous refresh[i] � last round marker) �
last round marker � current time;
shift round markers();
age state();�

previous refresh[i] � current time;

The age state() routine discards any state that has not
been refreshed for last three rounds.

With the counting-the-rounds approach, the receiver is
essentially assuming that the sender is using round robin
for sending refresh messages. Refinements to the ba-
sic algorithm to address the problems associated with
faulty senders, interoperability, and end cases are de-
scribed in [12]. In the next section we discuss Exponential
Weighted Moving Average for estimating the refresh period
at the receiver.

5.2 Exponential Weighted Moving Average
The second approach that we consider is use of Ex-

ponential Weighted Moving Average (EWMA) estimators.

The EWMA estimator is a low pass filter that has been used
widely for estimation (e.g. TCP [13] round trip time).

In this scheme a network node runs one EWMA estima-
tor for each coincident link. Each EWMA estimator tracks
the refresh interval average ( ������� ���" "
������ ) and mean devia-
tion ( �����������" "
 #
	��� ) for the refreshes received on the asso-
ciated link.

On receiving a new measurement for refresh interval � ,
the receiver updates the average of the refresh interval as:

������� ���" "
������������
� ����� ������� ���" "
�������� ��� ���
where � is the smoothing constant of the estimator.

As shown in [14], EWMA can be computed faster if it is
rearranged as:

� ���������" !
 ����� � �����������" "
 ����� � ����� � ����� �
where ����� � � � ������� ���" "
������"!

Mean deviation is computed similarly as:
� ���������" !
 #
	���#� �����������" "
 #
	���$� ���%�'& �����(&)� �����������! "
 #
	������!

Once the average and mean deviation for the refresh in-
terval are updated, the timeout value for the state is then set
to:  #���������������" "
 ����� � �*� �����������" "
 #
	��� � �
where  , � are both small integers. Here,  is the degree of
robustness used for setting the timeout period in the fixed
timers approach and � is the weight given to the refresh in-
terval deviation in computing the timeout period.
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No_Timeout
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2. Compute new timeout for S
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    based on current estimate.

2. Set new timeout value for S or
    timeout  S.

1. Put S in list of timeout
    pending states.

1. Update estimate

2. Compute new timeouts for
all timeout pending states and S

3. Set new timeout value for S.

4. Set new timeout values for all 
    timeout pending states or
    time them out.

1. Set timeout for S
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Figure 2: State Diagram for an EWMA receiver

The use of mean deviation in computing the timeout pe-
riod allows the estimator to track sharp increases in the re-
fresh interval. This prevents the receiver from deleting state
prematurely when there are sudden increases in the refresh
interval. When a state timeout occurs, a new timeout value
is computed based on the current values of �����������! "
 ����� and� ���������" !
 #
	��� . If the new timeout value is not greater than
the previous value, the state is discarded. Otherwise the
new value for state timeout is set.



In the event of long bursts of trigger traffic, the estimator
does not receive any refreshes and the estimate is not up-
dated. In such a scenario, the estimator lags behind the ac-
tual refresh interval and a premature timeout of state might
occur. To avoid this problem, the receiver does not timeout
state during a burst of trigger traffic. The receiver has two
modes of operation as shown in the state diagram for the
receiver in the Figure 2. While the receiver is not receiving
any trigger messages it stays in the Normal mode. It enters
the No Timeout mode when it receives a trigger message.
The mode of the receiver is changed back to Normal upon
receiving a refresh message.

For the EWMA estimator the value of the smoothing
constant needs to be determined. The smoothing constant
should track the refresh period reasonably closely without
overreacting to occasional long refresh intervals that result
from either bursts of trigger traffic or occasional drops of
refresh packets. At the same time it should be able to re-
spond quickly to increases in the refresh period that result
from an increase in the amount of state.

In this and the previous sections we have discussed our
approach of scalable timers and the required mechanisms.
In the coming sections we present our simulation studies of
scalable timers for PIM control traffic.

6 Using Scalable Timers for PIM Control
Traffic

Protocol Independent Multicast(PIM) [2, 3] is a multi-
cast routing protocol. It uses soft state mechanisms to adapt
to the underlying network conditions and multicast group
dynamics. Explicit hop-by-hop join messages from mem-
bers are sent towards the data source or Rendezvous Point.
In steady state each router generates periodic join messages
for each piece of forwarding state it maintains. These pe-
riodic join messages are examples of the refresh traffic dis-
cussed earlier. Besides the exchange of refresh messages
for the existing state, PIM has trigger traffic due to mem-
bership and network topology changes. A join message can
be triggered by: i) a change in group membership, ii) a new
data source to a group, iii) a switch from a shared tree to
a source-specific tree and vice versa, iv) a topology change
such as partitions and network healings, and v) a change in
Rendezvous Point reachability. A multicast forwarding en-
try is discarded if no join messages to refresh this entry are
received for the timeout interval.

