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ABSTRACT

The future of Internet transport is unreliable: fast-growing
applications like streaming media and telephony prefer time-
liness to reliability, and thus prefer UDP to TCP. Unfortu-
nately, UDP lacks congestion control, so these applications
are unsafe for use on underprovisioned best-effort networks
unless they implement congestion control themselves—a
difficult task. They might, however, happily usecongestion-
controlled unreliable transport. DCCP, the Datagram Con-
gestion Control Protocol, is a new transport protocol in the
TCP/UDP family that provides a congestion-controlled flow
of unreliable datagrams. It aimed to add to a UDP-like foun-
dation the minimum TCP mechanisms necessary to sup-
port congestion control. A simple task, we thought; but re-
moving reliability, and especially cumulative acknowledge-
ments, forced us to reconsider almost every aspect of TCP’s
design. The resulting protocol sheds light on how congestion
control interacts with unreliable transport, how modern net-
work constraints impact protocol design, and, particularly,
how TCP’s reliable bytestream semantics intertwine with its
other mechanisms, including congestion control.

1 INTRODUCTION

Providing just the right set of functionality in a network pro-
tocol is subtle, and touches on issues of modularity, effi-
ciency, flexibility, and fate-sharing. One of the best exam-
ples of getting this right is the split of the original ARPAnet
NCP functionality into TCP and IP. We might argue about a
few details, such as whether the port numbers should have
been in IP rather than TCP, but even with the benefit of
25 years of hindsight, the original functional decomposi-
tion still looks remarkably good. The key omission from
both TCP and IP was clearly congestion control, which was
retrofitted to TCP in 1988 [20]. Protocols other than TCP
were appropriately left alone. TCP-like congestion control,
which combines congestion control with reliable bytestream
semantics, isn’t appropriate for all applications; in DNS-like
request/response protocols, for example, congestion control
must be appliedbetween connections, not within them.

However, recent years have seen a large increase in ap-
plications using UDP for long-lived flows. These applica-
tions, which range from streaming media to Internet tele-
phony, videoconferencing, and games, all share a preference
for timeliness over reliability. That is, given a chance to re-
transmit an old packet or to transmit a new packet, they of-
ten choose the new packet—because, by the time the old
packet arrived, it would be useless anyway: in media applica-
tions, users often prefer bursts of static to choppy rebuffering

delay; in games, only the latest position information mat-
ters. TCP’s reliable bytestream delivery can introduce ar-
bitrary delay, and cannot be told to forget old data, mak-
ing it inappropriate for these applications. Systems such as
Time-lined TCP [27] retrofit some support for time-sensitive
data onto TCP, but do so using a specific deadline-based
policy. Real applications may have more complex policies
that take account, for example, of different levels of impor-
tance and interdependencies between various application-
level messages—the canonical example being MPEG’s key
frames (I-frames) and incremental frames (B/P-frames). An
unreliable protocol is clearly more like what these applica-
tions want.

What the applications do not necessarily want is to im-
plement TCP-friendly congestion control. This is not only
because congestion control can constrain performance, but
also—perhaps more fundamentally—because implementing
congestion control is very hard, as the long history of buggy
TCP implementations makes clear [28, 29]. The applications
might be willing to subject themselves to congestion control,
not least for the good of the network, as long as it was easy
to use and met their needs.

There are several ways this might be done. A library could
implement congestion control over UDP, but this would be
relatively slow, unportable, and might not provide access
to features such as explicit congestion notification (ECN);
such an approach would be all carrot and no stick. A sec-
ond possibility would be to provide congestion control for
unreliable applications at a layer below UDP, such as the
Congestion Manager [3, 6]. Unfortunately, the Congestion
Manager, as specified, can rely on application-level feed-
back about loss—not necessarily easy for applications to
provide—and defines a single congestion control mecha-
nism, whereas many of our target applications might prefer
a choice between abruptly-changing AIMD algorithms and
smoother rate-based algorithms such as TFRC [14].

These applications really need a new transport protocol:
an unreliable datagram protocol with integrated congestion
control. We set out to define this protocol. The goal was to
provide a simple minimal congestion control protocol upon
which other higher-level protocols could be built—UDP,
plus the minimal TCP mechanisms necessary to support con-
gestion control—and the result, the Datagram Congestion
Control Protocol (DCCP) [12, 15, 21], has been approved
for IETF standardization.

This paper describes DCCP, but that is not its main con-
tribution. We expected it to be simple to provide an unre-
liable alternative to TCP. The issues turned out to be more



complex than we expected, and working through the design
of an unreliable congestion-controlled protocol has givenus
a new appreciation for the way TCP’s reliability, acknowl-
edgement, and congestion control mechanisms intertwine
into an apparently seamless whole. In particular, the loss
of retransmissions, and their related feature cumulative ac-
knowledgements, forced us to rethink almost every issue in-
volving packet sequencing. Of course, TCP appears seam-
less only when you ignore its extensive evolution and exten-
sion, and we still believe that an unreliable protocol’s sim-
pler semantics forms a better base for layering functionality.
We therefore discuss many of the issues we faced in design-
ing a modern transport protocol—including some the TCP
designers did not face as squarely, such as robustness against
attack.

2 APPLICATION REQUIREMENTS

Any protocol designed to serve a specific group of applica-
tions should consider what those applications are likely to
need (although this needs to be balanced carefully against a
desire to be future-proof and general). For the group of appli-
cations we are most concerned with, requirements include:

• Choice of congestion control mechanism.While our
applications are usually able to adjust their transmissionrate
based on congestion feedback, they do have constraints on
how this adaptation can be performed to minimize the ef-
fect on quality. Thus, they tend to need some control over
the short-term dynamics of the congestion control algorithm,
while being fair to other traffic on medium timescales. This
control includes influence over which congestion control al-
gorithm is used—for example, TFRC [14] rather than strict
TCP-like congestion control. (TCP-Friendly Rate Control,
or TFRC, is a congestion control mechanism that adjusts its
sending rate more smoothly than TCP does, while maintain-
ing long-term fair bandwidth sharing with TCP.)

Special application concerns include fairness at low
packet sizes and at low rates, widely varying packet sizes,
and stop-and-start communication.

First, many audio codecs send very small packets, down
to 64 bits of payload; and in interactive audio, which has
relatively tight latency constraints, combining samples into
larger packets creates irritating, user-audible delay. Conges-
tion control mechanisms should not unfairly penalize such
flows for their small packet sizes, as long as the flows aren’t
sending small packets too frequently.

Second, video encoding standards often lead to applica-
tion datagrams of widely varying size. MPEG key frames,
or I-frames, are many times larger than incremental B- and
P-frames. An encoder may generate packets at a fixed rate,
but with orders-of-magnitude size variation.

Third, interactive applications are characterized by fre-
quent stops and starts; for example, in telephony, one party
generally shuts up while the other talks. Conventionally,
congestion control reacts to application idleness by reduc-
ing the allowed send rate, since the application has ceased

gathering feedback about the state of the network. However,
applications generally want to return to their sustainablerate
as soon as possible.

• Low per-packet overhead. Internet telephony and
games in particular will tend to send small packets fre-
quently, to achieve low delay and quick response time. Pro-
tocol overhead should not expand the packets unduly.

• ECN support. Explicit Congestion Notification [31]
lets congested routers mark packets instead of dropping
them. ECN capability must be turned on only on flows that
react to congestion, but it is particularly desirable for appli-
cations with tight timing constraints, as there is often insuf-
ficient time to retransmit a dropped packet before its data is
needed at the receiver.

