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Topics:

e High-speed TCP.

e Faster Start-up?

e AQM: Adaptive RED

e Evaluation of AQM mechanisms.

e A proposal about models and simulations

e Other open questions?



Architectural sub-themes:

e A goal of incremental deployment in the current Internet.

e Steps must go in the fundamantally correct, long-term direction, not be
short-term hacks.

e Robustness in heterogeneous environments valued over efficiency of
performance in well-defined environments.

e A skepticism towards simple models.

e Learning from actual deployment is an invaluable step.

e The Internet will continue to be decentralized and fast-changing.



HighSpeed TCP:

Joint work with Sylvia Rathasamy and Scott Shenker.

Additional investigations with Evandro de Souza and Deb Agarwal.

URLs:
http://www.icir.org/floyd/papers/draft-floyd-tcp-highspeed-00c.txt
http://www.icir.org/floyd/papers/draft-floyd-tcp-slowstart-00b.txt



HighSpeed TCP: The problem.
e TCP’s average congestion window is roughly 1.2/, /p packets.

e Maintaining an average cwnd of at least 1.2 x 10% packets requires a
packet loss/corruption rate of at most 10— 2.

e Given 1500-byte packets and a 100 ms RTT, filling a 10 Gbps pipe would
correspond to a congestion window of W = 83, 333 packets.
— At least 1.6 hours between packet drops.

e We can do better, even with only the current feedback from routers.



HighSpeed TCP: Is this a pressing problem?

e Nope. In practice, users do one of the following:
— Open up N parallel TCP connections; or
— Use MUITCP (roughly like an aggregate of N virtual TCP connections).

e However, we think it is possible to do much better, with:
— Better flexibility (no N to configure);
— Better scaling;
— Better slow-start behavior;
— Competing more fairly with current TCP
(for environments where TCP is able to use the available bandwidth).
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HighSpeed TCP: use a modified response function.
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HighSpeed TCP: Simulations in NS.

o ./test-all-tcpHighspeed in tcl/test.

e The parameters specifying the response function:
— Agent/TCP set low window_ 31
— Agent/TCP set high_window_ 83000
— Agent/TCP set high_p_0.0000001

e The parameter specifying the decrease function at high_p_:
— Agent/TCP set high_decrease_ 0.1



Highspeed TCP / Regular TCP, Sending Rates

HighSpeed TCP: Relative fairness.
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HighSpeed TCP: modifying slow-start:

e Slow-starting up to a window of 83,000 packets doesn’t work well.
— Tens of thousands of packets dropped from one window of data.
— Slow recovery for the TCP connection.

e The answer:

— Agent/TCP set max_ssthresh_N

— During the initial slow-start, increase the congestion window by at
most N packets in one RTT.
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Faster Start-up?

From a proposal by Amit Jain.

No URL yet.
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Faster Start-up: Larger Initial Sending Rate

e An IP option in the SYN packet gives the sender’s desired initial sending
rate.

— Routers on the path decrement a counter,

— and decrease the allowed initial sending rate, if necessary.

e If all routers on the path participated:
— The receiver tells the sender the allowed initial sending rate in the
SYN/ACK packet, in the transport header.

e This is from a proposal by Amit Jain (from Netscaler).

12



Adaptive RED
Joint work with Ramakrishna Gummadi and Scott Shenker.

URL (with simulation scripts):
http://www.cs.berkeley.edu/ ramki/adaptiveRED/
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The One-Page Primer on RED:
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For the average queue size:
aveq < (1 — wq)avgg + wq q
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Adaptive RED: adapting max)

e The original Adaptive RED proposal is from Feng et al., 1997.
— Adjusts maz,, to keep the average queue between min;, and max;y,.

e We have a new implementation of Adaptive RED, adapting mazy.
e Automatic setting of wgq as a function of the link bandwidth.

e Automatic setting of miny, and maxy, as a function of the target queue
size.
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Average Queue Length
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20 40 60 80
Time (in Seconds)

Web traffic and reverse-path traffic added.
15 Mbps link, 250 ms round-trip time.

100

19



The optimal average queue size?

e It depends on the desired tradeoff at the router between high utilization
and low delay.

e It is heavily affected by traffic, topology, etc.

e We don’t know the optimal average queue size.
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Mostly long-lived traffic, Adaptive RED.
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Traffic includes some web mice, and reverse-path traffic.
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We haven't plotted anything for fairness, our third metric.
(RED and Drop Tail often differ in fairness.)
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Long-lived and web traffic, Adaptive RED, with reverse-path delay.
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The reverse-path queue is configured the same as the forward-path queue:
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An aside: creating worst-case oscillations with TCP and AQM:
(from last night)

Assume a "time constant” for average queue size estimator of T" sec.
(T = 1 second, for Adaptive RED).
Then the "resonant frequency” is roughly 37T seconds.

We want to choose the number of flows N so that the packet drop rate p

gives a congestion control epoch of 37 seconds, so that the natural fre-
guency of TCP matches the resonant frequency of the RED/ARED queue.

Given link bandwidth B pkts/sec, RTT R seconds, N flows:
The average bandwidth per flow is BR/N pkis/RTT.
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Facts about TCP:

With packet drop rate p, the average window W is 1.2/, /p pkts, and there
are 2W RTTs in a congestion control epoch.

So we want %W =3T/R,or W = 4.5T/R.

So choose N so that: BR/N = 4.5T/R, or N = BR?/(4.5T).
Conjecture: For T' =1 sec., R = 0.1 sec., B = 1000 pkts/sec (8Mbps for

1KB pkts), the worst case oscillations occur with N = 10/0.45 = 22
flows.
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An Evaluation of AQM

Joint work with Jitendra Padhye and Scott Shenker.

No URL yet...
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An Evaluation of AQM

e On many simulation scenarios, Adaptive RED, AVQ, Drop-Tail Pl, RED,
REM give similar performance.

e Drop-Tail and AVQ generally have higher packet drop rates.

e RED and Adaptive RED can have undesirable oscillations with very large
round-trip times.

e REM and PI can perform poorly in scenarios with mostly web traffic, or
with changes in the level of congestion.
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Steady-state simulations, with some web traffic and reverse-path traffic,
and 40-320 ms RTTs. Queue in packets.
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Developing and Evaluating Models:
Joint work with Eddie Kohler

URL for one part:
Building Models for Aggregate Traffic on Congested Links
http://www.icir.org/models/
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Models: A Proposal about Developing Models and Simulation Scenarios

e What measurement studies are needed for improving our models?

— E.g., where is the congestion in the Internet? What are the ranges
of round-trip times? |s more needed on traffic generation? What about
reverse-path congestion?

e How do we translate results from measurement studies into our models?
e How do we know what features are critical to include in our models?

e Can we do more to improve our shared understanding of best practices
for models and for simulation scenarios?
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Models: Why Models Matter?
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ment. [From "On Phase Effects”, 1992.]
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Open questions?

e How do things in one part of the network (e.g., buffer sizes, flash crowds)
affect behavior in other parts?

e How do we shed light on tradeoffs between delay and throughput?

e What are the inherent limitations of one bit of congestion feedback, if
any? (E.g., in terms of how aggressive flows can be.)

e What are the inherent limitations of not making reservations, and not
keeping per-flow state in the network? (E.g., in terms of how aggressive
flows can be.)

e What will the tradeoffs be when we have very fast networks, often with
very high available bandwidth, and flows could often send all of their data

is a fraction of a RTT?
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