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ABSTRACT
Mostof thetraffic in today’s Internetis controlledby theTransmis-
sionControlProtocol(TCP).Hence,theperformanceof TCPhasa
significantimpacton theperformanceof theoverall Internet.TCP
is acomplex protocolwith many user-configurableparametersand
a rangeof different implementations.In addition, researchcon-
tinuesto producenew developmentsin congestioncontrol mech-
anismsandTCP options,andit is usefulto tracethe deployment
of thesenew mechanismsin the Internet. As a final concern,the
stability andfairnessof thecurrentInternetrelieson thevoluntary
useof congestioncontrol mechanismsby endhosts. Thereforeit
is importantto testTCP implementationsfor conformantend-to-
end congestioncontrol. Sinceweb traffic forms the majority of
the TCP traffic, TCP implementationsin today’s web serversare
of particularinterest. We have developeda tool calledTCP Be-
havior InferenceTool (TBIT) to characterizetheTCPbehavior of
a remotewebserver. In this paper, we describeTBIT, andpresent
resultsabouttheTCPbehaviorsof majorwebservers,obtainedus-
ing this tool. We alsodescribetheuseof TBIT to detectbugsand
non-compliancein TCP implementationsdeployed in public web
servers.

1. INTRODUCTION
Most of thetraffic currentlycarriedon theInternetis controlled

by theTransmissionControlProtocol(TCP)[8]. Thus,TCPperfor-
mancehasasignificantimpactontheperformanceof theoverallIn-
ternet.UnderstandingTCPbehavior canbeimportantfor Internet-
relatedresearch,ISPs,OSVendorsandapplicationdevelopers.We
have designeda tool calledTCP Behavior InferenceTool (TBIT)
to characterizetheTCPbehavior of remotewebservers.

Therearetwo reasonsfor usingwebserversto testTCPbehavior,
oneexpedientandtheothermorefundamental.First, webservers
are easyto test, sinceweb servers will respondto a requestfor
informationwithout requiringany specialprivilegeson thoseweb
servers. Onecould imagineextendingthis approachto testother
informationservers,suchasSMTPandNNTP servers. However,
it would be difficult to extend this approachto test the TCP be-
havior of arbitraryInternethosts. Second,andmoreimportantly,
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the overall congestioncontrol behavior of the Internetis heavily
influencedby theTCPimplementationsin webservers,sinceasig-
nificantfractionof thetraffic in theInternetconsistsof TCPtraffic
from webserversto browsers[8].

TCP is a complex protocol with a rangeof user-configurable
parameters.A hostof variationson the basicTCP protocol [27]
have beenproposedanddeployed. Variantson the basicconges-
tion controlmechanismcontinueto be developedalongwith new
TCPoptionssuchasSelective Acknowledgment(SACK) andEx-
plicit CongestionNotification (ECN). To obtaina comprehensive
pictureof TCPperformance,analysisandsimulationsmustbeac-
companiedby alookattheInternetitself. Severalfactorsmotivated
usto developTBIT.

Onemotivationfor TBIT is to answerquestionssuchas“Is it ap-
propriateto baseInternetsimulationandanalysison RenoTCP?”
As Section4.2 explainsin somedetail,RenoTCP is a oldervari-
antof TCPcongestioncontrolfrom 1990thatperformsparticularly
badlywhenmultiple packetsaredroppedfrom a window of data.
TBIT showsthatnewerTCPvariantssuchasNewRenoandSACK
arewidely deployed in the Internet,andthis fact shouldbe taken
into accountfor simulationandanalysisstudies. We believe that
this is the first time quantitative datato answersuchquestionsis
beingreported.In otherwords,TBIT helpsto documentthemigra-
tion of new TCPmechanismsto thepublic Internet.

A secondmotivation for TBIT is to answerquestionssuchas
“What arethe initial windows usedin TCPconnectionsin the In-
ternet?”. As is explained in Section4.1, TCP’s initial window
determinesthe amountof datathat canbe transmittedin the first
round-triptime aftera TCPconnectionhasbeenestablished.The
initial window is a user-configurableparameterin somesystems,
andsotheTCPinitial window usedat a webserver cannot neces-
sarily be inferredsimply by knowing theoperatingsystemusedat
thatserver. Knowing thedistributionof configuredvaluesof initial
windows canbe usefulnot only in simulationsandmodeling,but
alsoin standards-bodydecisionsto advancedocumentsspecifying
largervaluesfor initial windows [4].

A third motivationfor TBIT is to have theability to easilyverify
thatend-to-endcongestioncontrol is in factdeployedat endhosts
in theInternet(Section4.3).Thestabilityandfairnessof theoverall
Internetcurrentlydependon this voluntaryuseof congestioncon-
trol mechanismsby TCPstacksrunningon endhosts.We believe
that the ability to publically identify endhostsnot conformingto
end-to-endcongestioncontrolcanhelpsignificantlyin reinforcing
theuseof end-to-endcongestioncontrolin theInternet.

A fourth motivation of TBIT is to aid in the identificationand
correctionof bugsdetectedin TCPimplementations.UsingTBIT,
we have detectedbugsin Microsoft, Cisco,SUN andIBM prod-
ucts,andhave helpedthevendorsfix thosebugs. As anexample,



asExplicit CongestionNotification(ECN)beginsto bedeployedin
theInternet� (Section4.6), reportsaresurfacingof webserversun-
ableto communicatewith newly-deployedclients. TBIT hasbeen
usedto helpidentify thesefailuremodesandtheextentof theirde-
ployment in the Internet,to identify the responsiblevendors,and
to track the progress(or lack of progress)in having thesefixes
deployed. Informationsuchasthis is critical whennew protocol
mechanismssuchasECN arestandardizedandactuallydeployed
in theInternet.Furthermore,asweshallseein Sections4.2and4.4,
subtlebugscancauseaTCPimplementationto behavequitediffer-
ently from claimsin vendorliterature.Fromauser’s perspective,a
tool likeTBIT is essentialfor detectingsuchbugs.

A fifth motivationthataroseaftertheinitial developmentof TBIT
wasthat of testingnot just the TCP behavior of web servers,but
also testing the TCP behavior determinedby equipmenton the
pathto theserver. In particular, thetestsof ECN behavior in Sec-
tion 4.6 arein part testingfor the presenceof firewalls andload-
balancersthatblock accessto serversfrom hostsattemptingto ne-
gotiateECN. Becausewe areinterestedin understandingthecon-
gestioncontrolbehavior in theInternet,andnot just thecongestion
controlof thewebserverboxesthemselves,thissometimesrequires
takinginto accountthebehavior of thevariousmiddleboxesalong
thepath.

The restof the paperis organizedasfollows. In Section2, we
describethedesignof TBIT. In Section3, wecompareandcontrast
TBIT with relatedwork. In Section4, we presentthe resultswe
obtainedby usingtheTBIT tool to survey theTCPdeploymentat
somepopularwebservers.Section5 providesadiscussionof these
results.Section6 concludesthepaper.