• Middlebox traversal. UDP’s lack of explicit connec-
tion setup and teardown presents unpleasant difficulties to
network address translators and firewalls, with the result that
some middleboxes don’t let UDP through at all. Any new
protocol should improve on UDP’s friendliness to middle-
boxes.

2.1 Goals

Considering these application requirements, the evolution of
modern transport, and our desire for protocol generality and
minimality, we eventually arrived at the following feature
goals for DCCP.

1. Modern congestion control. DCCP should conve-
niently support all the features of modern TCP congestion
control implementations, including selective acknowledge-
ments, explicit congestion notification (ECN), acknowledge-
ment verification, and so forth.

2. Choice of congestion control mechanism.TCP con-
gestion control quickly utilizes available bandwidth, butas a
result its rate varies widely over time. This is a good tradeoff
for file transfer, but not for streaming and interactive me-
dia; these applications, part of DCCP’s target application
set, might prefer to trade off peak utilization for a more
slowly-changing rate. DCCP should allow applications to
choose the congestion control mechanism to be used for a
connection—for instance, TCP or TFRC [14]. Furthermore,
DCCP should support experimentation with new congestion
control mechanisms, from the low-speed TFRC variants dis-
cussed below to more radical changes such as XCP.

3. Self-sufficient congestion control.DCCP should pro-
vide applications with an API as simple as that of UDP.
Thus, as in TCP, a DCCP implementation should be able
to manage congestion control without application aid. This
means that congestion control parameters must be negotiated
in-band.

4. Tradeoffs between timing and reliability. Any API
for sending DCCP packets will support some buffering,
allowing the operating system to smooth out scheduling
bumps. However, when the buffer overflows—the applica-
tion’s send rate is more than congestion control allows—a
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smart application may want to decide exactly which packets
should be sent. Some packets might be more valuable than
others (audio data should usually be preferred to video, for
example), or newer packets might be preferred to older ones:
it depends on the application. DCCP should support not only
naive applications, but also advanced applications that want
fine-grained control over buffers and other tradeoffs between
timing and reliability.

5. Accounting for non-congestion loss.DCCP is ex-
pected to be used on challenging links, including cellular and
wireless technologies, where loss unrelated to congestionis
common. Although there is no wide agreement on how non-
congestion loss should affect send rates, or even how non-
congestion loss can be reliably detected, DCCP should allow
endpoints to declare that packets were lost for reasons unre-
lated to network congestion, such as receive buffer overflow.

6. Congestion control of acknowledgements.TCP
doesn’t enforce any congestion control on acknowledge-
ments, except trivially via flow control. This is simultane-
ously too harsh and not harsh enough: high reverse-path con-
gestion slows down the forward path, and medium reverse-
path congestion may not even be detected, although it can be
particularly important for bandwidth-asymmetric networks
or packet radio subnetworks [7]. DCCP should thus detect
and act on reverse-path congestion.

7. Minimal functionality. In line with the end-to-end
argument and prior successful transport protocols in the
TCP/IP suite, DCCP should not provide any functionality
that could successfully be layered above it by the application
(or an intermediate library). This yardstick helped determine
what to leave out of the protocol; for instance, applications
can easily layer multiple streams of data over a single unre-
liable connection. DCCP development focused on those fea-
tures that support congestion control, and those features that
cannot otherwise be layered on top.

8. No flow control. Taken to its logical conclusion,
control over timing/reliability tradeoffs implies that DCCP
should not require strict flow control. Receivers, like
senders, may prefer to drop old data from their buffers in
favor of new data as it arrives, or may prefer to implement
an application-specific policy difficult to express at the trans-
port level. In addition, flow control is nontrivial to get right:
likely-mistaken flow control limits have been observed to
lower peak transfer rates [1, 38]. DCCP should thus avoid
imposing any flow control limitation separate from conges-
tion control.

9. NAT transparency.DCCP must be transparent to net-
work address translators, firewalls, and other middleboxes.
Explicit connection setup and teardown is desirable, for
example, since obvious protocol-designated initiation and
completion sequences ease the implementation burden on
firewalls and NATs. It also affected, for example, our mo-
bility design, in which network addresses never appear in
packet payloads.

10. Small headers.Packet headers in DCCP must be
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Figure 1: DCCP packet exchange overview.

relatively compact even in the absence of header compres-
sion techniques. For example, spending 8 bytes to report an
ECN Nonce is considered unacceptable overhead. Header
overhead isn’t critical for well-connected end hosts, but we
want to support DCCP on ill-connected, low-powered de-
vices such as cell phones.

11. Robustness and security.Network attackers are
much more prevalent now than when the common TCP/IP
transport protocols were originally designed, and for some
time transport protocol evolution has been driven largely by
security concerns. A modern protocol must be designed for
robustness against attack. Robustness does not, however, re-
quire cryptographic guarantees; DCCP simply aims to pro-
vide a sequence number-based guarantee, similar to TCP. A
DCCP connection is secure against third-party attacks like
data injection and connection closure,unless the attacker
can guess valid connection sequence numbers [26]. If ini-
tial sequence numbers are chosen sufficiently randomly [8],
this means that attackers must snoop data packets to achieve
any reasonable probability of success. However, we found
a number of subtleties in applying sequence number secu-
rity to an unreliable protocol; security conflicts directlywith
some of our other goals, including small headers, requiring
a search for reasonable middle ground.

12. Robustness to denial-of-service.Finally, DCCP is
designed to allow implementations to robustly resist many
denial-of-service attacks.

3 DCCP OVERVIEW

DCCP, like TCP, is a unicast, connection-oriented protocol
with bidirectional data flow. Connections start and end with
three-way handshakes, as shown in Figure 1; datagrams be-
gin with the 16-byte generic header shown in Figure 2. The
Port fields resemble those in TCP and UDP. Data Offset
measures the offset, in words, to the start of packet data; allo-
cating 8 bits for this field means a DCCP header can contain
more than 1000 bytes of option. The Type field gives the
type of packet, and is somewhat analogous to parts of the
TCP flags field. The names in Figure 1 correspond to packet
types, of which DCCP specifies ten. Most packet types re-
quire additional information after the generic header, butbe-
fore options begin; this design avoids cluttering the universal
header with infrequently-used fields. There are no equiva-

3



lents to TCP’s receive window and urgent pointer fields or its
PUSH and URG flags, and TCP has no equivalent to CCVal
(Section 6.4) or CsCov/Checksum Coverage (Section 6.2).
Sequence and acknowledgement numbers are 48 bits long
(but see Section 4.5).

4 SEQUENCE NUMBERS

We now turn to those properties of DCCP whose evolution
surprised us, the most important being the entire interlocked
set of issues surrounding sequence numbers. TCP’s se-
quence numbers combine reliability, concision of acknowl-
edgement, and bytestream semantics in a beautifully unified
way; and as soon as we separated those properties—as we
had to—the house of cards fell.

4.1 TCP sequence numbers

TCP uses 32-bit sequence numbers representing application
data bytes. Each packet carries a sequence number, or seqno,
and a cumulative acknowledgement number, or ackno.

The cumulative ackno indicates that all sequence numbers
up to, but not including, the ackno itself have been received.
The receiver guarantees that, absent a crash or applicationin-
tervention, it will deliver that data to the application. Thus,
the ackno succinctly summarizes the entire history of a con-
nection. This succinctness comes at a price, however: the
ackno provides no information about whetherlater data was
received. Several interlocking algorithms, including fast re-
transmit, fast recovery, NewReno, and limited transmit [5],
help avoid redundant retransmissions by inferring or tenta-
tively assuming that data has been received. Such assump-
tions can be avoided if the sender is told exactly what data
was received, and this more explicit approach is imple-
mented by TCP selective acknowledgements, or SACK [10].

