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Topics:

� Observations on the Internet as a large-scale complex system:
– Heterogeneity and change.
– What we know about the current Internet.
– End-to-end congestion control.

� Addressing Congestion from Large-scale Traffic Patterns:
Controlling bullies, crowds, and mobs.

– Controlling misbehaving or high-bandwidth flows (i.e., bullies).
– Controlling flash crowds (i.e., crowds).
– Controlling Denial-of-Service attacks (i.e., mobs).
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Sub-themes:

� The Internet is a work in progress, with no central control or authority,
many players independently making changes, and many forces of change
(e.g., new technologies, new applications, new commercial forces, etc.)

� So far, the success of the Internet has rested on the IP architecture’s
robustness, flexibility, and ability to scale, and not on its efficiency, opti-
mization, or fine-grained control.

� The rather decentralized and fast-changing evolution of the Internet ar-
chitecture has worked reasonably well to date. There is no guarantee that
it will continue to do so.

� The Internet is like the elephant, and each of us is the blind man who
knows only the part closest to us.

– The part of the Internet that I see is end-to-end congestion control.
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Chang e and heterogeneity as conditions of the Internet:

� New link-level technologies: e.g., wireless.

� Higher bandwidth in some parts of the network, and very low bandwidth
in other parts (e.g., wireless).

– Cheaper bandwidth leads to higher connectivity between ASes.

� Changes in routers: e.g., QoS mechanisms, queue management, Ex-
plicit Congestion Notification.

� Changes to end-to-end congestion control mechanisms: e.g., in TCP,
and in new transport protocols.

� Changes in infrastructure: e.g., web caching, content distribution.

� Changes in applications: e.g., telephony, streaming multimedia, peer-to-
peer networking, multicast.
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Invariant proper ties of the Internet:

� 24-hour cycles in traffic patterns.

� Log-normal connection sizes (for the main body of the distribution).

� Heavy-tailed distribution of connection sizes.

� Poisson arrivals for start times of user sessions.

� Self-similarity in traffic patterns.

� Invariants in topology?

� Heterogeneity and change!

– [Paxson and Floyd, 1997]
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Do we kno w the traffic dynamics and protocols in the current Internet?

� Measurements of response times and packet loss rates:
The Internet Traffic Report, the Internet Weather Report.

� Measurements of packet size distributions, protocol breakdown.

� Identification of congestion control behaviors of web servers.

� How is the traffic on a link characterized in terms of round-trip times,
end-to-end congestion experienced by the packets on that link, etc.?

� We don’t know much about the actual deployment of queue manage-
ment mechanisms, traffic engineering, and a wide range of other issues.

– [Web Page on Measurement Studies]
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Why do we need end-to-end cong estion contr ol?

� As a tool for the application to better achieve its own goals:
E.g., minimizing loss and delay, maximizing throughput.

� To avoid congestion collapse.
– Congestion collapse occurs when the network is increasingly busy,

but little useful work is getting done.
– E.g., congested links could be busy sending packets that will be

dropped before reaching their destination.
– Tragedy of the commons is avoided in part because the “players” are

not individual users, but vendors of operating systems and other software
packages.

� Fairness (in the absence of per-flow scheduling).
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TCP cong estion contr ol:

� Packet drops as the indications of congestion.

� TCP uses Additive Increase Multiplicative Decrease (AIMD) [Jacobson
1988].

– Halve congestion window after a loss event.
– Otherwise, increase congestion window each RTT by one packet.

� In heavy congestion, when a retransmitted packet is itself dropped, use
exponential backoff of the retransmit timer.

� Slow-start: start by doubling the congestion window every roundtrip time.
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The “stead y-state model” of TCP:

� The model: Fixed packet size
�

in bytes.
– Fixed roundtrip time 	 in seconds, no queue.
– A packet is dropped each time the window reaches 
 packets.
– TCP’s congestion window: 
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� The maximum sending rate in packets per roundtrip time: 

– The maximum sending rate in byes per second: 
 � � 	
– The average sending rate � : � � ��� ����� 
 � � 	
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Verifying the “stead y-state model” of TCP:

(1460-byte packets, 0.06 second roundtrip time)
Drop Rate (PerCent of Arriving Packets Dropped)
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Solid line: the simple equation characterizing TCP
Numbered lines: simulation results
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The “stead y-state model” of TCP: an impr oved version.