2. TBIT ARCHITECTURE
Thegoalof theTBIT projectis to developa tool to characterize

theTCPbehavior of majorwebservers. Thefirst requirementfor
thedesignof TBIT is thatTBIT shouldhave theability to testany
web server, at any time. A secondrequirementis that the traffic
generatedby TBIT shouldnot behostileor evenappearhostileor
out-of-the-ordinaryto theremotewebserver beingprobed.To sat-
isfy thefirst requirement,testinga webserver usingTBIT cannot
requireany servicesor privilegesfrom thatwebserver thatarenot
availableto thegeneralpublic. In addition,no assumptionscanbe
madeaboutthe hardwareor softwarerunningon the remoteweb
server. The secondrequirementof ordinaryandnon-hostiletraf-
fic is in contrastwith programslikeNMAP [13], whichexploit the
responseof remoteTCPsto extraordinary packet sequences,like
sendingFINs to a port without having openeda TCPconnection.
Signaturesof thesetacticsareusuallyeasyto recognize,andmany
webserversdeploy firewalls to detectandblockunusualpacket se-
quences.In order to ensurethe ability to testany web server at
any time, mostof the TBIT testsonly generateconformantTCP
traffic designednot beflaggedashostileor out-of-the-ordinaryby
firewalls. TheECNtestsareanexceptionto this,asthey arespecif-
ically investigatingthe presenceof firewalls blocking traffic from
ECN-capablehosts.

TBIT providesseveraltests, eachdesignedto examineaspecific
aspectof TCPbehavior of theremotewebserver. We describethe
designof TBIT in two stages. In the following, we describein
detailtheInitial Windowtest,illustratingseveralsalientfeaturesof
theTBIT architecture.Severalothertestsimplementedin TBIT are
describedin Section4.

The TBIT processestablishesandmaintainsa TCP connection
with the remotehostentirelyat the userlevel. TheTBIT process
fabricatesTCPpacketsandusesraw IP socketsto sendthemto a
remotehost. It alsosetsup a hostfirewall to preventpacketsfrom

theremotehostfrom reachingthekernelof the local machine.At
the sametime, a BSD Packet Filter (BPF) [20] device is usedto
deliver thesepackets to the TBIT process. This user-level TCP
connectioncanthenbe manipulatedto extract informationabout
theremoteTCP. This functionality is derivedfrom theTCP-based
network measurementtool Sting [30].

To illustrate, let’s considerthe problemof measuringthe ini-
tial valueof the congestionwindow (ICW) usedby web servers.
This valueis thenumberof bytesa TCPsendercansendto a TCP
receiver, immediatelyafterestablishingtheconnection,beforere-
ceiving any ACKs from thereceiver. TheTCPstandard[5] speci-
fiesthatfor a givenMaximumSegmentSize(MSS)ICW besetto
atmost2*MSSbytes,andanexperimentalstandard[4] allows that
ICW canbesetto:

�������	��

�����������������

���������� �"!$#$%�% bytes

As themajority of thewebpagesareunder10KB in size[6,8,24],
theICW valuecanhaveasignificantimpacton theperformanceof
awebserver[18]. TheTBIT testto measuretheICW valueusedby
awebserverworksasfollows. Let usassumethatTBIT is running
onhostA, andtheremotewebserver is runningonhostB.

& TBIT opensaraw IP socket.

& TBIT opensa BPF device and setsthe filter to captureall
packetsgoingto andcomingfrom hostB.

& TBIT setsupahostfirewall onA to preventany packetscom-
ing from hostB from reachingthekernelof hostA.

& TBIT sendsaTCPSYN packet,with thedestinationaddress
of hostB andadestinationport of 80. Thepacket advertises
avery largereceiverwindow, andthedesiredMSS.

& The TCP stackrunningon hostB will seethis packet and
respondwith aSYN/ACK.

& TheSYN/ACK arrivesathostA. Thehostfirewall blocksthe
kernelfrom seeingthispacket,while theBPFdevicedelivers
thispacket to theTBIT process.

& TBIT createsa packet that containsthe HTTP 1.0 GET re-
questfor thebasepage(“/”), alongwith theappropriateACK
field acknowledging the SYN/ACK. This packet is sentto
hostB.

& After receiving the GET request,hostB will start sending
datapacketsfor thebasewebpageto hostA.

& TBIT doesnotacknowledgeany furtherpacketssentby host
B. The TCP stackrunning on host B will only be able to
sendpacketsthatfit within its ICW, andwill thentime out,
eventuallyretransmittingthefirst packet.

& OnceTBIT seesthis retransmittedpacket, it sendsa packet
with theRSTflagsetto hostB. ThisclosestheTCPconnec-
tion.

TheICW valueusedby theTCPstackrunningonhostB is given
by thenumberof uniquedatabytessentby hostB by theendof the
test.

Threesalientfeaturesof theTBIT architectureareillustratedby
this test.First, this testcanberunagainstany webserver, anddoes
not requireany specialprivilegeson the web server beingtested.
Second,notetheability of TBIT to fabricateits own TCPpackets.
This allows usto infer theICW valuefor any MSS,by settingap-
propriateoptionsin theSYN packet. This ability is importantfor



severalothertestsimplementedin TBIT. Finally, thetraffic gener-
atedduring' the ICW testwill appearasconformantTCPtraffic to
any monitoringentity.

The test incorporatesseveral measuresto increaserobustness
andensurethe accuracy of testresults. Robustnessagainsterrors
causedby packet lossesis an importantrequirement.The lossof
the SYN, SYN/ACK, or the packet carryingthe HTTP requestis
dealtwith in a mannersimilar to TCP, i.e. usingretransmissions
triggeredby timeouts. The lossof datapacketssentby hostB is
harderto dealwith. Somelossesaredetectableby observingagap
in the sequencenumbersof arriving databytes. If TBIT detects
sucha gapin thesequencenumbers,it terminatesthetest,without
returninga result. However, TBIT maynot alwaysbe ableto de-
tectlostpacketsif consecutive packetsat theendof thecongestion
window arelost. In suchcases,theTBIT resultmaybe incorrect.
Somerobustnessagainstthis errorcanbeachievedby runningthe
testmultiple times. Anotherpossibility is that the basewebpage
mightnotbelargeenoughtofill theinitial window for agivenMSS.
If this happens,thentheremotewebserver will usuallytransmita
FIN eitherin thelastdatapacketor immediatelyfollowing lastdata
packet. TBIT candetectthis. For additionalrobustness,the user
canconductthetestwith a differentMSS,or specifytheURL of a
largerobjecton thewebserver, if suchaURL is known.

We have implementedseveral testsin TBIT to verify various
aspectsof TCP behavior of the remoteweb server. We have de-
scribedthe ICW testabove. Later in the paper, we considerfive
others:a testto determinetheversionof congestioncontrolalgo-
rithm (Tahoe,Reno,NewRenoetc.), runningon the remoteweb
server, a testto determineif theremotewebserver reducesits con-
gestionwindow in half in responseto a packet drop,a testto de-
termineif theremotewebserver supportsSACK, andusesSACK
informationcorrectly, a test to measurethe durationof the time-
wait periodontheremotewebserverandfinally atestto determine
if the remoteweb supportsECN. We selectedtheseteststo best
illustratetheversatilityof TBIT, aswell asto reporton interesting
TCPbehaviors thatwehaveobserved.

3. RELATED WORK
Thereareseveral waysto elicit informationaboutthe TCP be-

havior of a remoteserver. In theprevioussection,wedescribedthe
TBIT architecture.We now compareTBIT with relatedwork that
hasbeenreportedin theliterature.

