ns-3 Project Plan

Tom Henderson and Sumit Roy, University of Washington
Sally Floyd, ICSI Center for Internet Research
George Riley, Georgia Institute of Technology

June 24, 2006

2006 NSF CRI-PI Meeting
What is ns?

• *ns* is a discrete-event network simulator for Internet systems
 – protocol design, large scale systems studies, prototyping, education
• *ns* has a companion network animator called *nam*
 – hence, has been called the *nsnam* project
What is ns (cont)?

- INSERT nam animation movie here
ns-2 Impact

ns is a research community resource

<table>
<thead>
<tr>
<th>Simulators</th>
<th>ns-2</th>
<th>OPNET</th>
<th>QualNet/GloMoSim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport layer and above</td>
<td>123(75%)</td>
<td>30(18%)</td>
<td>11(7%)</td>
</tr>
<tr>
<td>Network layer</td>
<td>186(70%)</td>
<td>48(18%)</td>
<td>31(12%)</td>
</tr>
<tr>
<td>MAC & PHY layers</td>
<td>114(43%)</td>
<td>96(36%)</td>
<td>55(21%)</td>
</tr>
</tbody>
</table>

Source: Search of ACM Digital Library papers citing simulation, 2001-04

- **Other statistics:**
 - Over 50% of ACM and IEEE network simulation papers from 2000-2004 cite the use of *ns-2*
 - Source: ACM Digital Library and IEEExplore searches
 - 8000 downloads/month, 450 messages/month on ns-users mailing list
 - November 2005-May 2006
ns-2 Funding History

- Funding on the simulator itself finished in 2000
- Current software is out-of-date
 - models, GUI, overall software design, scripting interface
Technical Goals of the ns-3 Project

Develop a redesigned network simulation tool for Internet research and education

– **Core:** Redesign the core of the simulator
– **Integration:** Better software encapsulation and integration
– **Models:** Updated protocol models
– **Education:** New educational support
– **Maintenance:** Testing, documentation, support
ns-3 Program Details

- Four-year, multi-institution collaboration
- External collaborations also desired
 - INRIA Sophia-Antipolis, Planete research group
 - Industry (TBD)
 - Existing ns-2 user/research community
- CRI funding supports 1+ staff programmers, 1+ students, PIs
- Software developed using freely available tools on commodity hardware
- Open source licensing and development model
Core: Refactor the ns core

Current limitations:
- Scalability, scripting interface, emulation support

Design themes:
- Features: C++ core, new scripting interface (TBD), improved emulation support, new animation
- Techniques: modern object-oriented design patterns, support for parallel execution and staged computations, better tracing and statistics computation,

Leveraging:
- Georgia Tech Network Simulator (GTNetS)
- yans (INRIA)
- Parallel, Distributed ns (PDNS)
- staging techniques such as SNS (Cornell)
- others
Integration: Reuse more code

Current limitations:
- protocol implementations need to be specially written for simulation environment or abstraction library
- trace files and simulation outputs are non-standard formats

Design themes:
- APIs and software support for process-driven implementations in an event-driven simulation framework
- standard (e.g., pcap) simulation outputs

Leveraging:
- Network Simulation Cradle (Jansen)-- methodology for porting kernel code into ns-2
- New techniques for linking existing application code
- Experience with porting quagga routing to ns-2 and GTNetS
Integration: Interact with real-world

Current limitations:
 – emulation code is out-of-date
 – difficult to transition between simulations and PlanetLab (or real) experiments

Design themes:
 – revised emulation support
 – interfaces for PlanetLab
 – continued support of Utah’s Emulab and other testbeds

Leveraging:
 – University of Magdeburg (Mahrenholz) third-party emulation extensions
 – planned collaboration with PlanetLab and Emulab projects
Models: Update available models

Current limitations:
- little support for peer-to-peer applications, IEEE 802.11 variants, IPv6 protocols, modern routing protocols, new network architectures (e.g., DTN)

Design themes:
- Emphasis on wireless, new traffic models, emerging protocols (e.g., high-speed TCP) and applications (e.g., BitTorrent), other models of important research/educational interest

Leveraging:
- Software from other open-source projects
- Contributed ns-2 code where possible

Community contribution of models has been outstanding for ns-2
Models: Update available models (cont.)

<table>
<thead>
<tr>
<th>Applications</th>
<th>Existing core ns-2 capability</th>
<th>Planned additions for ns-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ping, vat, telnet, FTP, multicast FTP, HTTP, probabilistic and trace-driven traffic generators, webcache</td>
<td>Sockets-like API (to allow porting of existing applications to ns environment), peer-to-peer (e.g. BitTorrent)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport layer</th>
<th>TCP (many variants), UDP, SCTP, XCP, TFRC, RAP, RTP</th>
<th>TCP stack emulation (Linux, BSD), DCCP, additional high-speed TCP variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast</td>
<td>PGM, SRM, RLM, PLM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network layer</th>
<th>Unicast: IP, Mobile IP, generic dist. vector and link state, IPmIP, source routing, Nixvector</th>
<th>full IPv4 support, full IPv6 support, NAT XORP/Click Routing support: BGP, OSPF, RIP, IS-IS, PIM-SM, IGMP/MLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast</td>
<td>SRM, generic centralized</td>
<td></td>
</tr>
<tr>
<td>MANET</td>
<td>AODV, DSR, DSDV, TORA, IMEP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link layer</th>
<th>ARP, HDLC, GAF, MPLS, LDP, Diffserv Queueing: DropTail, RED, RIO, WFQ, SRR, Semantic Packet Queue, REM, Priority, VQ MACs: CSMA, 802.11b, 802.15.4 (WPAN), satellite Aloha</th>
<th>new 802.11 model, 802.11 variants (mesh, QoS), 802.16 (WiMax), TDMA, CDMA, GPRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical layer</td>
<td>TwoWay, Shadowing, OmniAntennas, EnergyModel, Satellite Repeater</td>
<td>IEEE 802 physical layers, Rayleigh and Rician fading channels, GSM</td>
</tr>
</tbody>
</table>
Education: More impact in courses

Current limitations:
- students find current scripting syntax arcane
- protocol models are sometimes too abstracted
- paucity of educational scripts

Design themes:
- more implementation-oriented architecture and software
- revised user interface
- integration with courseware and texts,

Leveraging:
- efforts to integrate more real-world code (above)
- simulation framework that better mirrors implementations
- use in PIs’ courses
Maintenance

Funding for staff programmers to:
• Maintain ns-2 while we transition
• Implement the selected architecture
• Reuse and clean up existing ns-2 and GTNetS models
• Model validation and debugging
• Documentation
• Regression testing
• Software packaging and releases
• Educational script generation
Broader impacts

CRI funding intended to seed the larger nsnam project

• We’ll continue to solicit inputs and participation from the broader networking community
• Project will use established open source development practices
 – ns-3 will use a free software licensing structure encouraging academic and commercial participation
• Our intent is to make the simulator a self-sustaining project driven by research community inputs and industry funding

Leverage and grow the “network effect” of ns-2’s user base
Criteria for success

In four years, ns-3 will be a success if it:
• continues to be preferred simulation environment for network research
 – performance, scalability, openness
 – comprehensive and current model support
• allows easy integration of implementation code
• allows researchers to more easily move between simulation and live experiments
• contains current wireless and application models
• is used for undergraduate/graduate courseware
• project is self-sustaining beyond CRI funding
Questions?

Web site:
http://www.nsnam.org

Mailing list:
http://mailman.isi.edu/mailman/listinfo/ns-developers