0 1 23 0 0 4657 8 9�: 3 0 0 ; 9�< 7 5= ;?> 9A@ 8 <B: > 4 ; (1)

0
: sending rate in bytes/sec

2 : packet size in bytes>
: packet drop rate

– J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, Modeling TCP Through-
put: A Simple Model and its Empirical Validation Proceedings of SIG-
COMM’98
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Equation-based cong estion contr ol: Time
C

Sending
D
Rate

E Use the TCP equation characterizing TCP’s steady-state sending rate
as a function of the RTT and the packet drop rate.

E Over longer time periods, maintain a sending rate that is a function of
the measured roundtrip time and packet loss rate.

E The benefit: Smoother changes in the sending rate in response to
changes in congestion levels.

E The justification: It is acceptable not to reduce the sending rate in half in
response to a single packet drop.

E The cost: Limited ability to make use of a sudden increase in the avail-
able bandwidth.
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F
F Addressing Congestion from Large-scale Traffic Patterns.
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Questions about cong estion in the Internet:

G How often do routers have periods of unusually-high packet drop rates?

G Which routers? (E.g., access routers? last-mile routers? routers for
transoceanic links?)

G For periods of high packet drop rates, how often is it due to:
– A few flows not using end-to-end congestion control?
– Legitimate flash crowds?
– DOS attacks?
– Network problems (e.g., routing failures)?
– Diffuse general congestion?

14



Bullies (misbeha ving or high-band width flo ws):

H Flow: defined by source/destination IP addresses and port numbers.
– Example: a single TCP connection.

H Problem: Preventing congestion collapse from congested links carrying
undelivered packets.

H The answer: Either the use of end-to-end congestion control, or a guar-
antee that packets that enter the network will be delivered to the receiver.

H The concrete incentive to users: Provide mechanisms in routers that, in
times of high congestion, police high-bandwidth flows contributing to that
congestion.
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Contr olling High-Band width Flows at the Cong ested Router

I Max-min fairness is an acceptable policy for flows.
– Per-flow scheduling gives max-min fairness.

A B C D A B C D

Bandwidth for flows A−D. Bandwidth for flows A−D.

Target flow
bandwidth T

Target flow
bandwidth T

I Implementation issues:
– detecting high-bandwidth flows;
– deciding the bandwidth limit for rate-limiting those flows.
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Mechanisms for Contr olling High-Band width Flows

J Use the packet drop history at the router to detect high-bandwidth flows.

J The target bandwidth in pkts/sec from the TCP throughput equation isK LAM+NO K P , for:
R: a configured round-trip time
p: the current packet drop rate

.J Monitored flows are rate-limited before the output queue.

J Monitored flows could be misbehaving flows (e.g., not using end-to-end
congestion control) or conformant flows with small round-trip times.

J Identifying which monitored flows are misbehaving would be a separate
step.

– [Mahajan and Floyd, 2000]
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Crowds (flash crowds):

Q Example: The Starr Report, September 11, 1998:
“Nothing in recent times has caused a spike quite like that: not the Olympics
(Nagano or Atlanta); not the beginning or end of the World Cup.”

Q Example: The Victoria’s Secret Internet fashion show, May 18, 2000.

Q Example: The Slashdot Effect:
– “The spontaneous high hit rate upon a web server due to an an-

nouncement on a high volume news web site.”

Q Problem: Protecting other traffic on congested links.
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Mobs (Denial of Service Attac ks):

R Example: Denial of Service attacks, February 7 and 8, 2000:

– Attacks on a large number of web sites across the U.S.

– “It’s completely clear that the entire Internet had higher packet loss
and far lower reachability for several hours.” - John Quarterman.

R Problem: Limiting the damage to the legitimate traffic at the site.

R Problem: Protecting the rest of the Internet.
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The Mechanisms of Aggregate-based Cong estion Contr ol:

S Detect sustained congestion, as characterized by a persistent, high
packet drop rate.

S Look at the packet drop history:
– See if some aggregate is heavily represented in the packet drop his-

tory.
– An aggregate is defined by destination address prefix, source address

prefix, etc.