Onepossibleapproachto actively eliciting andidentifying TCP
behavior wouldhavebeento useastandardTCPatthewebclientto
requestawebpagefrom theserver, andto useatool in thenetwork
along the lines of Dummynet[29] to drop specificpackets from
theTCPconnection(e.g. aswe droppedACKs for theICW test).
A morecomplex alternative would have beento usea simulator
suchasNS [10] in emulationmodeto dropspecificpacketsfrom
theTCPconnection.However, boththeseapproacheslack certain
flexibilities thatwefelt weredesirable.As weshalldescribein Sec-
tion 4.2, for someof the testswe neededto ensurethatwe would
receive asignificantnumberof packets(20 to 25) in asingletrans-
fer. Ratherthansearchfor largeobjectsateachwebsite,theeasiest
way to do this is to control theTCPsender’s packet sizein bytes,
by specifyinga smallMSS (MaximumSegmentSize)at theTCP
receiver. This would not have beeneasyto accomplishwith either
theDummynetor theNSemulator. Without theability to specifya
smallMSS,wemaynothavebeenableto testmany webserversof
our choice.

An extensive studyof theTCPbehavior of Internethostsis pre-
sentedin [25]. The studywasconductedusinga fixed setof In-
ternethostson which the authorhadobtainedspecialprivileges,

suchasthe ability to login andto run tcpdump [20]. Large file
transferswerecarriedout betweenpairsof hostsbelongingto this
set,andpacket tracesof thesetransferscapturedusingtcpdump
at bothhosts.The traceswereanalyzedoff-line, to determinethe
TCP behavior of the hostsinvolved. The paperreportedon the
TCPperformanceof eightmajorTCPimplementations.Thepaper
alsodiscussedthe failure to develop a fully-generaltool for auto-
maticallyanalyzinga TCPimplementation’s behavior from packet
traces.

We would notethat themethodologyusedin [25] would not be
well-suitedfor ourown purposesof testingfor specificTCPbehav-
iors in publicwebservers.First, therestrictionto Internethostson
which the requiredprivilegescould be obtainedwould not allow
the widespreadtestsof web servers. Second,certainTCP behav-
iorsof end-nodescanonly beidentifiedif theright patternsof loss
anddelayoccurduringtheTCPdatatransfer.

In [14], the authorsexamineTCP/IP implementationsin three
majoroperatingsystems,namely, FreeBSD4.0,Windows2000and
Linux (Slackware7.0),usingsimulatedfile transfersin acontrolled
laboratorysetting.Specificloss/delaypatternsareintroducedusing
Dummynet[29]. The authorsreportseveral flaws in the TCP/IP
implementationsin the operatingsystemsthey examined. Since
themethodologyrequirescompletecontroloverbothend-hosts,as
well asthe routersbetweenthem(to introducelossanddelay),it
cannot beusedto answerquestionsaboutTCPdeploymentin the
globalInternet.

NMAP [13] is a tool for identifyingoperatingsystems(OS)run-
ning on remotehostsin the Internet. NMAP probesremotema-
chineswith avarietyof ordinaryandout-of-ordinaryTCP/IPpacket
sequences.The responseof the remotemachineto theseprobes
constitutesthe fingerprintof the TCP/IPstackof the remoteOS.
By comparingthefingerprintto a databaseof known fingerprints,
NMAP is able to make a guessaboutthe OS runningon the re-
motehost. TBIT differs from NMAP in many respects.Thegoal
of NMAP is to detecttheoperatingsystemrunningon theremote
host,andnot to characterizetheTCPbehavior of theremotehost.
Thus, NMAP probing is not limited to TCP packets alone. Be-
yondfingerprinting,NMAP collectsno informationabouttheTCP
behavior of the remotehosts. So, informationsuchas the range
of ICW valuesobserved in the Internetcannot be obtainedusing
NMAP. Also, asmentionedin Section2, NMAP usesout-of-the-
ordinaryTCP/IPpacket sequencesfor severalof its fingerprinting
probes,while TBIT usesonly normalTCPdatatransferoperations
to elicit information.

Onemight arguethat to characterizethe TCPbehavior of a re-
motehost,it is sufficient to detecttheOSrunningonthehostusing
a tool like NMAP. TheTCPbehavior canbeanalyzedby studying
theOSitself, usingthesourcecode(whenavailable),information
providedby thevendor(e.g.Microsoftwebsiteoffersinformation
abouttheTCP/IPstackin theWindowsoperatingsystem),andlab-
oratoryexperiments[14]. Wefirst arguethatidentifying theOSof
theremotehostis not sufficient,becausetheTCPstandarddefines
a numberof user-configurableparameters.Theseare set differ-
ently by differentusers,anddataabouttheseparameterscannotbe
obtainedby merelyidentifying theOSor by analyzingthesource
code. Second,regardlessof the claims madeby the vendor, the
TCPcodemight containsubtlebugs[26], andhence,theobserved
behavior canbesignificantlydifferentfrom claimsin vendorliter-
ature.Thus,directexperimentationis required,eitherin laboratory
experimentsor acrosstheInternetwith public webservers. While
laboratoryexperimentsarewell-suitedfor a thoroughexploration
of thebehavior of major, widely-distributedTCPimplementations,
they arenotpracticalfor characterizingtheentirerangeof TCPim-



plementationsin thepublic Internet.Thus,webelieve thatTBIT is
complementary( to traceanalysis,laboratoryexperiments,andOS
fingerprintingtools.

4. TCP BEHAVIOR OF WEB SEVERS
In this section,we describesomeof the testsimplementedin

TBIT. We have examinedtheTCPbehaviors of thousandsof web
serversusingthesetests.Theseresultsarealsoincludedalongwith
thedescriptionof eachtest.

For TBIT testsdescribedin Sections4.1- 4.5, we useda list of
4550websevers(uniqueIP addresses).The list is a subsetof the
setof IP addressesobtainedfrom threesources:tracedatafrom a
webproxy [16], thelist publishedat100hot.com andthelist of
web serversusedin [17]. Eachof these4550web serverssends
morethan3500bytesof datawhenthebasepageis requested.We
make no claim abouttherepresentativenessof this list, apartfrom
assumingthat this list is likely to containsomeselectionof high-
traffic web servers in the Internet. This is a smallerbut morese-
lective list of web servers thanthe oneusedin an earlierversion
of this work [23]. We usedNMAP [13] to identify the operating
systemsrunningontheseremotehosts.NMAP wasableto provide
someguessaboutthe operatingsystemrunningon 3225of these
webservers.Thetestswererun in May 2001.

For theECNtestdescribedin Section4.6,weusedadifferentset
of hosts,andthetestswererunin September2000.Wewill discuss
thereasonsfor this in Section4.6.

4.1 Initial value of congestion window (ICW)
We have describedthe ICW test in Section2. We ran this test

on the list of servers describedabove. The MSS wasset to 100
bytes.Wetestedeachserverfivetimes.Thus,wecarriedoutatotal
of � )$)�#�
*),+-�"�$.$)�# tests. A TBIT test can terminatewithout
returninga resultdueto variousreasons.Of the 22750testsonly
1012teststerminatedwithoutreturningaresult.Therewereseveral
reasonsfor earlytermination:

& TBIT did not receive a SYN/ACK in responseto its SYN,
evenafterretransmissions,sonoconnectionwasestablished.

& The server senta SYN/ACK but did not sendany data in
responseto theHTTPrequest.

& TBIT detectedapacket loss.

& Theremoteserversentapacketwith theRSTor FIN flagset,
beforethetestwascomplete.

& Theremoteserversentapacketwith MSSlargerthantheone
TBIT hadspecified.

Table1givesthenumberof teststhatterminateddueto eachreason.
Wewill discussthesereasonsin moredetailin Section5.

