HighSpeed TCP and Quick-Start for Fast Long-Distance Networks:

*

Sally Floyd

Topics:

*

HighSpeed TCP.

S. Floyd, HighSpeed TCP for Large Congestion Windows RFC 3649

URL http://www.icir.org/floyd/hstcp.html

_

S. Floyd, Limited Slow-Start for TCP with Large Congestion Windows RFC 3742

URL http://www.icir.org/floyd/hstcp.html

Quick-Start

A. Jain, S. Floyd, M. Allman, and P. Soralahti, Quick-Start for TCP and IP. draft-amit-quick-start-03.txt

URL: http://www.icir.org/floyd/quickstart.html

The Problem: TCP for High-Bandwidth-Delay-Product Networks

*

Sustaining high congestion windows:

A Standard TCP connection with:

- 1500-byte packets;
- a 100 ms round-trip time;
- a steady-state throughput of 10 Gbps;

would require:

- an average congestion window of 83,333 segments;
- and at most one drop (or mark) every 5,000,000,000 packets (or equivalently, at most one drop every 1 2/3 hours).

This is not realistic.

Is this a pressing problem in practice?

- Nope. In practice, users do one of the following:
 - Open up N parallel TCP connections; or
- Use MulTCP (roughly like an aggregate of N virtual TCP connections).
- However, we can do better:
 - Better flexibility (no N to configure);
 - Better scaling (with a range of bandwidths, numbers of flows);
 - Better slow-start behavior;
- Competing more fairly with current TCP
 (for environments where TCP is able to use the available bandwidth).

What is HighSpeed TCP:

- Just like Standard TCP when cwnd is low.
- More aggressive than Standard TCP when cwnd is high.
 - Uses a modified TCP response function.
- HighSpeed TCP can be thought of as behaving as an aggregate of N TCP connections at higher congestion windows.
- Joint work with Sylvia Ratnasamy and Scott Shenker, additional contributions from Evandro de Souza, Deb Agarwal, Tom Dunigan.

HighSpeed TCP: the modified response function.

HighSpeed TCP: Relative fairness.

HighSpeed TCP: The Gory Details:

W	a(w)	b(w)
38	1	0.50
118	2	0.44
221	3	0.41
347	4	0.38
495	5	0.37
663	6	0.35
851	7	0.34
1058	8	0.33
1284	9	0.32
1529	10	0.31
1793	11	0.30
2076	12	0.29
2378	13	0.28
• • •		
34035	71	0.10

Simulations from Evandro de Souza:

HighSpeed TCP (red) compared to Standard TCP (green).

HighSpeed TCP in a Drop-Tail Environment?

*

- Drop-Tail queues: a packet is dropped when the (fixed) buffer overflows.
- Active Queue Management: a packet is dropped before buffer overflow.
 E.g. RED, where the average queue size is monitored.
- In a Drop-Tail environment:

Assume that TCP increases its sending rate by P packets per RTT.

Then P packets are likely to be dropped for each congestion event for that connection.

Relative Fairness with RED queue management:

Simulations from Evandro de Souza.

Relative Fairness with Drop-Tail queue management:

Simulations from Evandro de Souza.

Conclusions:

- My own view is that this approach is the fundamentally correct path:
 - given backwards compatibility and incremental deployment.
- More results are on the HighSpeed TCP web page.
 - http://www.icir.org/floyd/hstcp.html
 - Simulations from Evandro de Souza and Deb Agarwal (LBNL).
 - Experimental results from Tom Dunigan (ORNL).
 - Experimental results from Brian Tierney (LBNL).
 - Experimental results from Les Cottrel (SLAC).
 - Experimental results from Tom Kelly on Scalable TCP.

HighSpeed TCP requires Limited Slow-Start:

- Slow-starting up to a window of 83,000 packets doesn't work well.
 - Tens of thousands of packets dropped from one window of data.
 - Slow recovery for the TCP connection.
- The answer: Limited Slow-Start
 - Agent/TCP set max_ssthresh_ N
- During the initial slow-start, increase the congestion window by at most N packets in one RTT.

Tests from Tom Dunigan:

This shows Limited Slow-Start, but not HighSpeed TCP.

Other small changes for high congestion windows:

- More robust performance in paths with reordering:
 Wait for more than three duplicate acknowledments before retransmitting a packet.
- Recover more smoothly when a retransmitted packet is dropped.

Additional Problems:

- Starting up with high congestion windows?
- Making prompt use of newly-available bandwidth?

What is QuickStart?

- In an IP option in the SYN packet, the sender's desired sending rate:
 - Routers on the path decrement a TTL counter,
 - and decrease the allowed sending rate, if necessary.
- The receiver sends feedback to the sender in the SYN/ACK packet:
 - The sender knows if all routers on the path participated.
 - The sender has an RTT measurement.
 - The sender can set the initial congestion window.
 - The TCP sender continues with AIMD using normal methods.
- From an initial proposal by Amit Jain

The Quick-Start Request Option for IPv4

- Explicit feedback from all of the routers along the path would be required.
- This option will only be approved by routers that are significantly underutilized.
- No per-flow state is kept at the router.

Quick-Start in the NS Simulator:

• Added to NS by Srikanth Sundarrajan.

Questions:

- Would the benefits of Quick-Start be worth the added complexity?
 - SYN and SYN/ACK packets would not take the fast path in routers.
- Is there a compelling need to add some form of feedback from routers such as this (in addition to ECN)?
- Is there a compelling need for more fine-grained or more frequent feedback, or more congestion-related feedback, than Quick-Start?
- Are there other mechanisms that would be preferable to Quick-Start?

Architectural sub-themes favoring incremental deployment:

- A goal of incremental deployment in the current Internet.
- Steps must go in the fundamantally correct, long-term direction, not be short-term hacks.
- Robustness in heterogeneous environments valued over efficiency of performance in well-defined environments.
- A preference for simple mechanisms, but a skepticism towards simple traffic and topology models.
- Learning from actual deployment is an invaluable step.
- The Internet will continue to be decentralized and fast-changing.

Extra slides:

The Limited Slow-Start pseudocode:

```
For each arriving ACK in slow-start:
   If (cwnd <= max_ssthresh)
      cwnd += MSS;
   else
      K = 2 * cwnd/max_ssthresh;
      cwnd += MSS/K;</pre>
```