S If an aggregate is found:
– Preferentially drop packets from the aggregate before they are put in

the output queue, to rate-limit aggregate to some specified bandwidth limit.

– [Mahajan et al, 2001]
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Traffic Aggregates are Diff erent from Flows:

T Similarities between the mechanisms for controlling aggregates and
flows:

– Both use the packet drop history for identification.
– Both use rate-limiting before the output queue.

T Differences:
– Per-flow scheduling does not control aggregates.
– There is no simple fairness goal for aggregates, as for flows.
– Control of aggregates is heavily affected by policy, customer relation-

ships, differentiated services, etc.
– A single flow could be in several different aggregates:

– E.g., destination 192.0.0.0/12, or source www.victoriasecret.com.
– Aggregate-based congestion control (ACC) should only be invoked for

extreme congestion.
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A Thought Experiment of Aggregate-based Cong estion Contr ol (ACC):

U Under normal conditions, with no flash crowd:
– N aggregates V W - V X share link with background traffic.
– Packet drop rate Y (e.g., Y Z [�\][_^ ).

U During flash crowd ` from aggregate V a , with no ACC at the router:
– The drop rate is Yba (e.g., YcadZ [e\gf ).
– The throughput for Vih , for j kZ ` , is roughly

Wl monqprm of its value without

the flash crowd (e.g., 1/5-th of its old value).

U During flash crowd ` , with ACC at the router:
– Assume that during the flash crowd, V a is restricted to at most half the

link bandwidth:
– V a ’s throughput is at worst halved, compared to the flash crowd with

no ACC.
– All other traffic has its throughput at worst halved, compared to times

with no flash crowd (and its packet drop rate at most quadrupled).
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Now consider a Denial of Service (DOS) Attac k:

s If an aggregate causing congestion is from a DOS attack, then the ag-
gregate will contain both malicious traffic and legitimate, “good” traffic.

s We can not necessarily trust the IP source addresses.

s “Pushing-back” some of the rate-limiting of the aggregate to neighbor-
ing, upstream routers:

– Limits the damage from the DoS attack, reducing wasted bandwidth
upstream.

– In some cases, allows rate-limiting to be concentrated more on the
malicious traffic, and less on the good traffic within the aggregate.

– Does not assume valid IP source addresses.
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Illustration of pushbac k.
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Questions about Aggregate-based Cong estion Contr ol?

t ACC helps traffic not in the aggregate, but why should we restrict the
bandwidth given to a single aggregate in the first place?

t When does ACC with Pushback help an attacker to deny service to
legitimate traffic within the aggregate?

t
t
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Pushbac k, Tracebac k, and Source Filtering:

u With Pushback, a router rate-limiting packets from aggregate v might
ask upstream routers to rate-limit that aggregate on the upstream link.

u Pushback is orthogonal to ”traceback”, which tries to trace back an at-
tack to the source.

– Traceback allows legal steps to be taken against the attacker.
– Traceback by itself does not protect the other traffic in the network.

u Pushback is orthogonal to source filtering, which limits the ability to spoof
IP source addresses.

– Source filtering is important in any case.
– Pushback can be useful even when source addresses can be trusted.
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The future of cong estion contr ol in the Internet: several possib le
views:

w View #1: No congestion, infinite bandwidth, no problems.

w View #2: The “co-operative”, end-to-end congestion control view.

w View #3: The game theory view.

w View #4: The congestion-based pricing view.

w View #5: The virtual circuit view.

w The darker views: Congestion collapse and beyond.
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Global traffic dynamics:

x Synchronized routing messages [FJ94].

x Undesired synchronization or emergent behavior for other network traf-
fic?

– Possible feedback loop: The TCP feedback loop of a data packet
followed by an acknowledgement packet followed by another data packet.

– Possible feedback loop: Feedback loops in the network of connec-
tions A, B, and C, with a loop where A and B share a congested link, B
and C share a congested link, and C and A share a congested link.
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“What simulations and measurements of prototype implementations do
you have that show that it is better than alternatives? What objective con-
crete evidence do you have that it is worth the trouble of changing many
1,000,000s of hosts and many 100,000 routers?”

- [S99], Email to the end2end-interest mailing list.
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