In Section5, we discussedhow the ICW testmay returnaner-
roneousresult.As wementionedearlier, wetestedeachserverfive
times.To providerobustnessagainsterrors,weclassifyeachserver
into oneof thefivecategoriesbasedonresultsof thefive tests.

& If at least threetestsreturn results,and all the resultsare
the same,the server is addedto category 1. We have the
highestconfidencein theseresults,asthey have beenshown
to berepeatable.Wereportsummaryresultsonly for servers
belongingto thiscategory.

& If at leastthreetestsreturnresults,but not all theresultsare
thesame,theserver is addedto category2. Thediffering re-
sultscouldbeduetoseveralfactors,suchasconfusingpacket

Reason Tests
No connection 376
No data 374
RST/FIN 82
LargeMSS 17
Packet drop 163
Total outof 22750 1012

Table 1: ICW: Reasons for early termination

Category Servers
1 4264
2 196
3 41
4 2
5 44

Total 4550

Table 2: ICW: Server categories

ICWsize Servers
1 409
2 3638
3 12
4 62

5 or more 143
Total 4264

Table 3: ICW: Summary results

drop patterns(asdiscussedin Section2), which arefurther
discussedin Section5. Wewould like to minimizethenum-
berof serversthatfall in thiscategory.

& If oneor two testsreturnresults,andall the resultsarethe
same,the server is addedto category 3. Furthertestsare
neededto categorizetheTCPbehavior of thisserver.

& If oneor two testsreturnresults,andnot all the resultsare
thesame,theserver is addedto category4. Wewould like to
minimize the numberof serversthat fall in this category as
well.

& If noneof the five testsreturneda result, this server was
addedto category 5. Theseserversneedto be investigated
further.

Table2 shows the numberof serversbelongingto eachcategory.
Furtherdiscussionof thesecategoriesis providedin Section5.

Table3 shows thesummaryresultsfor theserversbelongingto
thefirst category. We found that3378serverssetthe ICW to two
segments,while 409 serversset it to a singlesegment. Only 62
serversset the ICW to four segments,asallowed by [4]. A total
of 143 serversset their ICW to larger thanfour segments.Three
webservers,belongingto Universityof Wisconsin-Madison,were
foundto settheICW to morethan8000bytes.Werepeatedtheex-
perimentwith anMSSof 512bytes,whichconfirmedthesetrends.

NMAP was able to guessthe operatingsystemrunningon 25
serversout of the 62 that settheir ICW to 4 packets. 24 of these
arerunninga betaversionof theSolaris8 operatingsystem,while
one runsSolaris2.6-2.7. The web servers that set ICW to 8000
bytesor moreseemto berunningolderversionsof aDigital (Com-
paq)UNIX operatingsystem.Weunderstandthatthesewebservers
mightbea researchimplementation.



4.2 Congestion control algorithm (CCA)
There/ are a rangeof TCP congestioncontrol behaviors in de-

ployedTCPimplementations,includingTahoe[15], Reno[5], New-
Reno[12], and SACK [19], which datefrom 1988,1990, 1996,
and 1996, respectively. Thesedifferent variantsof TCP conges-
tion control aredescribedandillustratedin detail in [9]. A TCP
connectioncannotusetheSACK optionunlessbothendnodesare
SACK-enabled.In theabsenceof SACK, theTCPcongestioncon-
trol mechanismsusedby aremotehostarelikely to beeitherTahoe,
Reno,or NewReno. The differentvarietiesof TCP canhave sig-
nificantlydifferentperformanceundercertainpacket lossregimes.
ThesedifferentTCPvariantsarenotsignaledin packetheaders;the
only wayto determinewhichis beingusedby aparticularhostis to
observeatraceof aTCPconnectionthatcontainspacketdropselic-
iting thedesiredbehavior. UsingTBIT’s ability to createartificial
packet drops,we have designeda test to distinguishbetweenthe
Tahoe,Reno,andNewRenoTCPcongestioncontrolmechanisms.
Thetestis basedon thesimulationsdescribedin [9].

& TBIT establishesa connectionwith the remoteweb server,
in a mannersimilar to the ICW testdescribedin Section2.
TheMSSis setto a smallvalue(e.g.100bytes)to forcethe
remoteserver to sendseveraldatapacketsfor the test,even
if the requestedwebpageis small in size. TBIT declaresa
receiverwindow of 5*MSS.

& TBIT requeststhebasewebpage.

& The remoteserver startssendingthe baseweb pageto the
TBIT client in 100-bytepackets.

& TBIT acknowledgeseachpacket accordingto theTCPpro-
tocol [27], until the13-thpacket is received.

& TBIT dropsthispacket,asillustratedin thetestsin Figure1.

& TBIT receives and acknowledgespackets 14 and 15. The
ACKssentareduplicateACKs for packet 12.

& Packet 16 is dropped.All furtherpacketsareacknowledged
appropriately.

& TBIT closesthe connectionassoonas25 datapackets are
received,includingretransmissions.

Basedon this streamof 25 packets,TBIT candeterminethecon-
gestioncontrolbehavior of theremoteTCP. NewRenoTCPis char-
acterizedby aFastRetransmitfor packet13,noadditionalFastRe-
transmitsor RetransmitTimeouts,andno unnecessaryretransmis-
sionof packet17,asin Figure1(a).RenoTCPis characterizedby a
FastRetransmitfor packet 13,aRetransmitTimeoutfor packet 16,
andno unnecessaryretransmissionof packet 17,asin Figure1(b).
TahoeTCP is characterizedby no RetransmitTimeoutbeforethe
retransmissionof packet 13, but anunnecessaryretransmissionof
packet 17, asshown in Figure1(c). For a moredetailedexplana-
tion of this behavior, we refer thereaderto [9]. TCPwithout Fast
Retransmit,a category that we had never encounteredbefore, is
characterizedby a RetransmissionTimeoutfor packet 13, andan
unnecessaryretransmissionof packet 17,asshown in Figure1(d).

In additionto thesefour behaviors,anumberof webserversex-
hibit a variantof Renocharacterizedby the transmissionof addi-
tionalpackets“off thetop” betweentheretransmissionsof packets
13 and 16, andno unnecessaryretransmissions,as show in Fig-
ure2. Wecall thisvariantRenoPlus.

As describedin Section4.1, a TBIT testcanterminatewithout
returningany resultdueto a varietyof reasons.In additionto the

Reason Tests
No connection 237
No data 205
RST/FIN 106
LargeMSS 20
Packet drop 387
Packet reordering 1372
Buffer overflow 2
Uncategorized 343
Total outof 22750 2672

Table 4: CCA: Reasons for early termination

Category Servers
1 3728
2 483
3 172
4 23
5 144

Total 4550

Table 5: CCA: Server categories

Type Servers
NewReno 1571
NoFastRetrans 1010
Reno 667
RenoPlus 279
Tahoe 201
Total 3728

Table 6: CCA: Summary results

reasonsdescribedin Section4.1, this testwill alsoterminatewith-
out returninga resultduethefollowing reasons:

& TBIT detectedpacket reordering.

& An internalbuffer overflowed.Thishappensvery rarely, and
weareworking to remedythis.

& Basedon the observed packet sequence,TBIT is unableto
classifytheserverintoany of thetypesshown in Figures1and2.

As before,weraneachtestfivetimes.Of the22750testsweran,
2672terminatedwithout returningresults.Table4 givesthenum-
ber of teststhat terminateddueto eachreason.We classifiedthe
serversbasedon thesetestresultsinto fivecategories,asdescribed
in Section4.1. Table 5 shows the numberof servers belonging
to eachcategory. To ensurerobustness,we only reportresultsfor
serversbelongingto thefirst category. Table6 shows thesummary
results.

