
HighSpeed TCP and Related Issues:
�

Sally Floyd
November 14, 2002

1

Topics:
�

� HighSpeed TCP.

� Quick-Start.

2

The Problem: TCP for High-Bandwidth-Delay-Product

Networks
�

� Sustaining high congestion windows:
A Standard TCP connection with:

– 1500-byte packets;
– a 100 ms round-trip time;
– a steady-state throughput of 10 Gbps;

would require:
– an average congestion window of 83,333 segments;
– and at most one drop (or mark) every 5,000,000,000 packets

(or equivalently, at most one drop every 1 2/3 hours).
This is not realistic.

3

Is this a pressing problem in practice?
�

� Nope. In practice, users do one of the following:
– Open up � parallel TCP connections; or
– Use MulTCP (roughly like an aggregate of � virtual TCP

connections).

� However, we can do better:
– Better flexibility (no � to configure);
– Better scaling (with a range of bandwidths, numbers of flows);
– Better slow-start behavior;
– Competing more fairly with current TCP

(for environments where TCP is able to use the available bandwidth).

4

The Solution Space:
�

	 At one end of the spectrum:
Simplier, more incremental, and more-easily-deployable changes to the
current protocols:

– HighSpeed TCP (TCP with modified parameters);
– QuickStart (an IP option to allow high initial congestion windows.)

	 At the other end of the spectrum:
More powerful changes with a new transport protocol, and more explicit
feedback from the routers?

	 And other proposals along the simplicity/deployability/power spectrums.

5

What is HighSpeed TCP:

� Just like Standard TCP when cwnd is low.

� More aggressive than Standard TCP when cwnd is high.
– Uses a modified TCP response function.

� HighSpeed TCP can be thought of as behaving as an aggregate of �
TCP connections at higher congestion windows.

� Joint work with Sylvia Ratnasamy and Scott Shenker, additional
contributions from Evandro de Souza, Deb Agarwal, Tom Dunigan.

6

T HighSpeed TCP: the modified response function.

1

10

100

1000

10000

100000

1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

S
en

di
ng

 R
at

e
S

 (i
n

pk
ts

/R
TT

)

Loss Rate P

(10^-7, 83000)

(15^-3, 31)

Regular TCP (S = 1.22/p^0.5)
Highspeed TCP (S = 0.15/p^0.82)

7

Digression: The derivation of the TCP response function:

� The steady-state model:
W

W/2
W/2 + 1

W/2 + 2

W

Time

Congestion
Window

� The average sending rate � is
���� packets per RTT.

� Each cycle takes
� �

RTTS, with one drop in � � � �
�

packets.

� Therefore, � � ��� � � , or � �
� ���! � " , for packet drop rate � .

8

T HighSpeed TCP: Relative fairness.

0

50

100

150

200

1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

H
ig

hs
pe

ed
 T

C
P

 /
R

eg
ul

ar
 T

C
P

, S
en

di
ng

 R
at

es

Loss Rate P

Relative Fairness (0.11/p^0.32)

9

HighSpeed TCP: Simulations in NS.
#

$./test-all-tcpHighspeed in tcl/test.

$ The parameters specifying the response function:
– Agent/TCP set low window 31
– Agent/TCP set high window 83000
– Agent/TCP set high p 0.0000001

$ The parameter specifying the decrease function at high p :
– Agent/TCP set high decrease 0.1

10

HighSpeed TCP: The Gory Details:
w a(w) b(w)

---- ---- ----
38 1 0.50
118 2 0.44
221 3 0.41
347 4 0.38
495 5 0.37
663 6 0.35
851 7 0.34
1058 8 0.33
1284 9 0.32
1529 10 0.31
1793 11 0.30
2076 12 0.29
2378 13 0.28
...

84035 71 0.10
11

Conclusions:
%

& This proposal needs feedback from more experiments.

& My own view is that something like this is the fundamentally correct
path:
– given backwards compatibility and incremental deployment.

& Experimental results from Tom Dunigan are on the HighSpeed TCP
web page.
– http://www.icir.org/floyd/hstcp.html
– Experimental results from Brian Tierney coming shortly...

12

Tests from Tom Dunigan:

This shows HighSpeed TCP with Limited Slow-Start (described next).

13

HighSpeed TCP requires Limited Slow-Start:
'

(Slow-starting up to a window of 83,000 packets doesn’t work well.
– Tens of thousands of packets dropped from one window of data.
– Slow recovery for the TCP connection.

(The answer: Limited Slow-Start
– Agent/TCP set max ssthresh N
– During the initial slow-start, increase the congestion window by at

most N packets in one RTT.

14

Tests from Tom Dunigan:

This shows Limited Slow-Start, but not HighSpeed TCP.

15

The pseudocode:
)

For each arriving ACK in slow-start:

If (cwnd <= max_ssthresh)

cwnd += MSS;

else

K = 2 * cwnd/max_ssthresh ;

cwnd += MSS/K ;

16

Other small changes for high congestion windows:
*

+ Wait for more than three duplicate acknowledments before
retransmitting a packet.

+ Or, recover more smoothly when a retransmitted packet is dropped.

17

Additional Problems:
,

- Starting up with high congestion windows?

- Making prompt use of newly-available bandwidth?

18

What is QuickStart?
.