Sequence numbers generally correspond to individual
bytes of application data, and variables measured in se-
quence numbers, such as receive and congestion windows,
use units of data bytes. Thus, an endpoint may acknowl-
edgepart of a packet’s contents (for instance, when a sender
overflows the receiver’s receive window), although this hap-
pens rarely in practice and may indicate an attempt to sub-
vert congestion control [32]. Furthermore, TCP’s congestion
control algorithms generally operate on these byte-oriented
variables in units of theexpected packet size, which can lead
to anomalies [2].

TCP connections contain other features that must be
acknowledged, including connection setup and teardown,
timestamps, ECN reports, and optional features like SACK.
Connection setup and teardown is handled elegantly: SYN
and FIN bits occupy sequence space, and are thus covered by
the ackno. Each other feature, though, has its own acknowl-
edgement mechanism. Each timestamp option contains an
acknowledgement; ECN uses a TCP header bit (CWR) to ac-
knowledge congestion reports; support for optional features
is acknowledged via options, such as SACK-Permitted.

Reserved Acknowledgement Number
(b)

Acknowledgement Number (low bits)

Source Port Destination Port

Data Offset CCVal CsCov Checksum

Type 1 Sequence NumberReservedRes

Sequence Number (low bits)

(a)

0 8 16 24

Figure 2: DCCP packet header. The generic header (a) begins every DCCP
datagram. Individual packet types may add additional information, such as
(b) an acknowledgement number. The packet header is followed by DCCP
options, then payload; payload starts Data Offset words into the datagram.

Pure acknowledgements, which contain neither data nor
SYN or FIN bits, do not occupy sequence space, and thus
cannot be acknowledged conventionally. As a result, TCP
cannot evaluate the loss rate for pure acknowledgements or
detect or react to reverse-path congestion, except as far as
high acknowledgement loss rates reduce the forward path’s
rate as well.

4.2 DCCP sequence numbers

As a pure datagram protocol, UDP doesn’t need sequence
numbers; an application can layer them over the minimal
UDP header, as in RTP. Congestion control algorithms must
react to loss, however, and since DCCP cannot rely on ap-
plication support (Goal 3), it must detect losses itself. This
leads inevitably to sequence numbers. Every DCCP packet
carries a sequence number in its header, and most packets
additionally carry an acknowledgement number.

Cumulative acknowledgements don’t make sense in an
unreliable protocol, where data is never retransmitted as far
as the transport layer is concerned. DCCP’s ackno thus re-
ports thelatest packet received, not the earliest packet not
received. This decision, which still seems inevitable, has
tremendous consequences, since without a cumulative ac-
knowledgement, there is no succinct summary of a con-
nection’s history. Additional connection options, including
a run-length-encoded Ack Vector that says exactly which
packets were received and a Loss Intervals option that re-
ports intervals of non-dropped, non-marked packets, provide
enough information to derive loss rates.

DCCP sequence numbers measure datagrams, not bytes,
since DCCP applications send and receive datagrams rather
than portions of a byte stream. This simplifies the expression
of congestion control algorithms, which can work in units of
packets—assuming that all packets are the same size, or that
bottlenecks are in terms of packets, not bytes.

4.3 Synchronization

The obvious choice of assigning every packet a new se-
quence number causes a problem surprisingly difficult to
solve: large bursts of loss can force endpoints out of sync. If
a TCP connection is interrupted by network failure, its probe
packets are retransmissions, and use expected sequence
numbers. But in retransmissionless DCCP, each packet sent
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Figure 3: Recovering synchronization after bursts of loss.

during an outage uses a new sequence number. When con-
nectivity is restored, each endpoint might have reached a se-
quence number wildly different from what the other expects.

We cannot eliminate expected sequence number windows,
which are the line of defense protecting connections from at-
tack (see Section 4.6). Instead, an explicit synchronization
mechanism is introduced: an endpoint receiving an unex-
pected sequence or acknowledgement number sends a Sync
packet asking its partner to validate that sequence number.
The unexpected packets are not processed otherwise. (TCP
in this situation would send a reset.) The other endpoint will
process the Sync and reply with a SyncAck packet. When
the original endpoint receives a SyncAck with a valid ackno,
it updates its expected sequence number windows based on
that SyncAck’s seqno; see Figure 3(a) for an example. Be-
cause of their role in resynchronizing connections, Sync and
SyncAck packets use more permissive expected sequence
number windows than other packet types.

Some early versions of this mechanism synchronized us-
ing existing packet types, namely pure acknowledgements.
However, in such a design,mutually unsynchronized end-
points can never resync, as there is no way to distinguish
normal traffic from resynchronization attempts—both types
of packet have either an unexpected seqno or an unexpected
ackno. We considered using special options to get back into
sync, but endpoints would have to partially parse options on
possibly-invalid packets: a troublesome requirement, espe-
cially since earlier options in an options list might affecthow
later options are parsed. We considered preventing endpoints
from sending data when they were at risk of getting out of
sync, but this seemed fragile, imposed an artificial flow con-
trol limitation (contra Goal 8), and due to another choice,
described in the next subsection, would not have helped. Ex-
plicit synchronization with unique packet types seems now
like the only working solution.

The details are nevertheless subtle, and formal model-
ing revealed problems even late in the process. For exam-
ple, consider the ackno on a Sync packet. In the normal
case, this ackno should equal the seqno of the out-of-range
packet, allowing the other endpoint to recognize the ackno
as in its expected range. However, the situation is different
when the out-of-range packet is a Reset, since after a Re-
set the other endpoint is closed. If a Reset had a bogus se-

quence number (due maybe to an old segment), and the re-
sulting Sync echoed that bogus sequence number, then the
endpoints would trade Syncs and Resets until the Reset’s se-
quence number rose into the expected sequence number win-
dow (Figure 3(b)). Instead, a Sync sent in response to a Reset
must set its ackno to the seqno of the latest valid packet re-
ceived; this allows the closed endpoint to jump directly into
the expected sequence number window (Figure 3(c)). As an-
other example, an endpoint in the initialREQUESTstate—
after sending the connection-opening Request packet, but
before receiving the Response—responds to Sync packets
with Reset, not SyncAck. This helps clean up half-open con-
nections, where one endpoint closes and reopens a connec-
tion without the other endpoint’s realizing.

TCP senders’ natural fallback to the known-synchronized
cumulative ackno trivially avoids many of these problems.
Some subtlety is still required to deal with half-open con-
nections, but with fewer special cases.

4.4 Acknowledgements

DCCP’s goals include applying congestion control to ac-
knowledgements (Goal 6), negotiating congestion control
features in band (Goal 3), and adding explicit connection
setup and teardown (Goal 9). The former goal requires de-
tecting acknowledgement loss; the second requires acknowl-
edging each feature negotiation, which in TCP uses per-
feature ad-hoc mechanisms. A single simple choice, mo-
tivated by TCP’s inclusion of SYN and FIN in sequence
space, seemed to solve all three problems at once: In DCCP,
every packet, including pure acknowledgements, occupies
sequence space, and uses a new sequence number.

This choice had several unintended consequences. For
one, it forced us to deal with synchronization head-on, since
any probe packets, not just data packets, might eventually
cause endpoints to get out of sync. For another, an acknowl-
edgement option such as Ack Vector combines, in one se-
quence space, information aboutboth data packets and ac-
knowledgements. Often this information should be sepa-
rated: TCP does not consider acknowledgement loss when
calculating fair rates, so neither should DCCP; and when
calculating acknowledgement congestion control (Goal 6),
DCCP shouldn’t consider data packets.