Themainsurprisein theseresultswasthenumberof webservers
thatwerecategorizedas“TCP withoutFastRetransmit”,shown in
Figure1(d). We did not expectto find any TCPimplementations
thatdid not usetheFastRetransmitprocedure,which hasbeenin
TCP implementationssince1988. For TCPwithout FastRetrans-
mit, theTCPsenderdoesnot infer apacket lossfrom thereceiptof
threeduplicateACKs, but hasto wait for a retransmittimer to ex-
pire beforeinferring lossandretransmittinga packet. Figure1(d)
shows theclearperformancepenaltyto theuserof theabsenceof
FastRetransmit.

NMAP wasableto guessthe operatingsystemrunningon 751
of the1010webserversclassifiedby our testasusingTCPwithout
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Figure 1: Examples of congestion control behavior
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Figure 2: RenoPlus, a variant of Reno

FastRetransmit. Of these,666 are runningsomevariantof Mi-
crosoft’s Windows operatingsystem.To investigatethis behavior
further, we developeda TBIT testthatverifiesthewebserver’s re-
sponseto a singlepacket droppedfrom a window of five packets,
andverified thatmostof theseserversdo not useFastRetransmit
even in a scenariowith a singlepacket drop. Our enquirieswith
Microsoft have indicatedthat this behavior is a resultof a failed
attemptto optimizeTCPperformancefor webpagesthataresmall
enoughto fit in thesocketbuffer of thesender. Theattemptto opti-
mizethetransmissionof packetsin suchcasesdoesnotseemto be
working asintended.Our resultsindicatethatthis problemindeed
doesnotoccurwhenthebasewebpageis large.

Microsoft reportedthatit wouldfix thebug in Whistler, its next-
generationoperatingsystem,andpromiseda softwarepatchto fix
theproblemin Windows2000.However, at thetimeof writing this
paper, thepatchwasnotavailable.

NMAP resultsindicate that most of the servers identified by
TBIT asusingNewRenorun newer versionsof Linux andSolaris
operatingsystems,while many of the systemsreportingthe older
Renobehavior seemto be running variousversionsof FreeBSD
andBSDI. Many of theotherswith Renoseemto berunningvar-
ious versionsof Windows operatingsystems,but with large base
webpages.SystemsreportingTahoebehavior seemto berunning
variousversionsof theLinux operatingsystem.NMAP wasableto
identify thebehavior of only 123serversthatexhibitedthe“Reno-
Plus”behavior. Of these,43appearto berunningSolaris2.5-2.5.1.

We notethat for 30 servers,threeor more(of thefive) testster-
minatedbecauseTBIT wasunableto classifytheserver into any of
thetypesshown in Figures1 and2. We areinvestigatingthese30
serversfurther.

4.3 Conformant congestion control (CCC)
A TCPsenderis expectedto halve its congestionwindow after

a packet loss.This aspectof TCPbehavior is thekey to thestabil-
ity of the Internet[11]. Therefore,we developeda TBIT testthat
verifiesthis behavior, shown in Figure3. Thetestis carriedout as
follows.

& TBIT establishesa connectionwith theremoteserver, using
asmallMSS,andrequeststhebasewebpage.
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(b) Window reducedto four segments

Figure 3: Examples of window reduction behavior

Reason Tests
No connection 389
No data 500
RST/FIN 185
LargeMSS 19
Packet drop 452
Packet reordering 1338
Buffer overflow 2
Total outof 22750 2885

Table 7: CCC: Reasons for early termination

Category Servers
1 3461
2 704
3 196
4 50
5 139

Total 4550

Table 8: CCC: Server categories

Windowafter loss Servers
5 segmentsor less 3330
More than5 segments 131
Total 3461

Table 9: CCC: Summary results

& TBIT acknowledgesall packetsuntil packet15is received. If
theremoteTCPhasbeenexhibiting correctslowstartbehav-
ior, thecongestionwindow shouldbeat leasteightsegments
at this time. TBIT dropspacket 15.

& TBIT ACKsall packetsappropriately, sendingduplicateACKs
acknowledging packet 14, until packet 15 is retransmitted.
Theretransmissionisacknowledgedappropriately. After that,
TBIT doesnot acknowledgeany morepackets.Thiswill ul-
timately force the remoteserver to time out andretransmit
thefirst unacknowledgedpacket.

& As soonas TBIT detectsthis retransmission,it closesthe
connectionandterminatesthetest.

Thesizeof thereducedcongestionwindow, in bytes,is thedif-
ferencebetweenthemaximumsequencenumberreceivedby TBIT

and the highestsequencenumberacknowledgedby TBIT. Com-
paring it to the sizeof the congestionwindow prior to reduction
(8 segments),we candecideif the remoteTCP usesconformant
congestioncontrol.

The robustnessissuesinvolved in this testaresimilar to those
discussedin Section4.2. We ran the test againsteachhost five
times. Table7 gives the numberof teststhat terminatedwithout
returningany result due to variousreasons.Basedon thesetest
results,we categorizedthe servers in five categoriesasdescribed
in Section4.1. Table8 shows thenumberof serversbelongingto
eachcategory. Table9 givessummaryresults,basedon theservers
in thefirst category.

We found131serversthatdid not reducetheir congestionwin-
dow to five segmentsor less. NMAP wasableto identify theop-
eratingsystemrunningon 99 of these.40 of thesewereidentified
asrunningrunninganolderversionof Solaris,namely2.5or 2.5.1.
WecontactedourcolleaguesatSun,wholookedat thecodeandre-
portedthatthebehavior wasdueto abugin theTCPstackof adding
threesegmentsto thecongestionwindow afterhalvingit following
a FastRetransmit.We did not seethis problemin themorerecent
versionsof thisoperatingsystem.

4.4 Response to selective acknowledgments
A numberof TCP stackshave implementedthe TCP Selective

Acknowledgmentoption(SACK) [19]. It is possibleto determine
from passivetraceswhetheraremoteTCPsupportstheTCPSACK
optionsimplyby observingwhethertheTCPSYN packet includes
theSACK PERMITTEDoption[3]. However, usingonly passive
monitoring,it is difficult to determinewhethertheremoteTCPac-
tually usesthe information containedin the SACKs sentby the
receiver. Wehavedesignedthefollowing TBIT testto verify this.

& TBIT sendsaSYN packetwith asmallMSSandtheSACK -
PERMITTEDoptionto theremotewebserver.

& If thereturningSYN/ACK doesnot containtheSACK PER
MITTED option,TBIT terminatesthetest.

& Otherwise,TBIT continuesto receiveandacknowledgepack-
ets until packet 15 is received. Packets 15, 17 and 19 are
dropped.TBIT sendsappropriateSACKsin responsetopack-
ets16and18.

& TBIT continuesto receivepackets,andsendappropriateSACKs
until the retransmissionsof packets 15, 17 and 19 are re-
ceived.
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(a)Retransmissionsin oneRTT: OptimalSACK usage.
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(b) Retransmissionsin two RTTs: SACK usageshown.
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(c) NewReno-likebehavior: No SACK usageshown.
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(d) TCPwithoutFastRetransmit.

Figure 4: Examples of response to SACKs

& TBIT closestheconnection.

