
Packet scheduling research

Sally Floyd
DARTnet II Meeting

floyd@ee.lbl.gov

March 6, 1995

(Credits to Barbara Denny, Van Jacobson,
Scott Shenker, Lixia Zhang)

1



DARTnet research program - packet scheduling
algorithms

� CSZ (Clark/Shenker/Zhang) Scheduler [MIT, PARC]

� CBQ (Class-Based Queueing) [LBL]

� Virtual Clock (VC) [PARC, BBN]

� FairShare [BBN]

� Deadline Scheduling [UMass]

� SFQ (Stochastic Fair-Queueing) and SFQ/VC [SRI]

� IP Source Quench [ISI]

� MBONE enhancements [PARC]

2



Overview of talk:

� The general research questions.

� Stochastic Fair Queueing.

� CSZ.

� CBQ.

� The role of DARTnet.

If there is time:

� One perspective on some of the open issues.

[Note: I am not going to try to describe each of the packet
scheduling algorithms that have been investigated on
DARTnet.]

3



The general research questions for packet scheduling
algorithms

� Real-time traffic (traffic with fixed or adaptive playback
times).

� Best-effort traffic - beyond FIFO.

– Fairness, protection from misbehaving users.

– Different sensitivities to delay.

� Controlled link-sharing.

– between organizations (e.g., agencies sharing the
FAT pipe).

– between protocol families (e.g., IP and SNA).

– between traffic types (e.g., Mbone and TCP).

4



A Scheduling Algorithm for Best-Effort Traffic:
Stochastic Fair Queueing [SRI]

� More efficient that strict fair queueing.

� A hash function to map from source/destination
address pair to queue.

� Perturb hashing seed periodically for fairness.

� Packet-by-packet round-robin scheduling among
queues.

� DARTnet experiments explore fairness, prevention of
starvation, graceful degradation under overload,
resource usage.

� Other researchers are extending Stochastic Fair
Queueing with scheduling algorithms that are not
packet-by-packet.

5



Integrated Services: the CSZ Service Model

Service model as the interface between applications and
the network.

� Real-time applications:

– ”Guaranteed service” for applications with fixed
playback times.

– ”Predictive service” for applications with adaptive
playback times and loss tolerance.

� Elastic (best-effort) applications: ASAP (as soon as
possible) service. Different priority levels.

Controlled link-sharing between firms, protocols, etc.,
where real-time traffic has precedence over the
link-sharing requirements.

6



CSZ: Scheduling Algorithms for Guaranteed Service

� Fundamental principle: isolate flows from each other.

� Bound the burstiness of each flow.

� Allocate enough bandwidth to each.

� Many capable algorithms exist. The scheduling
algorithm explored by CSZ is Weighted Fair Queueing
[DKS 89], with end-to-end delay bounds proven by
Parekh and Gallager.

7



CSZ: Scheduling Algorithms for Predictive Service

� Fundamental principle: Promote statistical sharing
among flows of the same QoS.

� Use FIFO/FIFO+ to reduce the tail of the delay
distribution.

� Applications can adapt to a changing delay.

� Admissions control procedure based on
measurements of existing traffic.

8



CSZ: Why use FIFO to reduce the maximum delay of
predictive traffic?

� With Fair Queueing or Round-Robin-based
scheduling algorithms, flows are isolated from
misbehaving users. At the same time, packets that
arrive for a particular flow in a burst are spread out,
and transmitted one at a time according to the FQ/RR
scheduling algorithm. This does not reduce the
worst-case delay.

� With FIFO, packets for a particular flow that arrive in a
burst are transmitted in a similar burst. The
admissions control procedure, with policing at the
edge of the network, is assumed to protect flows from
misbehaving users.

9



Integrated Services: Class-Based Queueing (CBQ)

� Separate low-level mechanisms from high-level
policy, to allow evolution.

� Link resources are associated with classes.
Each class has a priority and a throughput allocation.
CBQ makes no assumptions about how traffic is
assigned to classes (it could be by connection,
protocol, agency, etc.).

� Construct a hierarchy of classes to simultaneously
capture both QoS and link-sharing constraints.

