Faster Restart

Sally Floyd
ICIR
IETF 66 DCCP Meeting
July 12, 2006
TFRC for variable application demand

* Application scenario: Interactive communication

 When a party is active, endpoint application sends A bits/sec

 When inactive, endpoint application sends next to nothing (comfort noise)

* What should TFRC/DCCP CCID 3 do on inactive \rightarrow active transition?

 Application wants to instantly return to former rate

 TFRC wants to slow start (lost info on network congestion)

 Middle ground?
Faster restart: basic idea

* TFRC
 Each nofeedback timer (= 4 idle RTTs) reduces rate by 1/2
 Down to minimum of initial sending rate (2 packets/RTT)

* Faster Restart
 Nofeedback timer mechanism same
 Down to minimum of higher initial rate (4 pkt/RTT, or 8 small pkt/RTT)
 Speed up slow start process: speed up 4 × /RTT, not 2 × /RTT, up to previously achieved rate
Issues (Vlad Balan, Arjuna Sathiaseelan)

* What if application goes idle during slow start?

 Solution: Apply faster restart during slow start periods as well as congestion avoidance periods

* What about feedback packets after idle?

 First packet after idle period reports a low receive rate, since that receive rate includes idle period and a partial window
 Would misinterpret this receive rate as ending faster restart

 Solution 1 (TFRC): Ignore first feedback packet after idle

 Is this sufficient? Comfort noise packets, sub-RTT idle periods, …?
Solution 2 (faster restart): Receiver reports length of time over which Receive Rate was calculated; sender may inflate this rate to account for idle periods

Example: Receive rate covers time interval $[T_1, T_2]$

Say sender was idle for a total of I time over that interval

$X_{\text{recv}}' = X_{\text{recv}} \times \frac{T_2 - T_1 + I}{T_2 - T_1}$

Question (Arjuna): What about transmit buffering?

“Idle” means transport is idle (has nothing to send), not application is idle

More to come. For example, Sally disagrees
Next steps

* Further implementation experience