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Topics:

� High-speed TCP.

� Faster Start-up?

� AQM: Adaptive RED

� Evaluation of AQM mechanisms.

� A proposal about models and simulations

� Other open questions?
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Architectural sub-themes:

� A goal of incremental deployment in the current Internet.

� Steps must go in the fundamantally correct, long-term direction, not be
short-term hacks.

� Robustness in heterogeneous environments valued over efficiency of
performance in well-defined environments.

� A skepticism towards simple models.

� Learning from actual deployment is an invaluable step.

� The Internet will continue to be decentralized and fast-changing.
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HighSpeed TCP:

Joint work with Sylvia Ratnasamy and Scott Shenker.

Additional investigations with Evandro de Souza and Deb Agarwal.

URLs:
http://www.icir.org/floyd/papers/draft-floyd-tcp-highspeed-00c.txt
http://www.icir.org/floyd/papers/draft-floyd-tcp-slowstart-00b.txt
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HighSpeed TCP: The problem.

� TCP’s average congestion window is roughly
�����	��
 �

packets.

� Maintaining an average cwnd of at least
�����  �����

packets requires a
packet loss/corruption rate of at most

������� �
.

� Given 1500-byte packets and a 100 ms RTT, filling a 10 Gbps pipe would
correspond to a congestion window of � � ����������� packets.

– At least 1.6 hours between packet drops.

� We can do better, even with only the current feedback from routers.
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HighSpeed TCP: Is this a pressing problem?

� Nope. In practice, users do one of the following:
– Open up � parallel TCP connections; or
– Use MulTCP (roughly like an aggregate of � virtual TCP connections).

� However, we think it is possible to do much better, with:
– Better flexibility (no � to configure);
– Better scaling;
– Better slow-start behavior;
– Competing more fairly with current TCP

(for environments where TCP is able to use the available bandwidth).
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HighSpeed TCP: use a modified response function.
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HighSpeed TCP: Simulations in NS.

� ./test-all-tcpHighspeed in tcl/test.

� The parameters specifying the response function:
– Agent/TCP set low window 31
– Agent/TCP set high window 83000
– Agent/TCP set high p 0.0000001

� The parameter specifying the decrease function at high p :
– Agent/TCP set high decrease 0.1
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HighSpeed TCP: Relative fairness.
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HighSpeed TCP: modifying slow-start:

� Slow-starting up to a window of 83,000 packets doesn’t work well.
– Tens of thousands of packets dropped from one window of data.
– Slow recovery for the TCP connection.

� The answer:
– Agent/TCP set max ssthresh N
– During the initial slow-start, increase the congestion window by at

most N packets in one RTT.
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Faster Start-up?

From a proposal by Amit Jain.

No URL yet.
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Faster Start-up: Larger Initial Sending Rate

 An IP option in the SYN packet gives the sender’s desired initial sending
rate.

– Routers on the path decrement a counter,
– and decrease the allowed initial sending rate, if necessary.

 If all routers on the path participated:
– The receiver tells the sender the allowed initial sending rate in the

SYN/ACK packet, in the transport header.

 This is from a proposal by Amit Jain (from Netscaler).
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Adaptive RED

Joint work with Ramakrishna Gummadi and Scott Shenker.

URL (with simulation scripts):
http://www.cs.berkeley.edu/ ramki/adaptiveRED/
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The One-Page Primer on RED:
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Adaptive RED: adapting 8 90:0;
< The original Adaptive RED proposal is from Feng et al., 1997.

– Adjusts 8 9#:0; to keep the average queue between 8 =?>A@CB and 8 90:D@EB .

< We have a new implementation of Adaptive RED, adapting 8 9#: ; .

< Automatic setting of F G as a function of the link bandwidth.

< Automatic setting of 8 =?> @CB and 8 90: @CB as a function of the target queue
size.
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Simulation with malignant oscillations:
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Simulation with benign oscillations:
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The optimal average queue size?

P It depends on the desired tradeoff at the router between high utilization
and low delay.

P It is heavily affected by traffic, topology, etc.

P We don’t know the optimal average queue size.
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Mostly long-lived traffic, Adaptive RED.
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Mostly long-lived traffic, Drop Tail.
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Long-lived and web traffic, Adaptive RED.
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Long-lived and web traffic, Adaptive RED, with reverse-path delay.
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The reverse-path queue is configured the same as the forward-path queue:
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An aside: creating worst-case oscillations with TCP and AQM:
(from last night)

Assume a ”time constant” for average queue size estimator of Q sec.
( Q = 1 second, for Adaptive RED).
Then the ”resonant frequency” is roughly R�Q seconds.

We want to choose the number of flows S so that the packet drop rate T
gives a congestion control epoch of R�Q seconds, so that the natural fre-
quency of TCP matches the resonant frequency of the RED/ARED queue.

Given link bandwidth U pkts/sec, RTT V seconds, S flows:
The average bandwidth per flow is U V WXS pkts/RTT.
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Facts about TCP:
With packet drop rate Y , the average window Z is []\�^�_�` Y pkts, and there
are ab]Z RTTs in a congestion control epoch.

So we want ab]Z c d]e _gf , or Z c hi\kjDe _gf .

So choose N so that: l f _Xm c hn\kj]e _3f , or m c l f a _poqhi\kjDe r .

Conjecture: For e = 1 sec., f = 0.1 sec., l = 1000 pkts/sec (8Mbps for
1KB pkts), the worst case oscillations occur with m c [ts	_usv\whxj c ^y^
flows.
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An Evaluation of AQM

Joint work with Jitendra Padhye and Scott Shenker.

No URL yet...
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An Evaluation of AQM

z On many simulation scenarios, Adaptive RED, AVQ, Drop-Tail PI, RED,
REM give similar performance.

z Drop-Tail and AVQ generally have higher packet drop rates.

z RED and Adaptive RED can have undesirable oscillations with very large
round-trip times.

z REM and PI can perform poorly in scenarios with mostly web traffic, or
with changes in the level of congestion.
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Developing and Evaluating Models:

Joint work with Eddie Kohler

URL for one part:
Building Models for Aggregate Traffic on Congested Links
http://www.icir.org/models/
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Models: A Proposal about Developing Models and Simulation Scenarios

{ What measurement studies are needed for improving our models?
– E.g., where is the congestion in the Internet? What are the ranges

of round-trip times? Is more needed on traffic generation? What about
reverse-path congestion?

{ How do we translate results from measurement studies into our models?

{ How do we know what features are critical to include in our models?

{ Can we do more to improve our shared understanding of best practices
for models and for simulation scenarios?
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Models: Why Models Matter?
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Open questions?

| How do things in one part of the network (e.g., buffer sizes, flash crowds)
affect behavior in other parts?

| How do we shed light on tradeoffs between delay and throughput?

| What are the inherent limitations of one bit of congestion feedback, if
any? (E.g., in terms of how aggressive flows can be.)

| What are the inherent limitations of not making reservations, and not
keeping per-flow state in the network? (E.g., in terms of how aggressive
flows can be.)

| What will the tradeoffs be when we have very fast networks, often with
very high available bandwidth, and flows could often send all of their data
is a fraction of a RTT?
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