But the most unusual property of DCCP acknowledge-
ments is due to the more fundamental lack of cumulative

5



acknowledgements in an unreliable protocol. A TCP ac-
knowledgement requires only a strictly bounded amount of
state, namely the cumulative ackno. Although other SACK
state may be stored, that state is naturally pruned by suc-
cessful retransmissions. On the other hand, a DCCP ac-
knowledgement contains potentially unbounded state. Ack
Vector options can report every packet back to the begin-
ning of the connection, bounded only by the maximum
header space allocated for options. Since there are no re-
transmissions, the receiver—the endpoint reporting these
acknowledgements—needs explicit help to prune this state.
Thus, pure acknowledgements must occasionally be ac-
knowledged. Specifically, the sender must occasionally ac-
knowledge its receipt of an acknowledgement packet; at that
point, the receiver can discard the corresponding acknowl-
edgement information.

We seem to be entering an infinite regression—must ac-
knowledgements of acknowledgements themselves be ac-
knowledged? Luckily, no: an acknowledgement number in-
dicating that a particular acknowledgement was received
suffices to clean up state at the receiver; and this, being a
single sequence number, uses bounded state at the sender.

Unreliability also affects the semantics of acknowledge-
ment. In DCCP, an acknowledgementnever guarantees that
a packet’s data will be delivered to the application. This is
due to Goals 4 and 8, allowing a tradeoff between timeli-
ness and reliability. Consider a streaming media receiver that
prefers new data to old. If the receiver blocks for a while, it
may find on resuming computation that more packets are lo-
cally enqueued than it can handle in the allotted time. DCCP
allows the application, as part of the timeliness–reliability
tradeoff, to drop the old data. For many reasons, though,
this data must have been acknowledged already: acknowl-
edgement options should, for congestion control purposes,
report only losses and marks that happened in the network
proper, and acknowledging packets only on application de-
livery would distort round-trip time measurements and un-
acceptably delay option processing. Thus, DCCP separates
the concerns. The basic acknowledgement options, includ-
ing Ack Vector, report header acknowledgement: a packet
was received, processed, and found valid; its options were
processed; and its data was enqueued for possible future
delivery to the application. A separate run-length-encoded
option, called Data Dropped, reports when basic acknowl-
edgement differs from data acknowledgement: for example,
when a packet was dropped in the receive buffer.

4.5 Sequence number length

How long should a sequence number be? Short sequence
numbers lead to smaller headers (Goal 10), less bandwidth,
and less endpoint state. On the other hand, short sequence
numbers wrap more frequently—that is, long-lived connec-
tions must quickly reuse sequence numbers, leading poten-
tially to old duplicate packets being accepted as new—and
also make connections more vulnerable to attack. TCP’s 32-

Reserved Acknowledgement Number (low bits)(b′)

Source Port Destination Port

Data Offset CCVal CsCov Checksum

Type 0 Sequence Number (low bits)Res

(a′)

0 8 16 24

Figure 4: DCCP header with short sequence numbers. See also Fig. 2.

bit per-byte sequence numbers already have wrapping prob-
lems at gigabit network speeds (a problem addressed by the
timestamp option).

DCCP originally chose to use short 24-bit sequence num-
bers. We reasoned that fast connections would favor fewer
large packets over many small packets, leaving packet rates
low. This was, of course, a mistake. A datagram protocol
cannot force its users to use large packet sizes, and padding
packets with garbage data simply to avoid sequence num-
ber wrapping would be perverse; but absent packet length
restrictions, 24 bits are too few: a 10 Gb/s flow of 1500-byte
packets will send 224 packets in just 20 seconds.

We considered several solutions. The header could be re-
arranged, albeit painfully, to allow 32-bit sequence numbers,
but this doesn’t provide enough cushion to avoid the issue.
TCP’s timestamp option is a bad model—verbose, complex,
and still vulnerable to attack. Even a more concise and con-
sistent timestamp would force implementations to parse the
options area before determining whether the packet had a
valid sequence number.

The simplest and best solution was simply to lengthen
sequence numbers, specifically to 48 bits (64 would have
crowded out other header fields). A connection using 1500-
byte packets would have to send more than 14 petabits a sec-
ond before wrapping 48-bit sequence numbers unsafely fast
(that is, more than once every 2 minutes).

However, forcing the resulting overhead on all pack-
ets was considered unacceptable; consider audio codecs, in
which 8-byte payloads are not untypical. Endpoints must be
able to choose between short and long sequence numbers.

At first, connection initiation would negotiate whether se-
quence numbers would be long or short, but this required
that the client endpoint know ahead of time how fast a con-
nection would go. The solution, once found, was cleaner:
DCCP sequence numbers are 48 bits long, but some pack-
ets may leave off the upper 24 bits of the sequence num-
ber (Figure 4). The receiver extends a 24-bit fragment into a
full sequence number by comparing it with an expected se-
quence number. The following procedure takes a 24-bit frag-
ments and an expected sequence numberr, and returnss’s
48-bit extension. It includes two types of comparison: abso-
lute, written<, and circular mod 224, written©< .

rlow := r mod 224, rhigh := ⌊r/224⌋;
if (rlow ©< s < rlow) // s incremented past 224−1

return((rhigh+1) mod 224)×224+ s;
else if (s ©< rlow < s) // s decremented past 0 (reordering)

return((rhigh+224−1) mod 224)×224+ s;

6



else
returnrhigh×224+ s;

Connection initiation, synchronization, and teardown
packets always use 48-bit sequence numbers. This ensures
that the endpoints agree on sequence numbers’ full values,
and greatly reduces the probability of success for some se-
rious attacks; see below. But data and acknowledgement
packets—exactly those packets that will make up the bulk
of the connection—may, if the endpoint approves, use 24-bit
sequence numbers instead, trading maximum speed and in-
cremental attack robustness for lower overhead. Although a
single sequence number length would be cleaner, we feel the
short sequence number mechanism is one of DCCP’s more
successful features. Good control over overhead is provided
at moderate complexity cost, without opening the protocol
unduly to attack.

Another protocol mechanism that reduces overhead is the
optional acknowledgement number, which potentially re-
duces overhead for unidirectional flows.

4.6 Robustness to attack

Robustness to attack is now a primary protocol design goal.
Attackers should find it no easier to violate a new proto-
col’s connection integrity—by closing a connection, inject-
ing data, moving a connection to another address, and so
forth—than to violate TCP’s connection integrity. Unfortu-
nately, this is not a high bar.

TCP guaranteessequence number security. Successful
connection attacks require that the attacker know (1) each
endpoint’s address and port and (2) valid sequence num-
bers for each endpoint. Assuming initial sequence numbers
are chosen well (that is, randomly) [8], reliably guessing se-
quence numbers requires snooping on traffic. Snooping also
suffices: any eavesdropper can easily attack a TCP connec-
tion [26]. Applications desiring protection against snooping
attacks must use some form of cryptography, as in IPsec,
ssh-style end-to-end encryption, or TCP’s MD5 option.

Of course, a non-snooping attacker can always try their
luck at guessing sequence numbers. If an attacker sendsN
attack packets distributed evenly over a space of 2L sequence
numbers (the best strategy), then the probability that one of
these attack packets will hit a windowW sequence numbers
wide isW N/2L; if the attacker must guess both a sequence
number and an acknowledgement number, with validity win-
dowsW1 andW2, the success probability isW1W2N/22L. In
TCP, data injection attacks require guessing both sequence
and acknowledgement numbers, but connection reset attacks
are easier—a SYN packet will cause connection reset if its
sequence number falls within the relevant window. (A sim-
ilar attack with RST packets was recently publicized, but
this is somewhat easier to defend against.) Recent measure-
ments report a median advertised window of approximately
32 kB [25]; with W = 32768, this attack will succeed with
more than 50% probability whenN = 65536. This isn’t very

high, and as networks grow faster, receive window widths
are keeping pace, leading to easier and easier attacks.