Theidealbehavior of aSACK-enabledsenderwouldbeto resend
packets15, 17 and19 in a singleRTT, andnot sendany unneces-
saryretransmissions.This behavior is quitedifferentfrom thatof
aNewRenoreceiver, whichwill take at leastthreeroundtrip times
to sendall theretransmissions.

Beforecarryingthis testout, we usedanother, simpleTBIT test
to determinewhich of the4550webserverswereSACK-enabled.
We found1854webserversto beSACK-enabled.Theabove test
wascarriedouton thissmallerset.

The robustnessissuesinvolved in this testaresimilar to those
discussedin Section4.2. We ran the test againsteachhost five
times. Table10 givesthenumberof teststhat terminatedwithout
returningany result due to variousreasons.To our surprise,we
found that in 18 tests,thewebserver did not negotiatetheSACK
optionin theinitial SYNhandshake. Wehaveidentifiedtwoservers
thatappearto negotiateSACK sometimes,while not negotiatingit
at othertimes. We speculatethat theIP addressesof theseservers
areansweredby multiple physicalmachines.We areinvestigating
thisusefurther.

Basedon thesetest results,we categorizedthe servers in five
categoriesasdescribedin Section4.1. Table11 shows thenumber
of servers belongingto eachcategory. Table 12 gives summary
results,basedon theserversin thefirst category.

Thebehavior seenin Figure4(a)representsoptimaluseof SACK
information.TheTCPsenderretransmitsall threepacketsin asin-
gle round-triptime, anddoesnot retransmitany packetsunneces-

sarily. NMAP resultsindicatethatmostof thehostsexhibiting this
type of behavior arerunningnewer versionsof Linux (2.2.13)or
Solaris(2.6or higher)operatingsystems.

The behavior seenin Figure 4(b) also makes clear useof the
SACK information,althoughthesendertakestwo roundtrip times
to retransmitthe lost packets. Thesenderdoesnot retransmitany
packetsunnecessarily. Sendersrepresentedin the first row of Ta-
ble 12 exhibit oneof thesetwo behaviors. The behavior in Fig-
ure 4(b) is mostly exhibited by larger basepagesfrom hoststhat
arerunningvariousversionsof the Windows 2000operatingsys-
tem. (Smallerbasepagesfrom hostsidentifiedasWindows 2000
tendedto behaveasTCPwithoutFastRetransmitin Figure4(d),as
discussedin earlier.)

In Figure4(c), the senderis seento be taking threeroundtrip
timesto finish theretransmissions.This is thebehavior we would
expectfrom aNewRenosender. Thereis noindicationthattheTCP
senderis makingany useof theinformationin theSACK packets.
NMAP resultsindicatethat mostof the hostsexhibiting this type
of behavior are running variousversionsof the Linux operating
system.

Finally, in Figure4(d), we seea senderthat ignoresSACK in-
formation,acting like TCP without FastRetransmit. The sender
is usinga RetransmissionTimeoutto retransmitpacket 15, anda
TCPsenderis requiredto discardinformationobtainedfromSACK
blocksfollowing a RetransmissionTimeout[19]. Hostsexhibiting
this behavior seemto be runningvariousversionsof Microsoft’s
Windows operatingsystems,andseemto have small basepages.



Reason Tests
No connection 141
No data 353
RST/FIN 20
LargeMSS 13
Packet drop 223
Packet reordering 991
No SACK 18
Total outof 9270 1759

Table 10: SACK: Reasons for early termination

Category Servers
1 1309
2 259
3 121
4 11
5 154

Total 1854

Table 11: SACK: Server categories

SACK usage Servers
SACK usageverified 550
SACK usagenotverified 759
Total 1309

Table 12: SACK: Summary results

This failureto useFastRetransmitwasdiscussedin Section4.2.

4.5 Time wait duration
A three-way handshake [31] is requiredto closea TCPconnec-

tion betweenthe two hosts. Considertwo hosts,A andB, with a
TCPconnectionbetweenthem.AssumethathostA wishesto close
theTCPconnection.HostA startsby sendingaFIN packet to host
B. HostB acknowledgesthisFIN, andit sendsits own FIN to host
A. Host A sendsan ACK for this FIN to hostB. Whenthis ACK
arrives at hostB, the handshakingprocedureis consideredto be
complete.The TCPstandard[27] specifiesthatafterACKing the
FIN, the hostA (i.e. the hostthat initiated the closingsequence)
mustwait for twice the durationof the Maximum SegmentLife-
time (MSL) beforeit canreusethe port on which the connection
wasestablished.The prescribedvalueof MSL is 2 minutes[27].
During this time, host A must retain sufficient stateinformation
abouttheconnectionto beableto acknowledgeany retransmission
of the FIN sentby hostB. For busy web servers, this represents
a significantoverhead[18]. Thus,many major webserversusea
smallervalueof MSL. We have developeda TBIT testto measure
thisvalue.Thetestworksasfollows.

1. TBIT opensaconnectionwith theremotehost,andrequests
thebasicwebpage.

2. TBIT receivesandappropriatelyacknowledgesall thepack-
etssentby theremotewebserver.

3. Theremoteserverwill actively closetheconnectionby send-
ing aFIN.

4. TBIT acknowledgestheFIN, andsendsits own FIN packet.

5. TBIT waits until the remoteserver acknowledgesits FIN.
If necessary, it retransmitstheFIN usingthetimeoutmecha-
nismdescribedin theTCPstandard[27]. OncetheFIN/ACK
is received,setsyn counter to zero.

Reason Tests
No connection 527
No data 1479
RST/FIN 118
LargeMSS 10
Packet drop 112
Buffer overflow 1
syn counter == 200 240
Total outof 22750 2487

Table 13: Time Wait: Reasons for early termination

Category Servers
1 3808
2 371
3 262
4 11
5 98

Total 4550

Table 14: Time Wait: Server categories

Duration Servers
No wait 1259#213�

�����45156�� 21186��718�9
:����451<;=�"! 11;>�"!713�

:����451�;>?$� 2;@? �213�

:����4518�$)�6 401�

�����4BA3�$�"# 17
Total 3808

Table 15: Time wait duration

6. TBIT sendsa SYN packet to the remoteweb server. The
sequencenumberof this SYN packet is lessthanthe largest
sequencenumbersentby TBIT to theremotewebserver so
far. Incrementsyn counter by 1.

7. TBIT waitsfor afixedamountof timeto receiveaSYN/ACK
from theremotewebserver. It ignoresany otherpacketssent
by theremotewebserver.

8. If a SYN/ACK is received at theendof the waiting period,
go to 9. Otherwise,checkto seeif syn counter is equal
to 200.If it is, terminatethetestwithoutreturningany result.
Otherwise,go to 6.

9. Oncethe SYN/ACK is received, TBIT sendsa packet with
theRSTflagsetto theremotewebserver.

Theapproximatedurationof the2*MSL periodis thetimeelapsed
betweensteps6 and9.

Thetestcanoverestimatethetime-wait durationif theSYNssent
by TBIT or theSYN/ACK sentby theremotewebserver arelost.
Robustnessagainstthesepacket lossescanbeobtainedby reducing
the wait periodbetweensuccessive SYNs (step7). The accuracy
of measurementis limited by the roundtrip time to theserver be-
ing tested,andthedurationof thewait periodbetweensuccessive
SYNs. We carriedout this testusinga wait of 2 secondsbetween
successive SYNs.

