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Topics:
�

� HighSpeed TCP.

� Quick-Start.
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The Problem: TCP for High-Bandwidth-Delay-Product

Networks
�

� Sustaining high congestion windows:
A Standard TCP connection with:

– 1500-byte packets;
– a 100 ms round-trip time;
– a steady-state throughput of 10 Gbps;

would require:
– an average congestion window of 83,333 segments;
– and at most one drop (or mark) every 5,000,000,000 packets

(or equivalently, at most one drop every 1 2/3 hours).
This is not realistic.
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Is this a pressing problem in practice?
�

� Nope. In practice, users do one of the following:
– Open up � parallel TCP connections; or
– Use MulTCP (roughly like an aggregate of � virtual TCP

connections).

� However, we can do better:
– Better flexibility (no � to configure);
– Better scaling (with a range of bandwidths, numbers of flows);
– Better slow-start behavior;
– Competing more fairly with current TCP

(for environments where TCP is able to use the available bandwidth).
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The Solution Space:
�

	 At one end of the spectrum:
Simplier, more incremental, and more-easily-deployable changes to the
current protocols:

– HighSpeed TCP (TCP with modified parameters);
– QuickStart (an IP option to allow high initial congestion windows.)

	 At the other end of the spectrum:
More powerful changes with a new transport protocol, and more explicit
feedback from the routers?

	 And other proposals along the simplicity/deployability/power spectrums.
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What is HighSpeed TCP:



� Just like Standard TCP when cwnd is low.

� More aggressive than Standard TCP when cwnd is high.
– Uses a modified TCP response function.

� HighSpeed TCP can be thought of as behaving as an aggregate of �
TCP connections at higher congestion windows.

� Joint work with Sylvia Ratnasamy and Scott Shenker, additional
contributions from Evandro de Souza, Deb Agarwal, Tom Dunigan.
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T HighSpeed TCP: the modified response function.
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Digression: The derivation of the TCP response function:


� The steady-state model:
W

W/2
W/2 + 1

W/2 + 2

W

Time

Congestion
Window

� The average sending rate � is
���� packets per RTT.

� Each cycle takes
� �

RTTS, with one drop in � � � �
�

packets.

� Therefore, � � ��� � � , or � �
� ���! � " , for packet drop rate � .
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T HighSpeed TCP: Relative fairness.
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HighSpeed TCP: Simulations in NS.
#

$ ./test-all-tcpHighspeed in tcl/test.

$ The parameters specifying the response function:
– Agent/TCP set low window 31
– Agent/TCP set high window 83000
– Agent/TCP set high p 0.0000001

$ The parameter specifying the decrease function at high p :
– Agent/TCP set high decrease 0.1
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HighSpeed TCP: The Gory Details:
w a(w) b(w)

---- ---- ----
38 1 0.50
118 2 0.44
221 3 0.41
347 4 0.38
495 5 0.37
663 6 0.35
851 7 0.34
1058 8 0.33
1284 9 0.32
1529 10 0.31
1793 11 0.30
2076 12 0.29
2378 13 0.28
...

84035 71 0.10
11



Conclusions:
%

& This proposal needs feedback from more experiments.

& My own view is that something like this is the fundamentally correct
path:
– given backwards compatibility and incremental deployment.

& Experimental results from Tom Dunigan are on the HighSpeed TCP
web page.
– http://www.icir.org/floyd/hstcp.html
– Experimental results from Brian Tierney coming shortly...
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Tests from Tom Dunigan:

This shows HighSpeed TCP with Limited Slow-Start (described next).
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HighSpeed TCP requires Limited Slow-Start:
'

( Slow-starting up to a window of 83,000 packets doesn’t work well.
– Tens of thousands of packets dropped from one window of data.
– Slow recovery for the TCP connection.

( The answer: Limited Slow-Start
– Agent/TCP set max ssthresh N
– During the initial slow-start, increase the congestion window by at

most N packets in one RTT.

14



Tests from Tom Dunigan:

This shows Limited Slow-Start, but not HighSpeed TCP.
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The pseudocode:
)

For each arriving ACK in slow-start:

If (cwnd <= max_ssthresh)

cwnd += MSS;

else

K = 2 * cwnd/max_ssthresh ;

cwnd += MSS/K ;
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Other small changes for high congestion windows:
*

+ Wait for more than three duplicate acknowledments before
retransmitting a packet.

+ Or, recover more smoothly when a retransmitted packet is dropped.
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Additional Problems:
,

- Starting up with high congestion windows?

- Making prompt use of newly-available bandwidth?
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What is QuickStart?
.

/ In an IP option in the SYN packet, the sender’s desired sending rate:
– Routers on the path decrement a TTL counter,
– and decrease the allowed initial sending rate, if necessary.

/ The receiver sends feedback to the sender in the SYN/ACK packet:
– The sender knows if all routers on the path participated.
– The sender has an RTT measurement.
– The sender can set the initial congestion window.
– The TCP sender continues with AIMD using normal methods.

