
A Survey of Recent Developments of TCP

Sally Floyd
ACIRI

(AT&T Center for Internet Research at ICSI)
October 17, 2001

IEEE Annual Computer Communications Workshop

1



An overview of this session:

� This talk: A Survey of Recent Developments of TCP.
– And an introduction to DCP, a newly-proposed transport protocol.

� Neil Spring: Robust ECN Signaling with Nonces.
– Adding ECN Nonces to TCP.

� Srini Seshan: The Congestion Manager.
– Sharing congestion control state below the transport layer.

� Randall Stewart: An Overview of SCTP.
– A reliable transport protocol accommodating multiple streams.

2



An outline of this talk:

Current and future developments for TCP:

� The Limited Transmit mechanism in TCP.

� Using D-SACK to detect unnecessary Fast Retransmits,
or unnecessary Retransmit Timeouts.

� The addition of ECN (Explicit Congestion Notification) to TCP.

� Corruption Notification?

� Congestion control mechanisms with very large congestion windows?

Other developments:

� DCP: Datagram Control Protocol.
– A proposed unreliable transport protocol.

3



Themes:

� Bringing TCP closer to a model of pure AIMD (Additive Increase, Multi-
plicative Decrease) and exponential backoff of the retransmit timer.

� Making the indication of congestion more explicit.

� Modifying TCP’s AIMD mechanisms at very high congestion windows?

� Other transport protocols for other purposes:
– Other than reliable, in-order delivery.
– Other than AIMD congestion control.
– (For this talk, we only consider unicast transport protocols.)

4



The Limited Transmit mechanism in TCP:

� The problem: unnecessary retransmit timeouts after a loss.

-1

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3

P
ac

ke
t

�

Time

TCP without Limited Transmit

"packets"
"drops"
"acks"
"ecn"

� There is no response to the duplicate acknowledgement (dup ack) at
time 0.5.

5



The Limited Transmit mechanism in TCP:

� The solution: Limited Transmit, RFC 3042.
Send a new packet after the first and second dup acks.

-1

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3

P
ac

ke
t

�

Time

TCP with Limited Transmit

"packets"
"drops"
"acks"
"ecn"

� A Fast Retransmit can be more effective than a Retransmit Timeout.
– Limited Transmit is useful for TCPs with small congestion windows.

6



DSACK: Detecting unnecessar y Fast Retransmits or Retransmit Timeouts

� The problem: TCP is not robust to reordered or delayed packets.
– More that three reordered packets are interpreted as a loss.
– A long delay is interpreted as a loss.
– After a loss, a packet is retransmitted, and the window is halved.

� The solution: make TCP robust to reordered or delayed packets.
– Part 1: Detect that the packet was delayed or reordered, not lost.
– Part 2: “Undo” the unnecessary halving of the window.
– Part 3: Modify the Dup Ack Threshold or Timeout value as appropriate.

7



Part 1: Detecting that the packet was not lost.

� Use the D-SACK extension to SACK TCP for the receiver to inform the
sender of all duplicate packets received.

– If the sender retransmitted a packet, and the receiver received two
copies of that packet, the sender can infer that the original packet was not
lost. [RFC 2883], [Blanton01]

� Or, use timestamps.

� Or, define a new “RTX” bit in TCP packet headers to indicate retransmit-
ted packets, and to report the receipt of retransmitted packets. [Ludwig01]

8



Part 2: Undoing the unnecessar y halving of the cong estion windo w.

� Set the slow start threshold (ssthresh) to the window’s value before the
halving.

� Slow-start back up to the old window.

9



Part 3: Modify the Dup Ack Threshold or Timeout value as appropriate .

Goal: Most of the Fast Retransmits and Retransmit Timeouts should be
for legitimate lost packets.

– Without waiting unnecessarily long to retransmit a lost packet.

	 Adjust the Dup Ack Threshold after each Fast Retransmit. [Blanton01a]
– Or, keep track of the history of reordering in the connection, and use

this to determine the Dup Ack Threshold. [Zhang, Karp, Floyd]

	 Similar approaches could be used for adjusting the algorithm for setting
Retransmit Timeout values.

	 This is still under investigation. [Blanton01a]

10



The Addition of ECN to IP and to TCP:


 The problem:
Packet losses are an expensive form of congestion notification,

– For the receiver (the packet is not received);
– For the sender (uncertainties in inferring the congestion signal).