As before,weraneachtestfivetimes.Of the22750testsweran,
2487terminatedwithout returningresults.Table13givesthenum-
ber of teststhat terminateddueto eachreason.The last row rep-
resentsteststhat terminatedbecausethe valueof syn counter



reached200. We classifiedthe serversbasedon thesetestresults
into fi

C
vecategories,asdescribedin Section4.1.Table14showsthe

numberof serversbelongingto eachcategory. To ensurerobust-
ness,we only reportresultsfor serversbelongingto thefirst cate-
gory. Table15showsthesummaryresults.Thefirst row represents
hoststhatrepliedto theveryfirst SYN (step6). Fromtheresults,it
appearsthatthemostpopularvaluesof MSL are30 secondsand2
minutes.FromNMAP results,it appearsthat thecurrentversions
of Solarisand Windows operatingsystemsprovide 2 minutesas
thedefault MSL value,while Linux andFreeBSDuse30 seconds.
Most of theserversusingno wait seemto berunningeithersome
versionof theWindowsoperatingsystem,or olderversions(2.0.37
or less)of theLinux operatingsystem.

4.6 Response to ECN
Explicit CongestionNotification(ECN) [28] is a mechanismto

allow routersto markTCPpacketsto indicatecongestion,instead
of droppingthem,whenpossible.While ECN-capableroutersare
not yet widely deployed, the latestversionsof the Linux operat-
ing systemincludefull ECN support. Following this deployment
of ECN-enabledendnodes,therewerewidespreadcomplaintsthat
ECN-capablehostscould not accessa numberof websites[16].
WewroteaTBIT testto investigatewhetherECN-enabledpackets
werebeingrejectedby popularwebservers. For this test,thebe-
havior of thewebserver is indistinguishablefrom thebehavior of
firewallsor load-balancersalongthepathto theserver; therejection
of packets from ECN-enabledhostsin fact is dueto the firewalls
andload-balancers,andnotdueto thewebserversthemselves[1].

Settingup an ECN-enabledTCP connectioninvolves a hand-
shake betweenthe senderand the receiver. This processis de-
scribedin detail in [28]. Here we provide only a brief descrip-
tion of the aspectsof ECN that we are interestedin. An ECN-
capableclientsetstheECN ECHOandCWR(CongestionWindow
Reduced)flagsin the headerof the SYN packet; this is calledan
ECN-setupSYN. If theserver is alsoECN-capable,it will respond
by settingtheECN ECHOflag in theSYN/ACK; this is calledan
ECN-setupSYN/ACK. From that point onwards,all datapackets
exchangedbetweenthe two hosts,except for retransmittedpack-
ets,canhave the ECN-CapableTransport(ECT) bit set in the IP
header. If a routeralongthepathwishesto marksucha packet as
an indicationof congestion,it doesso by settingthe Congestion
Experienced(CE)bit in theIP headerof thepacket.

The goal of the test is to detectbroken equipmentthat results
in denying accessto certainweb-servers from ECN-enabledend
nodes.Thetestis not meantto verify full complianceto theECN
standard[28].

1. TBIT constructsanECN-setupSYN packet, andsendsit to
theremotewebserver.

2. If TBIT receivesa SYN/ACK from the remotehost,TBIT
proceedsto step4.

3. If no SYN/ACK is received after threeretries(failuremode
1),or if apacketwith RSTis received(failuremode2),TBIT
concludesthat theremoteserver exhibits a failure. Thetest
is terminated.

4. TBIT checkstoseeif theSYN/ACK wasanECN-setupSYN/-
ACK, with theECN ECHOflag setandCWR flag unset. If
this is the case,thenthe remoteweb server hasnegotiated
ECN usage.Otherwise,the remotewebserver is not ECN-
capable.

5. Ignoringwhethertheremotewebserver negotiatedECNus-
age,TBIT sendsa datapacket containinga valid HTTP re-
quest,with theECTandCEbitssetin theIP header.

6. If anACK is received,checkto seeif the ECN ECHOflag
is set. If no ACK is received after threeretries,or if the
resultingACK doesnothavetheECN ECHOflagset(failure
mode3),TBIT concludesthattheremotewebserverdoesnot
supportECNcorrectly.

To ensurerobustness,beforerunningthetestwe checkto make
surethat the remoteserver is reachablefrom our site, andwould
ACK a SYN packet sentwithout theECN ECHOandCWR flags
set.Robustnessagainstpacket lossis ensuredby theretransmission
of aSYN or of thetestdatapacket asmentionedin steps4 and6.

The ECN test was conductedin September, 2000,and useda
larger setof hosts(about27,000). The purposeof the ECN test
wasto investigatetheproblemreportedin [16], sowe includedthe
samelist of webservers.Eachhostwastestedonly once.Thetest
returneda resultin caseof 24,030hosts.Thecumulative findings
arereportedin Table16. Thefirst row reportshoststhatdonotsup-
port ECN,but interactcorrectlywith clientsthatdo supportECN.
Thesecondandthird row representhoststhatdeny accessto ECN-
capableclients.Thefourthrow representshoststhatnegotiateECN
support,but fail to respondto CE bits set in datapackets. These
threecases,failuremodes1 through3, arebrokenimplementations
or firewallsthatneedto becorrected.Thefifth row representshosts
thatseemto supportECNcorrectly.

NMAP resultsindicatedthat many hostswith failure mode2
were behindCisco’s Localdirector 430 [7], which is a load bal-
ancingproxy. Someof the hostswith failure mode2 have been
identifiedby othersasusingCisco’s PIX firewall. Both of these
problemshavebeenbroughtto Cisco’sattention,andafix hassince
beenmadeavailable. Most hostswith failure mode1 seemto be
runningaversionof theAIX operatingsystem.Wehavecontacted
peopleatIBM, andthey areworkingontheproblem.Someof these
failuresaredueto firewallsandload-balancersthatmistake theuse
of theECN-relatedflagsin TCPfor a signaturefor a port scanner
tool [21]. Mostof thehostswith failuremode3 seemto berunning
olderversionsof Linux (Linux 2.0.27-34).Of the22 hostsin the
fifth row, negotiatingECN andusingECN correctly, 18 belongto
a singlesubnet. NMAP could not identify the operatingsystems
runningon these18 hosts.Of theremainingfour, threeseemto be
runningnewer versionsof Linux (2.1.122-2.2.13).

WerepeatedtheECN testsin April, 2001for theserversreport-
ing failure mode1 or 2 in theSeptember2000tests.Of the1699
web servers responding,1039still exhibited failure mode1, 326
still exhibitedfailuremode2, and332no longerexhibitedfailure.
The list of the failing web servers is availableon the TBIT web
page[22].

5. DISCUSSION OF RESULTS
This sectiondiscussesin moredetail the reasonswhy a TBIT

testmight terminatewithout returningany result. The fractionof
teststhatdo not returna resultis highestfor theSACK test,where
a total of 19%of the testsfailed to returna result. Thesereasons
for failing to returnaresultareenumeratedin Tables1, 4, 7, 10and
13.

Thefirst threereasonsin thetablesare:(i) noconnection,(ii) no
dataand(iii) receiptof apacketwith theRSTor FIN flagsetbefore
thethetestis complete.Whenany of thesethreehappen,theTBIT
testendswithout returninga result.