/ From an initial proposal by Amit Jain
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The Quick-Start Request Option for IPv4
0

0 1 2 3

+----------+----------+----------+----------+

| Option | Length=4 | QS TTL | Initial |

| | | | Rate |

+----------+----------+----------+----------+

1 Explicit feedback from all of the routers along the path would be
required.

1 This option will only be approved by routers that are significantly
underutilized.

1 No per-flow state is kept at the router.
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Questions:
2

3 Would the benefits of Quick-Start be worth the added complexity?
– SYN and SYN/ACK packets would not take the fast path in routers.

3 Is there a compelling need to add some form of congestion-related
feedback from routers such as this (in addition to ECN)?

3 Is there a compelling need for more fine-grained or more frequent
feedback than Quick-Start?

3 Are there other mechanisms that would be preferable to Quick-Start?
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Architectural sub-themes favoring incremental

deployment:4

5 A goal of incremental deployment in the current Internet.

5 Steps must go in the fundamantally correct, long-term direction, not be
short-term hacks.

5 Robustness in heterogeneous environments valued over efficiency of
performance in well-defined environments.

5 A preference for simple mechanisms, but a skepticism towards simple
traffic and topology models.

5 Learning from actual deployment is an invaluable step.

5 The Internet will continue to be decentralized and fast-changing.
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References:
6

7 HighSpeed TCP and Limited Slow-Start:
http://www.icir.org/floyd/hstcp.html

7 QuickStart:
http://www.icir.org/floyd/papers/draft-amit-quick-start-01.txt
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Extra viewgraphs:
8
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Problem Statement for DCCP
9

Datagram Congestion Control Protocol
draft-floyd-dccp-problem-00.txt
Sally Floyd, Mark Handley, and Eddie Kohler
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Requirements:
:

; Unreliable data delivery, but with congestion control.

; ECN-capable.

; A choice of TCP-friendly congestion control mechanisms.
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Constraints:
<

= Low overhead, for applications that send small packets.

= Traversing firewalls?

= Ability to negotiate congestion control parameters:
– ECN.
– type of congestion control.
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Three possibilities, for flows that now use UDP:
>

? Congestion control above UDP.

? Congestion control below UDP.

? Congestion control in another transport protocol.
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Congestion control above UDP:
@

A Burden on the application designer, or on RTP.

A The problems of firewall traversal and parameter negotiation remain.

A Application-level control over ECN?

A Evasion of end-to-end congestion control?

29



Congestion control below UDP:
B

C If congestion control feedback is at the application layer:
– CM does this.
– Issues: parameter negotiation; ECN; firewalls; evasion of congestion

control.

C If congestion control feedback is at the layer below UDP:
– An additional packet header is needed.
– To be most effective, the semantics of the UDP socket API would

have to be changed, for late binding, and for communication of sequence
numbers. Thus, we are already changing UDP.
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If a new transport protocol (other than UDP):
D

E Modify TCP?
– We want a choice of congestion control mechanisms.
– We want sequence numbers in packets rather than bytes.
– Would we need a new protocol number anyway?

* Unreliable variants of SCTP?
– Support for multiple streams is not needed for unreliable transfer, so

we don’t want to pay the price in extra packet overhead.
– Separate control chunks for ECN feedback?
– We want a choice of congestion control mechanisms.

* A new protocol?
– Yep.
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Other design considerations:
F

G Mobility?

G Defense against DoS attacks:
server should not hold state for unacknowledged connection attempts.

G Interoperation with RTP.

G Interactions with NATs and firewalls:
- Explicit connection setup and teardown helps.
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Questions:
H

I Is this the right problem?

I Do we have the right set of constraints?

I Are there other requirements that we haven’t considered?

I Feedback?
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What is XCP?J

K Congestion Control for High Bandwidth-Delay Product Networks
– by Dina Katabi, Mark Handley, and Charlie Rohrs.

K XCP (eXplicit Control Protocol) has the goals of stability,
fair bandwidth allocation, high utilization, small standing queue size,
and near-zero packet drops.

K Specific goals:
– Minimizing oscillations.
– High delay-bandwidth-product connections.
– Minimizing the transfer delay of short flows.
– Fairness between flows with different RTTs.

K No per-flow-state is maintained in routers.
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XCP: the End Nodes
L

M The packet header contains:
– current cwnd,
– rtt estimate,
– feedback

(Initialized to the desired increase in bytes in the cwnd, per ACK.)

M Routers modify the feedback field.

M At the sender, for each ACK:
cwnd N O max (cwnd + feedback, packet size)
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XCP: the Routers
P

Q Routers deal with efficiency and fairness separately.

Q The efficiency controller computes the desired change in the number of
arriving bytes in a control interval (i.e., an average RTT), based on the
spare bandwidth and persistent queue.

Q The fairness controller uses AIMD to allocate the increase or decrease
to individual packets.

Q This requires a few additions and three multiplications per packet.

Q Policing agents can be used at the edge of the network for security.
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