Internet Research Needs Better Models

%

Sally Floyd and Eddie Kohler October 28, 2002 Hot Topics in Networks

What do we mean by model?

- The world for a given simulation, experiment, or analysis
 - For networking, this might include topology, traffic mix, end-node protocols, queue drop policies, congestion, ...
- Application-specific or research-area-specific
 - Each research topic needs its own set of models
 - Not "one model to rule them all, one model to bind them"
- Model should be as simple as possible, but no simpler
 - Invalid models give invalid results, as we will see ...

Example: Models for research on router queue behavior %

- Relevant fields: AQM, scheduling, Differentiated Services, ...
- Important model features include:
 - Characteristics of congested links
 - Range of round-trip times
 - Traffic characterization (distribution of transfer sizes, ...)
 - Reverse-path traffic
 - Effects of congestion elsewhere
- Models for other research topics will have different features

A fairly common model for router queue behavior research

- Characteristics:
 - Dumbbell topology with one congested link
 - One-way traffic
 - Simple traffic mix (either all long-lived or all Web traffic)
 - Limited range of round-trip times
 - Single congested link bandwidth
- How well does this match with reality?
 - Does any divergence from reality matter, or not?
 - Are we wasting research effort on bad models? ...

Example: Bandwidth sharing

- Shows how tricky simulations can be [FJ 1992]
- How do TCP flows share a congested link?
- Model characteristics for a possible simulation experiment:
 - Dumbbell topology with one congested link
 - One-way traffic
 - All long-lived traffic, all packets the same size
 - Drop-tail queue management
 - Different round-trip times
 - Deterministic simulation (no randomness)

Result: Phase effects

Flow 1's throughput as a function of the ratio of the two flows' round-trip times

What went wrong?

- Bad model! In particular:
 - Deterministic synchronization \rightarrow *not realistic* (fix with randomness)
 - All long-lived traffic \rightarrow *not realistic* (fix by adding Web traffic)
 - One-way traffic \rightarrow *not realistic*, leads to all packets in queue having same size (fix by adding reverse-path flows)
- The rich behavior of phase effects is not relevant to the modern Internet.
- It doesn't lend any useful insight on the chaotic or fractal behavior of actual networks.
- This is not interesting to explore further!

Example: Router queue behavior with TCP/AQM %

- Does TCP/AQM introduce undesired behavior at router queues, such as oscillations?
- Model characteristics for a possible simulation experiment:
 - Dumbbell topology with one congested link
 - One-way traffic
 - All long-lived traffic
 - RED active queue management
 - Same round-trip times
- This model is temptingly easy to analyze with control theory!

Result: Severe oscillations

Long-lived traffic, 240 ms RTT

What happens if we vary the model?

- Wide range of round-trip times
- More short-lived traffic

Result: Less severe oscillations

Long-lived traffic, 20-460 ms RTTs

Result: Less severe oscillations

Mostly Web traffic, 20–460 ms RTTs

What is a realistic model?

- We actually don't know!
 - We don't know typical levels of congestion, typical bandwidths for congested links, ...
- We can evaluate certain aspects of current models against measurement results, however:
 - Range of round-trip times
 - Flow sizes

Measurements: Range of round-trip times %

Distributions of packet round-trip times on the congested link of two simulations, with data measured on the Internet for comparison.

Measurements: Flow sizes (packet numbers)

Distributions of packet numbers on the congested link over the second half of two simulations, with data measured on the Internet for comparison.

Conjecture: You can prove anything with simulations! %

- To show oscillations with RED or Adaptive RED:
 - Use long round-trip times and mostly long-lived flows
 - (As we've shown, this is not realistic.*)
- To show poor performance with the Proportional-Integral Controller (PI) or Random Early Marking (REM):

– Use mostly web traffic, or changes in the level of congestion over time

- To show poor performance with drop-tail or Adaptive Virtual Queues (AVQ):
 Use packet drop rate as the key metric
- It would be nice for research to be grounded in something more solid ...

More AQM modeling issues

- RED
 - Implicit model: low packet drop rates, narrow range of bandwidths for the congested link
 - Reality: high packet drop rates also occur, congested links cover wide range of bandwidths
 - Results: Poor performance at high packet drop rates, insufficient practical guidance on parameter settings

Modeling issues in transport protocols

- New research area, new model characteristics, same problems!
- TCP Reno
 - Implicit model: multiple drops in a single window mean more congestion
 - Reality: multiple drops commonly due to a single congestion event
 - Result: TCP Reno can behave poorly in practice
- TCP Vegas
 - Model: connection's sending rate affects its queue size
 - Implies low levels of statistical multiplexing
 - Reality: congestion also occurs at links with high statmux
 - Result: TCP Vegas can behave poorly in practice

We Need Better Models!

- The models that we use in simulations and experiments are not confirmed by experimental studies.
- The lack of tools for constructing and critically evaluating the models that we use is holding back the field.

Goals

- Models should be specific to the research questions being investigated.
- We need to understand how models' parameter settings affect experimental results.
- Modeling must go hand-in-hand with measurement.
- We want models that apply to the Internet of the future, as well as to the Internet of today.

Moving forward %

- Start with specific research questions.
 - We (the network research community) need to understand which model parameters are critical to performance.
- For critical parameters, we need:
 - New measurements
 - A careful use of existing measurement studies to understand realistic settings ...
 - $-\ldots$ or new measurement tools
 - Not the same as measurement: need digested results
- Next, we need to begin a set of best practices for model construction.
 - A shared repository of models and simulation scenarios
 - Papers evaluating models

Related work

%

• There's lots!

http://www.icir.org/models/bettermodels.html

- Model evaluation: [JRFGW 2001], [GV 2002], [LKJK 1999], ...
- Topology generation: Georgia Tech, Rocketfuel, ...
- Traffic characteristics: [JD 2002], ...
- Organizations: CAIDA, NLANR, IRMG, ...