Members of a group graft to a shared multicast distribu-
tion tree centered at the group’s Rendezvous Point. Though
members join source-specific trees for those sources whose
data traffic warrants it, they are always joined to the shared
tree listening for new senders. Thus groups that are active
but have no active senders still need to refresh the state on
the shared tree. Consequently, in PIM there is some min-
imal control traffic for every active group even if there are
no active senders to the group. So the bandwidth used by
control traffic is not a strict function of the data traffic being
carried by the network. Currently the PIM join messages
are sent at a fixed interval of 60 seconds, and the PIM con-
trol traffic grows with the amount of the multicast forward-
ing state maintained in the routers.

It is important to give higher priority to trigger traffic
than refresh traffic because delay in servicing trigger traffic
can increase the join and leave latency of a group. Based
on data traffic being sent to a group, multicast groups can
be of two types. A multicast group is said to be data-active
at some time if there are senders that are sending data to the
group. It is more important to refresh the state related to the
data-active groups as compared to the data-inactive groups,
as the data-inactive groups suffer less, or no, data loss while
adapting to changes.

Links with less bandwidth can not support a large num-
ber of simultaneous conversations. Link bandwidth nat-
urally limits the number of source specific state entries
needed for a multicast group on each link. Hence the scal-
ing with respect to the source specific state is not of major
concern. We analyzed the number of multicast groups that
can be supported on various links without inflating the re-
fresh intervals by a large amounts [12]. For instance, 1%
bandwidth of an ISDN link can support 150 groups with
the refresh period of 60 seconds. Similarly, a T1 link can
support 15000 groups with 1% of link bandwidth. For con-
ducting our experiments we used 1% of link bandwidth for
PIM control traffic
6.1 Class structure at the sender

At the sender we divided PIM control traffic into two
classes, trigger traffic and refresh traffic, with higher prior-
ity given to the trigger traffic. A token bucket is used to
control the bursts in trigger traffic. This class structure has
two parameters, the fraction of the PIM control bandwidth
for trigger traffic, and the size of the token bucket for trig-
ger traffic. Since trigger traffic needs to be serviced as fast
as possible, we allocated 99% of control traffic bandwidth
to trigger traffic.

If the size of the token bucket is large, the sender can ser-
vice bigger bursts of trigger traffic without increasing the
join/leave latency. Because there is a high level of corre-
lation among multicast groups, bursts of trigger traffic are
not uncommon. For instance, groups created for audio and
video streams of the same session are coupled together.
Similarly there can be multiple groups for sending hierar-
chical video streams that are coupled with each other and
exhibit related dynamics. The bucket size should be large
enough to accommodate these correlations.

Another possible refinement that we have not investi-
gated would be to service control traffic related to data-
active and data-inactive groups in different classes.
6.2 Aging out the multicast state at the receiver

Multicast routers age out the forwarding entries if they
do not receive refresh messages for that entry. Delaying
too long in timing out a forwarding entry can result in the
following overheads:

� bandwidth and memory in maintaining soft state up-
stream for inactive trees, and

� multicasting application traffic downstream after it is
no longer needed.

On the other hand, if the state is aged prematurely, it re-
sults in the failure of multicast routing to send data to down-
stream locations until the state is re-established. It is more



important to be careful not to timeout prematurely, than to
be overly precise in timing out state as soon as possible.

As described in Section 4, two approaches can be
adopted at the receiver node to discard soft state. The next
section discusses the simulation studies conducted with the
scalable timers for PIM.

7 Simulation Studies of Scalable Timers for
PIM

An existing PIM simulator, pimsim [15] was modified to
include the scalable timers approach for PIM control traffic.
A sender module was included to schedule the PIM con-
trol messages based on the class structure described earlier.
For a PIM receiver we implemented both the counting-the-
rounds approach and exponential moving average estima-
tor. We conducted simulations on a wide range of scenarios
having topologies with different link bandwidths, loss rates
and membership changes. The simulation runs were vali-
dated by feeding the packet traces generated from the simu-
lations to the Network Animator nam 4. In this section, we
present only a few simple, yet representative, scenarios for
understanding the behavior of scalable timers.