/ In an IP option in the SYN packet, the sender’s desired sending rate:
– Routers on the path decrement a TTL counter,
– and decrease the allowed initial sending rate, if necessary.

/ The receiver sends feedback to the sender in the SYN/ACK packet:
– The sender knows if all routers on the path participated.
– The sender has an RTT measurement.
– The sender can set the initial congestion window.
– The TCP sender continues with AIMD using normal methods.

/ From an initial proposal by Amit Jain

19

The Quick-Start Request Option for IPv4
0

0 1 2 3

+----------+----------+----------+----------+

| Option | Length=4 | QS TTL | Initial |

| | | | Rate |

+----------+----------+----------+----------+

1 Explicit feedback from all of the routers along the path would be
required.

1 This option will only be approved by routers that are significantly
underutilized.

1 No per-flow state is kept at the router.

20

Questions:
2

3 Would the benefits of Quick-Start be worth the added complexity?
– SYN and SYN/ACK packets would not take the fast path in routers.

3 Is there a compelling need to add some form of congestion-related
feedback from routers such as this (in addition to ECN)?

3 Is there a compelling need for more fine-grained or more frequent
feedback than Quick-Start?

3 Are there other mechanisms that would be preferable to Quick-Start?

21

Architectural sub-themes favoring incremental

deployment:4

5 A goal of incremental deployment in the current Internet.

5 Steps must go in the fundamantally correct, long-term direction, not be
short-term hacks.

5 Robustness in heterogeneous environments valued over efficiency of
performance in well-defined environments.

5 A preference for simple mechanisms, but a skepticism towards simple
traffic and topology models.

5 Learning from actual deployment is an invaluable step.

5 The Internet will continue to be decentralized and fast-changing.
22

References:
6

7 HighSpeed TCP and Limited Slow-Start:
http://www.icir.org/floyd/hstcp.html

7 QuickStart:
http://www.icir.org/floyd/papers/draft-amit-quick-start-01.txt

23

Extra viewgraphs:
8

24

Problem Statement for DCCP
9

Datagram Congestion Control Protocol
draft-floyd-dccp-problem-00.txt
Sally Floyd, Mark Handley, and Eddie Kohler

25

Requirements:
:

; Unreliable data delivery, but with congestion control.

; ECN-capable.

; A choice of TCP-friendly congestion control mechanisms.

26

Constraints:
<

= Low overhead, for applications that send small packets.

= Traversing firewalls?

= Ability to negotiate congestion control parameters:
– ECN.
– type of congestion control.

27

Three possibilities, for flows that now use UDP:
>

? Congestion control above UDP.

? Congestion control below UDP.

? Congestion control in another transport protocol.

28

Congestion control above UDP:
@

A Burden on the application designer, or on RTP.

A The problems of firewall traversal and parameter negotiation remain.

A Application-level control over ECN?

A Evasion of end-to-end congestion control?

29

Congestion control below UDP:
B

C If congestion control feedback is at the application layer:
– CM does this.
– Issues: parameter negotiation; ECN; firewalls; evasion of congestion

control.

C If congestion control feedback is at the layer below UDP:
– An additional packet header is needed.
– To be most effective, the semantics of the UDP socket API would

have to be changed, for late binding, and for communication of sequence
numbers. Thus, we are already changing UDP.

30

If a new transport protocol (other than UDP):
D

E Modify TCP?
– We want a choice of congestion control mechanisms.
– We want sequence numbers in packets rather than bytes.
– Would we need a new protocol number anyway?

* Unreliable variants of SCTP?
– Support for multiple streams is not needed for unreliable transfer, so

we don’t want to pay the price in extra packet overhead.
– Separate control chunks for ECN feedback?
– We want a choice of congestion control mechanisms.

* A new protocol?
– Yep.

31

Other design considerations:
F

G Mobility?

G Defense against DoS attacks:
server should not hold state for unacknowledged connection attempts.

G Interoperation with RTP.

G Interactions with NATs and firewalls:
- Explicit connection setup and teardown helps.

32

Questions:
H

I Is this the right problem?

I Do we have the right set of constraints?

I Are there other requirements that we haven’t considered?

I Feedback?

33

What is XCP?J

K Congestion Control for High Bandwidth-Delay Product Networks
– by Dina Katabi, Mark Handley, and Charlie Rohrs.

K XCP (eXplicit Control Protocol) has the goals of stability,
fair bandwidth allocation, high utilization, small standing queue size,
and near-zero packet drops.

K Specific goals:
– Minimizing oscillations.
– High delay-bandwidth-product connections.
– Minimizing the transfer delay of short flows.
– Fairness between flows with different RTTs.

K No per-flow-state is maintained in routers.
34

XCP: the End Nodes
L

M The packet header contains:
– current cwnd,
– rtt estimate,
– feedback

(Initialized to the desired increase in bytes in the cwnd, per ACK.)

M Routers modify the feedback field.

M At the sender, for each ACK:
cwnd N O max (cwnd + feedback, packet size)

35

XCP: the Routers
P

Q Routers deal with efficiency and fairness separately.

Q The efficiency controller computes the desired change in the number of
arriving bytes in a control interval (i.e., an average RTT), based on the
spare bandwidth and persistent queue.

Q The fairness controller uses AIMD to allocate the increase or decrease
to individual packets.

Q This requires a few additions and three multiplications per packet.

Q Policing agents can be used at the edge of the network for security.

36