� Avoid extensive per-conversation parameterization.

10



CBQ, Example class hierarchy:

ftptelnet

Link

ftptelnetftptelnet

50% 40% 10%

A B C

link−sharing allocation

time
real−

time
real−

time
real−

10%10%30%

0%5%

2% 5%3%

Agency Agency Agency

IP
net

DEC−

15%

20%

priority

1 2 3

1 2 3

3 1 2 3

� Link-sharing between organizations, protocol families,
and/or traffic types. We believe that needs met by
link-sharing are fundamental (in the absence of free,
infinite bandwidth).

� Hierarchy allows:
- simultaneous QoS and sharing constraints;
- flexible multiplexing via controlled ”borrowing”;
- delegation.

� Different links in the network (e.g., an ISDN line to the
home, a link in a backbone network) will have
different class structures.

11



CBQ, Mechanisms:

� Classifier: Map arriving packets to classes, using
information in the packet header.

� Estimator: Compute a short-term estimate of the
class’s bandwidth.

� Selector: Find the class that is allowed to send the
next packet. (In CBQ, look for the highest priority
class, then use round-robin within classes of the
same priority.)

� Delayer: For a class that is over its link-sharing
allocation and contributing to congestion, compute the
next time this class is allowed to send a packet. A
delayed class is rate-limited to its allocated
link-sharing bandwidth.

12



CBQ: Priority scheduling in a link-sharing framework.

� Simulations with delay-sensitive and
throughput-sensitive traffic, to investigate the
advantage (or lack of advantage) of incorporating
priority-based scheduling in the link-sharing
framework.

� Results: Priority sometimes does good and never
does harm. Priority reduces delay for a high-priority
class that is both bursty and low rate relative to the
link bandwidth (e.g., a video stream, interactive
traffic), without reducing the throughput of lower
priority classes.

13



CBQ: Related work.

� CBQ implemented and tested on DARTnet
[Jacobson].

� Simulations exploring behavior and modifications
[Floyd].

� Work on the classifier, an implementation for the FAT
pipe, and a public distribution of the CBQ code. [UCL,
“Implementing Real Time Packet Forwarding Policies
using Streams”, Wakeman et al., Usenix, January
1995.]

� Work on the LBL/UCL/Sun CBQ kernel. [Hoffman,
Implementation report on the LBL/UCL/Sun CBQ
kernel, Toronto IETF, July 1994.]

14



The Role of DARTnet:

� A wide range of packet scheduling algorithms has
been investigated on the DARTnet testbed, using
stock CPUs and T1 lines.

� The research has led to significant contributions to the
wider Internet community.

� In addition to the experiments themselves on the
DARTnet testbed, the DARTnet community has been
an important forum for discussions of issues of
common interest (including disagreements on these
issues).

15



Open Questions:

� What mechanisms are needed in the Internet (if any)
so that we can experiment with emerging real-time
applications (e.g., rate-adaptive video) whose service
requirements are not yet fully defined?

� ?

16



CBQ/CSZ, are there differences? (A personal answer.)

� Broad agreement about the importance of predictive
service, the requirement for link-sharing,
priority-based scheduling between different classes of
best-effort (e.g., elastic) traffic, the need for a
classifier, etc. Similar abilities to provide guaranteed
service.

� Differences of emphasis between the primacy of the
service model (CSZ), and the separation of
mechanism and policy to allow flexibility and evolution
(CBQ).

� For a class of predictive service traffic, if the
admission control procedure’s prediction of future
traffic is incorrect, and the predictive service class
becomes oversubscribed, the choice at the gateway
is to limit the bandwidth of the predictive service class
(CBQ), or to allow starvation of lower-priority classes
(CSZ).

17



CBQ/CSZ, are there differences? (Continued.)

The classifier maps arriving packets to the appropriate
service class.

� The role of the classifier is the same in CSZ and in
CBQ.

� CSZ advocates that the mapping from packets to
service class should come from specific service
requests from the application, based on the service
model, and not from network decisions based on port
numbers and such. CBQ takes no position about
policy for binding traffic to classes.

18