The fourth reasonin eachof the tablesis “Large MSS”. TBIT
terminatesthe test if the server sendsa packet with MSS larger



Testresult Servers
ServernotECN-Capable 21602
Failuremode1: No responseto ECN-setupSYN 1638
Failuremode2: RSTin responseto ECN-setupSYN 513
Failuremode3: ECNnegotiated,but dataACK doesnot reportECN ECHO 255
ECNnegotiated,andECNreportedcorrectlyin dataACK 22
Total 24030

Table 16: ECN test results, September 2000.

thanthe maximumsetby the receiver. Onemight arguethat this
shouldnotbeareasonto terminatethetestimmediately, especially
for simplertestslike theICW test,andfor testssuchastheTime-
wait test,wherethedataflow itself is not of interest.However, we
decidedto doso,becausethesenderTCPis notsupposedto exceed
theMSSvaluesetby thereceiver [2]. We areworking on relaxing
this requirement.

Thetwo otherimportantreasonsfor testterminationsarepacket
dropsandpacket reorderingdetectedby TBIT beforethecomple-
tion of thetest.For theICW test,while certainpacket dropscanbe
detectedandtheir impacton thefinal resultcanbecorrectlyantic-
ipated,we chosenot to do soto keepthetestcodesimple. Packet
reorderingis notanissuefor theICW test.

For theCCA,CCCamdSACK tests,packetdropsandpacket re-
orderingcausesignificantproblems,astheresultsfrom thesetests
dependupontheorderingandtiming of thepacketsreceived. We
have developedcodeto avoid terminatingthetestfor somesimple
casesof packet lossesandreordering.However, we decidedthat
theincrementalgainwasnotworth theaddedcomplexity.

TheTimewait testis not affectedby packet reordering.It is also
unaffected by any packet dropswithin the data stream. Packet
dropsduring the handshake and teardown do affect the test. As
describedin Section4.5, we guardagainstthemby usingretrans-
missions,in a mannersimilar to TCP. In Table13,we seethat112
teststerminatedwithoutreturningaresultdueto packetdrops.This
is dueto abug in ourcode,which terminatedthetestwhenever the
very first datapacket sentby theserver is lost. We planto fix this
errorin a futureversionof TBIT.

WealsonotethataTBIT testmight returndifferentresultswhen
runagainstthesamehostatdifferenttimes.Thehostsbelongingto
categories3 and4 in Tables2, 5, 8, 11and14exhibit thisproblem.
Wespeculatethatthereareat leasttwo causesfor this.

Thefirst causemaybecertainpacket losssequencesthatTBIT
is unableto detectandguardagainst.For example,duringanICW
test,packetscanbelost from the“top” of thecongestionwindow.
TBIT cannotdetectthis loss,andwouldreturnavalueof ICW that
is smallerthanthe oneactuallyusedby theserver. In caseof the
CCA test,all of the duplicateACKs sentby TBIT for packet 13
maybelost. In thatcase,theremotehostwould beforcedto take
a timeout,andmaybeerroneouslyclassifiedas“TCP withoutFast
Retransmit”.

Anotherpossibilityis thatsomeof thewebserversare,in effect,
clustersof computersansweringto thesameIPaddress.Depending
on the loadbalancingalgorithmused,we maycontacttwo differ-
entmachinesin theclusterif thesametestis repeatedat different
times. Thesetwo computersmayrun differentoperatingsystems,
andhencedifferentTCP stacks.We have seensomeevidenceof
this in theSACK testasdiscussedin Section4.4.

Sincewe foundno easyway to dealwith eitherof thetwo prob-
lems discussedabove, we choseto ran eachTBIT test multiple
(five) times,andreportresultsonly aboutthosehoststhatreturned
resultsfor someminimum number(three)of thesetests,and re-
turned the sameresult eachtime. It is possibleto devise more

elaborateschemesto ensurerobustnessof testresults,andwe are
investigatingthesefurther.

Hostsbelongingto Category 5 also deserve specialattention.
Thesehostsfailed to returnanswersfor any of the five tests. We
found that someof thesehostswere simply offline for a variety
of reasons(faileddot-coms?) during our testingperiod. Some
would not sendpackets with a small MSS. We also found that
packet reorderingwasa persistentproblemfor someof thehosts,
especiallytheonesthatappearto beacrosstransoceaniclinks. TBIT
testslike CCA, CCCandSACK tendto fail moreoftenwith such
hosts.

We notethat thenumberof hostsbelongingto Category 1 may
be thoughtof asa metricof “usefulness”of TBIT tests.Suppose
we wereto comeup with a TBIT testthat verified someinterest-
ing propertyof TCP, but requiredvery largenumberof packetsto
complete,andhadto terminatefor any packet lossor reordering.
It is likely that for sucha test,few hostswould belongto thefirst
category. Thus,theresultsof suchatestwouldalwaysbequestion-
able. We notethat for all of the testsreportedin this paper, more
than70%of thehostsbelongto thefirst category. Wehadreported
considerablypoorerperformancein an earlierreport [23] on this
work. The poor performancewasdueto the fact that we hadnot
verifiedthatall thehostswouldsendsufficientdatato completethe
test.Wehavealsomadeimprovementsin theTBIT codeto reduce
thenumberof instancesin whicha testhasto beterminatedearly.

WeusedNMAP to identify theoperatingsystemrunningon the
webserversbeingtested.Any assertionswemakeregardingtheop-
eratingsystemrunningon a webserver aresubjectto theaccuracy
of NMAP identification. We alsonotethat in many cases,rather
thanproviding a singleguess,NMAP providesa setof operating
systemsaspotentialcandidates.

6. CONCLUSION
In thispaper, wehave describeda tool, TBIT, for characterizing

the TCP behavior of remoteweb servers. TBIT can be usedto
checkany webserver, without the needfor any specialprivileges
onthatwebserver, in anon-disruptivemanner. Thesourcecodefor
TBIT is availablefrom the TBIT webpage[22]. We believe that
this kind of data(e.g. versionsof congestioncontrol algorithms
runningonwebservers,sizesof initial window, timewait duration)
is beingreportedfor the first time. As a resultof thesetests,we
have more informationaboutthe congestioncontrol mechanisms
usedby traffic in the Internet. As a sideeffect of this work, we
uncoveredseveralbugsin TCPimplementationsof majorvendors,
andhelpedthemcorrectthesebugs.

We plan to continuethis work in several ways. First, we plan
to develop testsfor moreaspectsof TCP behavior. For example,
it would be useful to track the deployment of new TCP mecha-
nismssuchasthe DSACK option (RFC 2883),Limited Transmit
(RFC3042),or CongestionWindow Validation(RFC2861),or to
investigatethedetailsof retransmittimeoutmechanisms.Onegoal
is to provide comprehensive standards-compliancetestingof TCP
implementations.In addition,we areexploring the possibility of



usingTBIT to automaticallygeneratemodelsof TCPimplementa-
tionsfor usein simulatorssuchasNS[10].

Moregenerally, webelieve thatactivetoolslikeTBIT areneces-
saryto testotheraspectsof Internetbehavior aswell. Similarwork
hasalreadybeendoneto testthedeploymentof HTTP/1.1in web
servers[17], andto testtheprotocolbehavior of webclients[3], in
additionto thewealthof othermeasurement-relatedresearch.One
possibility would be to extend TBIT to gathermore information
aboutthe infrastructuresurroundingweb servers,asit affects the
behavior of the server. (Firewalls that block ICMP packetscome
to mind.) A completelydifferentapproachwould be to develop
active but non-destructive tools to exploretheeffectiveness(or in-
effectiveness)of queuemanagementat thecongestedrouter(s)on
the pathto thewebserver, by examiningthepatternof dropsand
of end-to-enddelay. Thereis a greatdealstill to do to understand
boththebehavior in theInternetandtherateof deploymentof new
mechanismsin theinfrastructure.
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