DCCP’s 48-bit sequence numbers and support for ex-
plicit synchronization make reset attacks much harder to ex-
ecute. For example, DCCP is immune to TCP’s SYN at-
tack; if a Request packet hits the sequence window of an
active connection, the receiving endpoint simply responds
with a Sync. The easiest reset-like attack is to send a Sync
packet with random sequence and acknowledgement num-
bers. If the ackno by chance hits the relevant window, the
receiver will update its other window to the attacker’s ran-
dom sequence number. In many cases another round of syn-
chronization with the true endpoint will restore connectivity,
but lucky attacks will lead to long-term loss of connectivity,
since the attacked endpoint will think all of its true partner’s
packets are old. But even given a large window ofW = 2000
(nearly 3 MB worth of 1500-byte packets), an attacker must
send more than 1011 packets to get 50% chance of success.

Unfortunately, the goal of reducing overhead conflicts
with security. DCCP Data packets may use 24-bit sequence
numbers, and contain no acknowledgement number. As a re-
sult, it is quite easy to inject data into a connection that al-
lows 24-bit sequence numbers: given the default window of
W = 100, an attacker must sendN ≈ 83000 Data packets to
get 50% chance of success. An application can reduce this
risk simply by not asking for short sequence numbers, and
data injection attacks seem less dangerous than connection
reset attacks; the attacker doesn’t know where in the stream
their data will appear, and DCCP applications must already
deal with loss (and, potentially, corruption).

But unless we are careful, data injection might cause con-
nection reset. For example, an injected Data packet might
include an invalid option whose processing would reset the
connection. Several aspects of the protocol were modified to
prevent this kind of escalation; at this point, no Data packet,
no matter how malformed its header or options, should cause
a DCCP implementation to reset the connection, or to per-
form transport-level operations that might eventually lead to
resetting the connection. For instance, many options must be
ignored when found on a Data packet. In retrospect, these
modifications accord with the TCP Robustness Principle,
“be conservative in what you send, and liberal in what you
accept”. Although careful validity checking with harsh con-
sequences for deviations may seem appropriate for a hos-
tile network environment, attackers can exploit that check-
ing to cause denial-of-service attacks. It is better to keepto
the principle and ignore any deviations that attackers might
cause.

4.7 Discussion

While it seems possibly convenient to base application-level
sequence numbers off DCCP’s packet sequence numbers,
the combination of acknowledgements and data packets in
a single space makes it difficult. An NDP Count option al-
lows senders to calculate how manydata packets have been
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Figure 5: (a) An A-to-B half-connection and (b) a B-to-A half-connection
combine into (c) a full connection with piggybacked data andacknowledge-
ments.

sent, as opposed to non-data packets, even in the presence
of loss. An analysis of RTP indicated, however, that appli-
cations’ sequence number concepts are just different enough
to make direct correspondence nonuseful; applications will
just have to layer their own sequence numbers on top.

Not all comparisons between TCP’s cumulative acknowl-
edgements and bytestream-oriented sequence numbers and
DCCP-style unreliable, packet-oriented sequence numbers
come out in favor of TCP. For example, bytestream-oriented
sequence numbers make it ambiguous whether an acknowl-
edgement refers to a packet or its retransmission, which has
led to a cottage industry in acknowledgement disambigua-
tion and recovery from spurious retransmissions [24].

5 CONNECTION M ANAGEMENT

This section describes DCCP properties, including several
with interesting differences from TCP, that do not directly
concern sequence numbers.

5.1 Asymmetric communication

DCCP, like TCP, provides a single bidirectional connec-
tion: data and acknowledgements flow in both directions.
However, many DCCP applications will have fundamentally
asymmetric data flow—for example, in streaming media al-
most all data flows from server to client—and DCCP should
be able to optimize for that case. For example, in a bidirec-
tional connection, each endpoint might keep detailed SACK-
like acknowledgement information about its partner’s pack-
ets. When data flows unidirectionally from A to B, however,
only B’s records need maintain that level of detail: maintain-
ing a run-length-encoded vector that covers only acks would
waste bandwidth, state, and processing time.

DCCP models asymmetric data flow by dividing data
transfer into two logical half-connections. Each half-
connection consists of data packets from one endpoint, plus
the corresponding acknowledgements from the other. When
communication is bidirectional, both half-connections are
active, and acknowledgements can often be piggybacked
on data packets; see Figure 5. Acknowledgement format is
determined by the governing half-connection, which might
for example require detailed Ack Vector information. But a
half-connection that has sent no data packets for some time
(0.2 seconds or 2 RTTs, whichever is greater), and that has
no outstanding acknowledgements, is said to bequiescent.
There is no need to send acknowledgements on a quiescent

half-connection. When the B-to-A half-connection goes qui-
escent (B stops sending data), A can also stop acknowledg-
ing B’s packets, except as necessary to prune B’s acknowl-
edgement state (Section 4.4). TCP, of course, has it eas-
ier, and devolves naturally into unidirectional communica-
tion. TCP acknowledgements occupy no sequence space, so
it is neither useful nor possible to acknowledge them; and
since data retransmissions clean up old ack state, a “qui-
escent TCP half-connection”—in which all data has been
acknowledged—occupies minimal state on both endpoints
by definition.

Half-connections turn out to be a useful abstraction for
managing connection state. DCCP runs with this idea: each
half-connection has an independent set of variables and fea-
tures, including congestion control mechanism. Thus, a sin-
gle DCCP connection might consist of one half-connection
using TCP-like congestion control and one using TFRC; or,
more realistically, of two TFRC half-connections with dif-
ferent parameters. It makes sense conceptually and in the
implementation to group information related to a data stream
with information about its reverse path.

5.2 Feature negotiation

A DCCP connection’s endpoints must agree on a set of pa-
rameters, most clearly the congestion control mechanisms to
be used. Both endpoints have capabilities (the mechanisms
they implement) and application requirements (the mecha-
nisms the application would prefer), both of which should
both be able to influence the outcome. Furthermore, the ap-
plication cannot be relied upon to negotiate agreement, so
negotiation must take place in band (Goal 3).

DCCP thus provides options for negotiating the values of
generalfeatures. A feature is simply a per-endpoint prop-
erty on whose value the endpoints must agree. Examples in-
clude each half-connection’s congestion control mechanism
and whether short sequence numbers are allowed.

Feature negotiation involves two option types: Change op-
tions open feature negotiation; Confirm options, which are
sent in response, name the new values. Change options are
retransmitted as necessary for reliability. Each feature ne-
gotiation takes place in a single option exchange (our ini-
tial design involved multiple back-and-forth rounds, but this
proved fragile). This isn’t overly constraining, since com-
plex preferences can be described in the options themselves:
Change and Confirm options can contain preference lists,
which the endpoints analyze to find a best match.

