
Thoughts on the Evolution of
TCP in the Internet

(version 2)
Sally Floyd

ICIR Wednesday Lunch
March 17, 2004

www.icir.org/floyd/talks.html

Themes:

• Proposing a new mechanism is easy.
• It is harder, and more interesting, to

consider:
– the exact problem being solved;
– the range of possible solutions;
– the architectural tradeoffs involved in picking

this particular solution.

Example: convergence times.

• How to improve convergence times with
HighSpeed TCP?

• Architectural questions raised:
– Explicit feedback from routers?
– Flow-specific state in routers (or in packet headers)?
– QoS?
– What are the limitations of TCP, or of no per-flow state

in routers, or of best-effort service, for high-speed
flows (e.g., 10 Gbps)?

Example:
DCCP’s congestion control

• Question: How far can DCCP go in
providing faster startup, faster recovery
after idle periods, etc.?

• Architectural questions raised:
– Limitations of window-based congestion

control?
– Of no per-flow state in routers/packet headers?
– Of best-effort traffic?

Past history of TCP

• Reno/NewReno/SACK:
– Half of servers use SACK, many others use NewReno.
– Almost all browsers use SACK.
– DON’T use Reno in simulations or experiments!!!

• Delay-based congestion control:
– Vegas, FAST
– TCP-Nice and TCP-LowPriority use delay-based

congestion control for low priority TCP .
• ECN:

– Explicit instead of implicit notification.
– Standardized but not deployed.

Past history of TCP

• Quality of Service:
– Intserv, diffserv, etc.
– Limited deployment.

• New transport protocols:
– SCTP: multi-streaming, multihomed transport.
– DCCP: for unreliable, congestion-controlled transport.

TCP’s response function

Convergence Times for
HighSpeed TCP et al:

• Different models give different results!
– Model #1: DropTail queues with global

synchronization for loss events.
– Model #2: Drop Tail queues, some synchronization,

depending on traffic mix.
– Model #3: RED queues, some synchronization.
– Model #4: RED queues, no synchronization

• Which model is the best fit for the current or
future Internet?

Convergence times for
HighSpeed TCP et al:

• What would improve convergence times?
– TCP changes:
 Less aggressive increases after loss events?
– Explicit feedback from routers to transport:
 Finer-grained congestion feedback?
– Router changes:
 Flow-specific state in routers (or in packet headers)?
– QoS:

Something other than best-effort service.

Additional Feedback from
Routers?

Examples: XCP, QuickStart.

• Explicit feedback from routers would be
useful (and necessary) for faster startups.
– Also for faster recovery after idle periods.

• Per-packet feedback (as in XCP) would give
greater power, at greater cost.

Evaluating additional feedback
from routers:

• Possible kinds:
– Needed from all routers along the path (e.g.,

QuickStart, XCP);
– Needed only from one router (e.g., ECN).

• Possible semantics:
– Faster startup (e.g., QuickStart, XCP);
– Advice/instruction to slow down, or to increase less

aggressively (e.g., ECN, XCP).
– Info from link layer (e.g., corruption, link-up).
– …

Flow-specific state in routers?

• What are the cost/benefit tradeoffs for maintaining
state in routers/packet headers for very large
flows?
– E.g., for a 10Gbps TCP flow?

• Flow-specific marking or dropping, for faster
convergence?

• Flow-specific state to help use the bandwidth
promptly when a short fat flow ends?
– (short in time, fat in bytes)

How far can DCCP go in
providing faster startup, fast

recovery after idle periods, etc.
• Many of DCCP’s target applications want:

– Faster startup;
– Abrupt changes in the sending rate;
– To start up fast after idle periods;
– To minimize changes in sending rates;

• How much can this be done with:
– Window-based congestion control?
– Best-effort traffic but no per-flow state in routers or in

packet headers?
– Best-effort traffic?

Fundamental limitations of
window-based congestion

control?
• The jostling of ACKs can lead to unnecessary

burstiness?
– Rate-based pacing could help.
– Equation-based congestion control (e.g., TFRC) is

another alternative.
• Slow start-up?

– Explicit feedback from routers could help.
• Decreasing the window after a loss event.

– “Decreasing” does not necessarily require “halving”.
– TFRC is another alternative.

Fundamental limitations of
no per-flow state in

routers/packet headers?
• For environments with high link utilization, there

are limits to faster start-up, and to faster
convergence.
– E.g., a new flow starting up in a high-bandwidth

environment with a small number of competing flows.
• For environments with short fat flows, there are

limits to link utilization.
– E.g., many flows wanting to use high bandwidth, each

for a fraction of an RTT.

Fundamental limitations of
best-effort service?

• Best-effort flows need to avoid persistent, high
drop rates.

• In environments with FIFO scheduling at
congested links, best-effort flows need to pay
attention to per-flow fairness.

• There are no common assumptions about average
or worst-case queueing delay.

• Some flows prefer better-than-best-effort delay,
throughput, or loss rates.

• A best-effort flow can’t assume that bandwidth is
available when the flow is ready to use it.

Extra viewgraphs:

Interactions between transport
and link layers:

• Wireless links with variable delay,
throughput, corruption, etc?

• Hints from transport to link layers, e.g.,
about robustness to reordering or to delay?

• New issues raised by optical networks, e.g.,
by optical burst switching?