H-4

H-3

H-2

H-1

H-n

15 Kbps 15 Kbps

300 msecs300 msecs
DR IN RP

Figure 3: Simple chain topology

Since PIM messages are router to router, in this paper
we study the behavior of mechanisms only on a single link.
Figure 3 shows a chain topology with three PIM routers.
The designated router DR sends join messages towards the
Rendezvous Point RP for the groups that are active in the
attached hosts. These join messages are received by the in-
termediate router IN. The studies presented here focus on
the behavior of the sender at the DR. The receiver’s behav-
ior was studied at IN. We also studied end-to-end behavior
on larger topologies.

In the simulations shown here the parameters were
set so that the allocated control bandwidth is suffi-
cient to refresh two state entries without exceeding the�	�����	�	��� �����������! "
 #�$ % of 5 seconds. The size of the trig-
ger token bucket used was 5. The bandwidth of the link
between the DR and the node IN was 15 Kbps.

Change in the amount of state at a node can occur ei-
ther in steps or in bursts. Simulation results presented here
describe these two basic changes.

Scenario 1 : Step Change. In this case a new group be-
comes active at the hosts attached to DR every 100 sec-
onds until 600 seconds. After 1000 seconds are over,
one group expires every 100 seconds.

4nam is a animation tool for networking protocols being developed at
LBNL.

Scenario 2 : Burst Change. In this scenario at 100 sec-
onds 7 new groups become active. The burst size was
chosen to be bigger than the token bucket size.

7.1 PIM Sender
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Figure 4: Change in the refresh interval for step changes.

In this section we demonstrate the sender behavior in
various scenarios. If the link does not drop any packets
then the actions of the sender can be captured by the refresh
messages as seen by the receiver. In Figures 4 and 5 each
refresh message has been marked by a “

�
”. For each re-

fresh message received, the � -axis shows the time that the
message was received at the receiver, and the � -axis shows
the time in seconds since the previous refresh message was
received for that state.

Figure 4 illustrates the behavior of a sender in Scenario
1. When the amount of state is increased from one to two
the refresh intervals do not change as enough bandwidth is
available to refresh all the state within the minimum refresh
period. As more state is created and needs to be refreshed,
the refresh interval increases with each step. This is because
the sender adapts to the increase in the amount of state by
reducing the refresh frequency (i.e., increasing the refresh
interval). As the amount of state decreases after 1000 sec-
onds, we notice that refreshes are sent more frequently, con-
suming the available control bandwidth.
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Figure 5: Change in the refresh interval for trigger traf-
fic bursts.



Figure 5 shows the response of the sender in Scenario 2.
In steady state all the control bandwidth is used for sending
refresh messages. When a new group becomes active, trig-
ger state tokens are used for servicing the associated trigger
traffic. Spikes in the refresh intervals are observed when
there is trigger traffic to be served. The height of the spike is
a function of the amount of trigger traffic to be serviced and
the size of the bucket. The sender sends the trigger traffic
for all but two groups back to back at time 100. The trigger
traffic for the remaining two groups is served as more trig-
ger tokens are generated at time 103 and 106. No refresh
packet is seen during this time5.

One of the parameters that needs to be configured at
the sender is the size of the trigger traffic token bucket.
Trigger traffic suffers latency greater than the fixed timers
approach only if the trigger traffic burst is greater than
the tokens available in the token bucket. The larger the
bucket size, the smaller is the associated join/prune la-
tency. The worst case delay suffered by a trigger packet
is given by: ��� � � � � ��� ���	� ���������	
 ������ $ �'����� . However, in
most cases the token bucket is full and the delay suffered
by a trigger packet in a burst larger than the bucket size����� ��� ��� �	� ����
�$��� is given by:� ��� � � � � ���!�
� ����� � � ��� �	� ����
�$������� ���������	�	
 ������� $ �������"!
The end-to-end join/prune latency is the sum of the delays
incurred by the trigger message at each node.
7.2 PIM Receiver

For the PIM receiver we studied both the counting-
the-rounds and exponential weighted moving average ap-
proaches for aging state. For an EWMA receive, the value
of the smoothing constant ( � ) is set to � ! ��� , and the weight
for the interval mean deviation ( � ) is set to � . The state
timeout timer was set to three times the current estimate of
the refresh period.
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Figure 6: Receiver response to step changes.

We studied the receiver’s tracking behavior during both
step and burst changes in the amount of state. Figures 6
and 7 plot refresh interval estimates as observed by the
receivers over time, for the Scenarios 1 and 2 respectively.

5The figures only show refresh messages. Trigger messages have not
been shown but can be inferred from the absence of refresh messages for
a period of time.

In these figures, the “ � ” shows the response of a counting-
the-rounds receiver, and the dotted line shows the response
of an EWMA receiver. For a counting-the-rounds receiver,
each time the round marker is moved we plot “ � ” to show
the length of the previous round. For an EWMA receiver,
for each refresh message received we plot the new refresh
interval estimate ( �  � �������������" "
 ����� � � � �����������" "
 #
	��� � ).