With hindsight, the decision to provide generic reliable
feature negotiation has allowed additional functionalityto
be added easily without the need to consider interactions be-
tween feature negotiation, congestion control, and the dif-
fering acknowledgement styles required by each congestion
control mechanism.
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5.3 Mobility and multihoming

Mobility and multihoming, with their integration between
network and transport layers, are some of the very few fea-
tures that cannot be layered on top of an unreliable proto-
col. Mobility, at least, can be implemented entirely at the
network layer, but choosing the transport layer has advan-
tages [34]: the transport layer is naturally aware of address
shifting, so its congestion control mechanism can respond
appropriately; also, transport-layer mobility avoids triangle
routing issues. We were thus directed to develop a mobility
and multihoming mechanism for DCCP. The mechanism had
to prevent “connection hijacking”, where an attacker moves
one endpoint of a victim connection to its own IP address,
even when the attacker can passively snoop the connection.
This is a departure from DCCP’s basic security model; we
reason that hijacking is fundamentally more serious than
data injection or connection reset. (Of course, an in-path at-
tacker, such as a compromised router, that could inject and
alter traffic could already hijack the connection, mobilityor
no.) There is no way to prevent a passively-snooping attacker
from hijacking without using some form of cryptography.

Happily, mobility and multihoming are one of the few
cases where unreliability makes a problem easier. Reli-
able transport must maintain in-order delivery even across
multiple addresses. As a consequence, changing a connec-
tion’s address set requires tight integration with the transport
layer [34]. Unreliable transport, however, doesn’t guarantee
in-order delivery, or any delivery at all, and coordinationcan
therefore be quite loose. DCCP’s mobility and multihoming
mechanism simply joins a set of component connections—
all of which may have different endpoint addresses, ports, se-
quence numbers, and even connection features—into a sin-
gle session entity. To add a new address, an endpoint opens
a new DCCP connection, including on its Request an option
for attaching to an existing session. Such session options are
protected against forgery and replay by nonces and crypto-
graphic signatures. Most DCCP code can treat component
connections as independent; for instance, each connection
has its own congestion control state. The only code that dif-
fers involves the socket layer, where transport interacts with
application, and the difference is slight: whereas most trans-
port state applies to a component connection, the socket cor-
responds to a session. Thus, data sent to the socket can be
distributed arbitrarily among component connections, and
data received from any component connection is enqueued
on the shared socket. This design resembles previous work
on session-layer mobility management [22, 35], but thanks
to unreliability, can add multihoming support while simpli-
fying the basic abstractions.

5.4 Extensions and subsets

To facilitate future extension, protocol implementationsgen-
erally ignore unknown options, unknown packet types, the
values of reserved header fields, and so forth, and DCCP’s
feature mechanism helps further by providing a general

means to acknowledge an extension’s presence. But some
extensions must effectively be mandatory. For example, con-
sider DCCP subsets: profiles, designed for use by embed-
ded systems implementors, that curtail option choice, op-
tion ordering, and feature values, essentially reducing proto-
col complexity. An embedded system implementing a subset
cannot communicate with an endpoint that does not under-
stand that subset. Thus, DCCP’s Mandatory option, which
indicates that the immediately following option is manda-
tory: if the receiving endpoint cannot fully process that op-
tion, it will reset the connection. (Compare SCTP’s chunk
types [30].) Mandatory is a prime example of an option that
must be ignored on Data packets (Section 4.6).

5.5 Denial-of-service attacks

In a transport-level denial-of-service attack, an attacker
tries to break an endpoint’s network stack by overwhelm-
ing it with data or calculations. For example, an attacker
might send thousands of TCP SYN packets from fake (or
real) addresses, filling up the victim’s memory with useless
half-open connections. Generally these attacks are executed
against servers rather than clients. DCCP addresses poten-
tial denial-of-service attacks by pushing state to the clients
when possible, and by allowing endpoints to rate-limit re-
sponses to invalid packets. For example, when responding
to a Request packet, a server can encapsulate all of its con-
nection state into an “Init Cookie” option, which the client
must echo when it completes the three-way handshake. Like
TCP’s SYN cookies [9], this lets the server keep no informa-
tion whatsoever about half-open connections; unlike SYN
cookies, it can encapsulate lots of state. DCCP servers can
often shift Time-Wait state onto clients, due to restrictions on
how connection termination exchanges may begin. (Time-
Wait state remains at an endpoint for at least two minutes to
prevent confusion in case the network delivers packets late.)
The protocol allows rate limits whenever an attacker might
force an endpoint to do work; for example, there are optional
rate limits on the generation of Reset and Sync packets. Fi-
nally, as described above, DCCP has been engineered more
generally to prevent non-snooping attackers from resetting
existing connections.

5.6 Formal modeling

The initial DCCP design was completed without benefit
of formal modeling. As our work progressed, however, we
made use of a semi-formal exhaustive state search tool and
two formal tools, a labeled transition system (LTSA) model
and an independently-developed colored Petri net (CPN)
model from the University of South Australia [37]. These
tools, and particularly the colored Petri net model, were ex-
tremely useful, revealing several subtle problems in the pro-
tocol as we had initially specified it.

The most important semi-formal tool was, unsurprisingly,
shifting from reasoning via state diagrams to detailed pseu-
docode that defined how packets should be processed. The
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resulting precision showed us several places where our de-
sign could lead to deadlock, livelock, or other confusion. An
ad hoc exhaustive state space exploration tool was then de-
veloped to verify that the pseudocode worked as expected;
examining its output led to further refinements, especiallyto
the mechanism for recovering from half-open connections.
The LTSA model—which included states, packets, timers,
and a network with loss and duplication, but not sequence
numbers—was used to more formally examine the specifica-
tion for progress and deadlock freedom. It found a deadlock
in connection initiation, which we fixed. The CPN model
went into more depth, in particular by including sequence
numbers, with impressive results. This model found the half-
open connection recovery problem described in Figure 3(b),
a similar problem with connections in timewait state, and a
problem with the short-sequence-number extension code in
Section 4.5 (we initially forgot reordering). These problems
involved chatter, rather than deadlock: a connection would
eventually recover, but only after sending many messages
and causing the verification tool’s generalized state spaceto
explode in size. Thus, as the protocol improved the verifier
ran more quickly!

Our experience with protocol modeling was quite posi-
tive, especially in combination with the clear explanationof
pseudocode, and next time, we would seek out modeling ex-
perts earlier in the design process.

6 CONGESTION CONTROL

With DCCP, the application has a choice of congestion con-
trol mechanisms. Many unreliable applications might prefer
TFRC congestion control, avoiding TCP’s abrupt halving of
the sending rate in response to congestion, while other ap-
plications might prefer a more aggressive TCP-like probing
for available bandwidth.

This selection is done by using Congestion Control IDs
(CCIDs) to indicate the choice of standardized congestion
control mechanisms, with the connection’s CCID being ne-
gotiated at connection start-up. This profile-based selection
allows the introduction of CCID-specific options and fea-
tures, which avoid polluting the global option and feature
space. For example, option numbers 128 to 255 have CCID-
specific meaning; this space is further split between the two
half-connections that might be relevant for a piggybacked
data-plus-ack.

6.1 Misbehaving receivers

Internet congestion control is voluntary in the sense that few,
if any, routers actually enforce congestion control compli-
ance. Unfortunately, some endpoints, particularly receivers,
have incentives to violate congestion control if that will get
them their data faster. For example, misbehaving receivers
might pretend that lost packets were received or that ECN-
marked packets were received unmarked, or even acknowl-
edge data before it arrives [32]. TCP’s semantics deter many
of these attacks, since missing data violates the expectation

of reliability and must therefore be handled by the applica-
tion. However, DCCP applications must tolerate loss in any
case, making deliberate receiver misbehavior more likely.

The protocol must therefore be designed to allow the de-
tection of deliberate misbehavior. In particular, sendersmust
be able to verify that every acknowledged packet was re-
ceived unmarked. To do this the sender provides an un-
predictable nonce with each packet; the receiver echoes an
accumulation of all relevant nonces in each acknowledge-
ment [32].

