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Past history in transport.
�

� Source Quench.

� Path MTU Discovery.

� Advice for Internet Subnetwork Designers:
Section 8.2: Recovery from Subnetwork Outages.

� L2 Trigger Bar BOF, March 2002

� Current practice.

� ...
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Generic problems that triggers could cause?
�

� Irrelevant or misleading reports.

� Extra traffic.

� Deliberately false reports (e.g., DoS attacks).

� Traffic floods (e.g., DoS attacks).

� ???
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So why are we talking about triggers again?
�

� We can learn from the past problems of Source Quench and Path MTU
Discovery.

� The problems of irrelevant or false reports might be manageable.

� Explicit instead of implicit communication has its advantages.
(Along with disadvantages, e.g., being blocking by firewalls.)

� It is ok to question the tyranny of layering.

� At this stage, we are just *talking* about it.
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The framework for these viewgraphs:
�

� What are the problems transport triggers might be proposed to solve?

� How would transport or applications use this information?

� How would transport or apps solve these problems without triggers?

� Are these problems important?

� What are the additional problems that triggers could introduce?
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Not included in this set of viewgraphs:
	


 Possible mechanisms for triggers.


 Anything to do with routing.
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Link back up?
�

� What is the problem?
– The transport protocol could have a backed-off retransmit timer,

waiting for many seconds for it to expire.
– TCP could have ssthresh backed off to one segment.

� How would transport use link-level information?
– Transport could send a small probe packet before RTO timer expires.
– TCP could increase ssthresh, for less conservative probing.
– Transport could tell the application. Consensus (from Bernard Aboba)

is that the link-up info is useful to some apps, but the link-down info is not
useful.
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 Are there transport-level solutions, without link-level info?
– Occasional probing with tiny packets?
– Probing with lower-than-best-effort packets?

 Are there link-level-only solutions?
Yep. The link keeps packets, sends them when the link comes back up.
(This would work particularly well with TCP’s Limited Transmit.)

 Trade-offs?
– Explicit triggers would require less buffer space and bandwidth.
– Explicit triggers are more complicated.
– Explicit triggers could be blocked by firewalls.

 How important is this problem?
How much would the proposed solutions help?
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Non-congestive loss for specific packets?
�

� What is the problem?
– In the absence of specific info, TCP assumes that losses are from

congestion, and reduces the congestion window.

� How would transport use link-level information?
– ”Undo” the halving of the congestion window.
– Decrease the sending rate slightly?
– Notify the application?
– Decrease the packet size?

� Are there transport-level solutions, without link-level info?
– No. (There have been plenty of proposals...)
– Transport could always play with changing packet sizes...
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Non-congestive loss for specific packets, continued.
�

� Are there link-level-only solutions?
– Yep. Link-level FEC, link-level retransmissions.

� How important is this problem?
How much would the proposed solutions help?

� References:
– Explicit Transport Error Notification (ETEN), from BBN.
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Link experiencing general non-congestive loss
�

� What is the problem?
– Losses are a drag for the application.
– Transport assumes that losses are due to congestion.

� How would transport use link-level information?
– Notify the application?
– Decrease the packet size?

� Are there transport-level solutions, without link-level info?
– Transport could always play with changing packet sizes...
– Heuristics for transport to infer that losses are from corruption?

� How important is this problem?
How much would the proposed solutions help?
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More speculative possibilities for triggers
�

� Link going down.

� Link bandwidth increased.

� Link bandwidth decreased.
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Extra viewgraphs:
�
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Link going down
�

� What is the problem?
– The app doesn’t use the remaining time well?

� How would transport use link-level information?
– Transport could tell the application. What would the app do?
– Transport: Wait longer before terminating connection?
– SCTP’s mobility mechanisms could use link-down information?

� Are there transport-level solutions, without link-level info?
– Nope.

� How important is this problem?
How much would the proposed solutions help?
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Link bandwidth increased
�

� What is the problem?
– Transport doesn’t know to probe for newly-available bandwidth?

� How would transport use link-level information?
– Transport could ask about available bandwidth, e.g., using an IP

option like Quick-Start?

� Are there transport-level solutions, without link-level info?
– Transport could use end-to-end mechanisms to infer bottleneck link

bandwidth, and then could use something like Quick-Start.

� How important is this problem?
How much would the proposed solutions help?
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Link bandwidth decreased
�

� Are there transport-level solutions, without link-level info?
– Transport will find out about the reduced available bandwidth after

one round-trip time.
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Advice for Internet Subnetwork Designers:
�

� draft-ietf-pilc-link-design-12.txt
Section 8.2: Recovery from Subnetwork Outages.
”The Internet protocols currently provide no standard way for a
subnetwork to explicitly notify an upper layer protocol (e.g., TCP) that it is
experiencing an outage rather than severe congestion.”
”The purpose of holding onto a packet during an outage, either in the
subnetwork or at the IP layer, is so that its eventual delivery will implicitly
notify TCP that the subnetwork is again operational.”
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Implementation experience with Link Up and Link Down

feedback
�

 Some implementations already feed link-up and link-down info to the
application at the same host.

Consensus (from Bernard Aboba) is that the link-up info is useful to some
apps, but the link-down info is not useful.
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