We observe from Figure 6 that the counting-the-rounds
receiver is able to track the round times very closely during
step changes. The EWMA receiver is also able to follow the
changes in refresh interval at the sender. The rate of con-
vergence for EWMA is dependent on the amount of state
being refreshed. If the amount of state is large, the EWMA
estimator has more observations of the refresh interval in
one round, and therefore converges faster to the refresh in-
terval. For the scenario in Figure 6 no premature timing out
of state was observed with either of the two approaches.
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Figure 7: Receiver response to trigger traffic bursts.

Figure 7 depicts the tracking of round times during the
burst of trigger traffic in Scenario 2. The counting-the-
rounds approach advances the round markers only when re-
freshes are received. Hence, it is able to track the round
times during bursts of trigger traffic. As shown in the Fig-
ure 7, the EWMA estimator can underestimate the refresh
intervals when there are big bursts of trigger traffic (because
the refresh interval suddenly increases). However, no state
is timed out in this period as the receiver switches to the
No Timeout mode.

We also simulated scenarios with faulty senders and
lossy links. The counting-the-rounds receiver is able to fil-
ter out the duplicates of the refresh messages [12]. Nei-
ther of the receivers prematurely timeout state on lossy
links [12].

In the simulation studies we observed that the counting-
the-rounds receiver is able to respond to the events at
the sender and track the round times more precisely than
a receiver running an EWMA estimator. However, the
counting-the-rounds receiver fails to follow a non-round
robin sender successfully. If the sender generates refreshes
in an arbitrary order the EWMA estimator can also under-
estimate the refresh interval. However, in such scenarios
EWMA estimator is more conservative than the counting-
the-rounds receiver.

Both approaches work in that they allow the receiver to



adapt to changes at the sender; consequently, there is no
clear winner. Since the mechanism for aging state is lo-
cal to a node, different nodes can use different approaches.
There is no need for standardizing the approach across the
network as a whole.

8 Scalable Timers as compared to Fixed
Timers approach

We can evaluate the fixed timers and our scalable timers
approaches along three dimensions: control bandwidth, re-
sponsiveness and complexity.
Control Bandwidth: In the traditional fixed timers ap-
proach the bandwidth used by control traffic grows with the
amount of state. As shown in Figure 1 scalable timers adapt
to the growth in the amount of state to be refreshed and limit
the control traffic bandwidth.
Responsiveness: The refresh interval determines the re-
sponse time of the protocol to the changes in the network
conditions. When the refresh interval is smaller the pro-
tocol adapts faster to the changes. The responsiveness in
soft state protocols concerns initiation of new state and tim-
ing out the old state. Since the trigger messages are served
instantaneously, the responsiveness of the protocol using
scalable timers for control traffic is comparable to the fixed
timers approach. The increase in the refresh interval in scal-
able timers might cause longer delay in aging out old state
than in the fixed timers approach. However, in most cases
the lifetime of a state entry is considerably longer than the
period for which the state is kept after the last refresh. So
the overhead in bandwidth used due to late timing out of old
state (longer response time) should be negligible compared
to the savings in the bandwidth used by control traffic over
the lifetime of the state.
Complexity and Overhead: The additional mechanisms
required for scalable timers are simple and introduce very
small memory and computation overhead to the protocol.
Moreover, the scalable timers module is generic and is not
closely coupled with the protocol. The scalable timers ap-
proach does not require any changes to be made to the pro-
tocol.

9 Conclusion and Future Directions
In this paper we presented a scalable approach for reg-

ulating control traffic in soft state protocols. With scalable
timers the control traffic consumes a fixed amount of band-
width by dynamically adjusting the refresh interval. Scal-
able timers require mechanisms at the sender and the re-
ceiver of the control messages. Through simulations we
have illustrated the effectiveness of scalable timers in terms
of overhead reduction with minimal impact on protocol re-
sponsiveness; moreover there is only a little increase in
complexity. We plan to further study the effect of changes
in the parameters, such as class structure, and smoothing
constant etc., on the performance of the proposed mecha-
nisms.

We have studied scalable timers in the context of a mul-
ticast routing protocol (i.e. PIM), which is an example of a
router-to-router protocol. Multiparty, end-to-end protocols
were actually the first protocols to incorporate the notion

of scalable timer techniques for reduction of periodic traf-
fic (e.g., wb, RTP [10]). Future work will investigate the
applicability of the detailed mechanisms discussed in this
paper to such end-to-end protocols and soft-state protocols
in general.
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