DCCP, like TCP, uses the ECN Nonce for this purpose,
which encodes one bit of unpredictable information that
is destroyed by loss or ECN marking [36]. All acknowl-
edgement options contain a one-bit nonce echo, set to the
exclusive-or of the nonces of those packets acknowledged
as received non-marked. However, unlike in TCP, calculat-
ing and verifying this nonce echo presents no difficulties.
The TCP nonce echo applies to the cumulative ack, and
thus covers every packet sent in the connection. In the pres-
ence of retransmission and partial retransmission, however,
a sender can never be sure exactly which packets were re-
ceived, as retransmissions have the same sequence num-
bers as their originals. Thus, the TCP nonce echo and ver-
ification protocol must specially resynchronize after losses
and marks. None of this is necessary in DCCP, where there
are no retransmissions—every packet has its own sequence
number—and no cumulative ack: options such as Ack Vector
explicitly declare the exact packets to which they refer.

An endpoint that detects egregious misbehavior on its
partner’s part should generally slow down its send rate in
response. An “Aggression Penalty” connection reset is also
provided, but we recommend against its use except for apoc-
alyptic misbehavior; after all, an attacker can confuse an
endpoint’s nonce echo through data injection attacks.

Several other DCCP features present opportunities for re-
ceiver misbehavior. For example, Timestamp and Elapsed
Time options let a receiver declare how long it held a packet
before acknowledging it, thus separating network round-trip
time from end host delay. The sender can’t fully verify this
interval, and the receiver has reason to inflate it, since shorter
round-trip times lead to higher transfer rates. Thus far we
have addressed such issues in an ad hoc manner.

6.2 Partial checksums and non-congestion loss

Several of our target applications, particularly audio and
video, not only tolerate corrupted data, but prefer corrup-
tion to loss: passing corrupt data to the application may im-
prove its performance as far as the user is concerned [18, 33].
While some link layers essentially never deliver corrupt
data, others, such as cellular technologies GSM, GPRS, and
CDMA2000, often do; furthermore, link-layer mechanisms
for coping with corruption, such as retransmission (ARQ),
can introduce delay and rate variability that applications
want even less than corruption [11]. DCCP therefore fol-
lows the UDP-Lite protocol [23] in allowing its checksum
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to cover less than an entire datagram. Specifically, its check-
sum coverage (CsCov) field allows the sender to restrict
the checksum to cover just the DCCP header, or both the
DCCP header and some number of bytes from the payload.
A restricted checksum coverage indicates to underlying link
layers that some corruption is acceptable, and corrupt data-
grams should be passed on rather than dropped or retransmit-
ted (as long as the corruption takes place in the unprotected
area).

The motivation for partial checksums follows that of
UDP-Lite, but is perhaps more compelling in DCCP be-
cause of congestion control. Wireless link technologies of-
ten exhibit an underlying level of corruption uncorrelated
with congestion, but endpoints treat all loss as indicativeof
congestion. Various mechanisms have been proposed for dif-
ferentiating types of loss, or for using local retransmissions
to compensate [4]. While it isn’t clear in the end how one
should differentiate congestion responses for these types of
loss, we believe that protocols should at least allow the dif-
ferentiation.

Thus, DCCP allows receivers to report corruption sep-
arately from congestion, when the corruption is restricted
to packet payload. (Payload corruption may be detected
with a separate CRC-based Payload Checksum option; all
packets with corrupt headers must be dropped and reported
as lost.) This uses the same mechanism as other types of
non-network-congestion loss, such as receive buffer drops:
the packet is reported as received, and its ECN Nonce is
included in the relevant acknowledgement option’s nonce
echo, but a separate Data Dropped option reports the cor-
ruption. Congestion control mechanisms currently treat cor-
ruption as they would treat ECN marking, thus initiating a
congestion response, but at least the information is available
for future use.

6.3 CCID 2: TCP-like Congestion Control

DCCP’s CCID 2 provides a TCP-like congestion control
mechanism, with its corresponding abrupt rate changes and
ability to take advantage of rapid fluctuations in available
bandwidth. CCID 2 acknowledgements use the run-length-
encoded Ack Vector option, which is essentially a version
of TCP’s SACK. Its congestion control algorithms likewise
follow those of SACK TCP, and maintain similar variables:
a congestion window “cwnd”, a slow-start threshold, and an
estimate of the number of data packets outstanding [10].

Unlike SACK TCP, however, CCID 2 can detect and re-
spond to reverse-path congestion. CCID 2 maintains a fea-
ture called the Ack Ratio, which equals a rough ratio of data
packets per acknowledgement. TCP-like delayed-ack behav-
ior is provided by the default Ack Ratio of 2. As a CCID 2
sender detects lost and marked acknowledgements, however,
it manipulates the Ack Ratio so as to reduce the acknowl-
edgement rate in a very roughly TCP-friendly way. Ack Ra-
tio always meets three constraints: (1) it is an integer; (2)it
does not exceed cwnd/2, rounded up, except that Ack Ratio

2 is always acceptable; and (3) it is two or more for a con-
gestion window of four or more packets. The sender changes
Ack Ratio within those constraints as follows: for each con-
gestion window of data with lost or marked acks, Ack Ratio
is doubled; and for each cwnd/(R2−R) consecutive conges-
tion windows of data with no lost or marked acks (whereR
is the current Ack Ratio), it is decreased by 1. (This second
formula is derived as follows: We want to increase the num-
ber of acks per congestion window, namely cwnd/R, by one
per congestion-free window. However, sinceR is an integer,
we instead find ak so that, afterk congestion-free windows,
cwnd/R + k = cwnd/(R−1).)

Unfortunately, DCCP’s shared sequence number space
does not allow a sender to distinguish whether a missing
packet was a data packet or an acknowledgement. CCID 2
senders thus assume that every missing receiver packet was
an acknowledgement, absent NDP Count or other options
that can provide better information. In most cases, this as-
sumption is safe; for example, if the connection is unidirec-
tional, all of the receiver’s packets are in fact acknowledge-
ments. One bad case is a bidirectional connection where the
CCID 2 receiver is sending about as many data packets as
acks, so that the CCID 2 sender mischaracterizes many ob-
served losses that were actually data packets. The Ack Ratio
will be set to about 0.62 times its true value [12], leading
to a mild increase in burstiness for the CCID 2 sender. To
solve this issue the CCID 2 sender could simply rate-pace
its packets, as it probably should anyway.

6.4 CCID 3: TFRC Congestion Control

TFRC congestion control in DCCP’s CCID 3 uses a com-
pletely different approach. Instead of a congestion window,
a CCID 3 sender uses a sending rate, and the receiver sends
feedback to the sender roughly once per round-trip time re-
porting the loss event rate calculated by the receiver. The
sender uses the reported loss event rate to determine its send-
ing rate. If the sender receives no feedback from the receiver
for several round-trip times, then the sender halves its send-
ing rate.

This is reasonably straightforward, and does not require
the reliable delivery of feedback packets, as long as the
sender trusts the receiver’s reports of the loss event rate.
Since acknowledgements are so limited—to one per round-
trip time—there is no need for acknowledgement congestion
control. However, a mere loss rate is ripe for abuse by mis-
behaving receivers. Thus, CCID 3 requires instead that the
receiver report a set ofloss intervals, the quantities from
which TFRC calculates a loss rate. Each loss interval con-
tains a long tail of non-dropped, non-marked packets; the
Loss Intervals option reports each such tail’s nonce echo,
thus allowing the sender to verify the acknowledgement.