 The solution: Explicit Corruption Notification (ECN).
– The router can mark a packet as an indication of congestion.
– RFC 3168, Proposed Standard.


 Issue: Why trust the receiver to report the congestion indication?
– Use the ECN nonce, described in the next talk.

11



Future Work: Corruption Notification

� The problem:
TCP assumes that losses are from congestion, not corruption.

� Even with ECN, packets can be lost from buffer overflow.
– Losses can’t be assumed to be corruption instead of congestion.

� The solution: Some form of Corruption Notification?
“The packet with this header was lost in the network due to corruption, not
congestion.”

� Issues:
– Only the link-level sender knows for sure the packet header of the

corrupted packet.
– The Corruption Notification could arrive at the TCP sender after the

packet was already assumed lost.
– The Corruption Notification message could be spoofed.

12



Future Work: Modified cong estion contr ol for large-windo w TCP

� The problem:
For high windows, TCP requires a *very* low packet drop rate.
To fill a 10 Gbps pipe, a TCP with 1500-byte packets requires:

– A congestion window of 83,333 packets.
(Assuming a 100-ms round-trip time.)

– At most one in 5,000,000,000 packets lost.

� The solution:
– Use parallel TCP connections;
– Or, modify TCP’s increase and decrease parameters for high windows.

� This is research in progress. [Ratnasamy, Floyd, Shenker]
For high congestion windows, TCP’s increase and decrease parameters
could depend on the congestion window:

– Increasing by more than one packet per round-trip time;
– Decreasing less than halving the congestion window.

13



DCP: Datagram Contr ol Protocol


 DCP: a congestion-controlled, unreliable transport protocol.


 Without in-order, reliable delivery.


 The application can specify either AIMD-based (like TCP) or equation-
based (TFRC) congestion control.


 Designed to be as minimal as possible, for applications that now use
UDP without end-to-end congestion control.


 This is in the initial stages [Kohler, Handley, Floyd, Padhye].

14



Why add DCP instead of using an unreliab le version of SCTP?

� For some applications, the AIMD congestion control used by TCP and
SCTP is not appropriate.

� For some applications, unreliable versions of SCTP would involve more
overhead that is needed (compared to DCP).

15



Why add DCP when applications could use the Cong estion Manager instead?

� The initial versions of the Congestion Manager (CM) require applications
to have their own end-to-end feedback about packet drops and marks.

� We want to allow applications to choose between AIMD and TFRC con-
gestion control.

� We don’t want the use of end-to-end congestion control for unreliable
applications to be contingent on the deployment of CM.

16



References:

[Blanton01] Ethan Blanton, Mark Allman, Using TCP DSACKs and SCTP
Duplicate TSNs to Detect Spurious Retransmissions, draft-blanton-dsack-
use-01.txt, internet-draft, work in progress, August, 2001.

[Blanton01a] Ethan Blanton, Mark Allman, Adjusting the Duplicate ACK
Threshold to Avoid Spurious Retransmits, draft-blanton-dupack-thresh-adjust-
00.txt, internet-draft, work in progress, July, 2001.

[DCP] DCP Web Page, http://www.aciri.org/kohler/dcp/

[ECN] Ramakrishnan, K.K., Floyd, S., and Black, D., The Addition of Ex-
plicit Congestion Notification (ECN) to IP., RFC 3168, Proposed Standard,
September 2001.

[Floyd01] Floyd, S., A Report on Some Recent Developments in TCP Con-
gestion Control. IEEE Communications Magazine, April 2001.

17



[Ludwig01] Reiner Ludwig, TCP Retransmit (RXT) Flag, draft-ludwig-tsvwg-
tcp-rxt-flag-01.txt, internet-draft, work in progress, July, 2001.

[RFC 2883] Floyd, S., Mahdavi, J., Mathis, M., and Podolsky, M.. , An
Extension to the Selective Acknowledgement (SACK) Option for TCP. RFC
2883, Proposed Standard, July 2000.

[RFC 3042] Allman, M., Balakrishnan, H., and Floyd, S., Enhancing TCP’s
Loss Recovery Using Limited Transmit. RFC 3042, Proposed Standard,
January 2001.

Papers by Floyd are available from: http://www.aciri.org/floyd/