Note that the feedback information required by TFRC is
substantially different from that required by TCP-style con-
gestion control. A protocol whose basic feedback mecha-
nism is not sufficiently flexible could have difficulties in the
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future as the state of the art of congestion control evolves.
TFRC also requires that data senders attach to each data

packet a coarse-grained “timestamp” that increments every
quarter-round-trip time. This timestamp allows the receiver
to group losses and marks that occurred during the same
round-trip time into a single congestion event. Such a times-
tamp could obviously be included as an option, but at the
cost of 4 bytes per packet. Instead, CCID 3 attaches the
timestamp to a 4-bit protocol header field, CCVal, reserved
for use by the sender’s congestion control mechanism. Such
a small field requires care to avoid wrapping problems; we
considered this worth it to avoid the overhead.

6.5 TFRC’s small-packet variant

TCP offers a simple semantics to applications of congestion-
controlled, reliable byte-stream transfer. In contrast tothe
file transfer, email and web applications that use TCP, appli-
cations that use unreliable transfer generally forgo reliable
delivery because they are constrained by a playback time
(e.g., some forms of voice, video, and on-line games), and
this rules out some of the long delays that are possible in
retransmitting dropped packets.

As was discussed above, the congestion control mech-
anisms for unreliable applications can be affected by
application-related tradeoffs such as a desire to avoid abrupt
decreases in the allowed sending rate, versus a desire to
make use of available bandwidth as promptly as possible.

Another application-related issue that affects the develop-
ment of congestion control mechanisms for unreliable trans-
fer is that some applications (e.g., some forms of voice) wish
to send frequent small packets. Designing congestion control
mechanisms for such applications involves a fundamental
question about whether the congested points in the network
are limited by their sending rate in packets per second (e.g.,
CPU cycles at routers), or by their sending rate in bytes per
second (e.g., bandwidth). The development of a small-packet
variant of TFRC is based on the assuption that the limitation
today is generally one of bandwidth rather than of CPU cy-
cles, and that as a reault small-packet applications shouldbe
able to receive the same bandwidth in bytes per second as
large-packet TCP connections would experiencing the same
packet drop rate.

In TCP, for a given packet drop rate, the allowed send-
ing rate can be expressed in terms pf packets per round-trip
time; a TCP connection that uses larger packets is allowed a
proportionally larger sending rate in bytes per second. How-
ever, because TCP offers a byte-stream semantics to appli-
cations, TCP is responsible for assembling data into packets,
and TCP generally assembles packets to be as large as pos-
sible; the effect of the packet size on the sending rate has not
been a pressing issue in the development of TCP congestion
control.

For congestion control for unreliable transfer, however, it
is a different issue, with a wide range of packet sizes, and
with packetization happening at the application rather than

in the transport protocol. And for the flows that want to send
frequent small packets (e.g., the frequent 14-byte data pack-
ets that can be sent by some voice applications), the effect of
the packet size on the allowed sending rate can be a critical
issue [13, 19].

However, even given an agreement that small-packet
and large-packet flows that experience the same conges-
tion should receive the same bandwidth in bytes per second,
there is the complicating factor of the lack of standardiza-
tion of router behavior in the Internet, in terms of congestion
control. Some routers in the Internet might have Drop-Tail
queues in units of packets, or Active Qeueue Management
mechanisms in packet mode, where small packets and large
packets are equally likely to be dropped. Other routers in
the Internet might have Drop-Tail queues in units of bytes,
or Active Qeueue Management mechanisms in byte mode,
where small packets are less likely to be dropped than large
packets. As we see below, this complicates considerably the
job of designing congestion control mechanisms for small-
packet flows. In particular, a flow can’t necessarily infer,
from its own congestion indications, anything about the con-
gestion indications seen by competing traffic.
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Figure 6: Send Rate vs. Packet Drop Rate: 14B TFRC Segments (5.6 Kbps
Maximum TFRC Data Sending Rate)

The figure above shows simulations with both TCP and
TFRC connections. The x-axis represents the steady-state
packet drop rate p in each simulation. The TCP flows use
1460-byte data packets, while the TFRC flows use 14-byte
data packets. For this environment, the flow using standard
TFRC receives considerably less bandwidth that the TCP
flows. A fourth line shows a TFRC flow using a Small-
Packet variant of TFRC (also called VoIP TFRC), designed
to allow small-packet TFRC flows to receive the same send-
ing rate in bytes per second as large-packet TCP or TFRC
flows sharing the same packet drop rate. As the figure shows,
in this scenario the small-packet flow receives a very low
throughput with standard TFRC, but does well with the
Small-Packet variant of TFRC, as designed.

In contrast, the figure above shows TCP and TFRC con-
nections when each simulation has a fixedbyte drop rate in-
stead of a fixedpacket drop rate. Again, the TFRC flows use
14-byte data packets. In each simulation, the TCP flow uses
the best packet size for that byte drop rate - in this scenario,
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Figure 7: Sending Rate vs. Byte Drop Rate

TCP will sometimes have a higher sending rate, and receive
higher throughput, when it uses a smaller packet size.

The figure shows that for this scenario of a fixed byte
drop rate, standard TFRC gives roughly the desired perfor-
mance of fairness between the small-packet TFRC flow and
the possibly-large-packet TCP flow, while the Small-Packet
variant of TFRC allows the small-packet TFRC flow to re-
ceive much more than its ‘share’ of the bandwidth. Simi-
lar results can be obtained from simulations with Drop-Tail
queues in units of bytes, or with queues using Active Queue
Management in byte mode.

All of this leaves open the question of appropriate conges-
tion control mechanisms for small-packet flows in the Inter-
net.

6.6 Future congestion control mechanisms

Another issue raised by transport protocols for unreliable
transfer are about the needs of the applications. The applica-
tions (e.g., video, audio, on-line games) might want to have
sharp changes in the sending rate from one RTT to the next
(changes in the video contents); or might want to have faster
startup and fast sending after an idle period, etc. There are
fundamental issues we don’t yet understand, about how far
congestion control mechanisms for best-effort traffic can be
pushed to deal with these application-level issues; and what
the consequences might be for aggregate traffic if congestion
control mechanisms are pushed too far.

7 RELATED WORK

We are not able to cite here the related work on all of the
issues touched on in this paper.

Related work on the architectural and technical issues in
the development of new transport protocols includes papers
on RTP [17], RTSP [16], SCTP [30], and UDP-Lite [23].
There is also a body of research on the development of new
congestion control mechanisms for high-bandwidth environ-
ments, or with more explicit feedback from routers, but that
is not directly relevant here.

8 CONCLUSIONS

It might reasonably be assumed that designing an unreliable
alternative to TCP would be a rather simple process; indeed
we made this assumption ourselves. However, TCP’s con-
gestion control is so tightly coupled to its reliable semantics
that few TCP mechanisms are directly applicable without
substantial change. For example, the cumulative acknowl-
edgement in TCP serves many purposes, including reliabil-
ity, liveness, flow control and congestion control. There does
not appear to be a simple equivalent mechanism for an unre-
liable protocol.

The current Internet is a hostile environment, and great
care needs to be taken to design a protocol that is robust.
TCP has gained robustness over time, and it is important to
learn from its mistakes. However, the problem for an unre-
liable protocol is actually harder in many ways; the applica-
tion semantics are not so well constrained, and there seem to
be more degrees of freedom for an attacker.

The current Internet is also a confused environment; un-
less a protocol wishes to condemn itself to irrelevance, its
design must make it easy to deploy in a world of NATs, fire-
walls and justifiably paranoid network administrators.

In this paper we have attempted to sketch out many of
the issues that arose in the design of DCCP, some of them
obvious, others more subtle. We have deliberately avoided
describing all the details of DCCP; the interested reader is
referred to the DCCP specification.
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