Adding Acknowledgement Congestion Control to TCP

S. Floyd, A. Arcia, D. Ros, and J. Iyengar
draft-floyd-tcpm-ackcc-02.txt
TCPM
December 2007
How would TCP’s ACK Congestion Control work?

• **Negotiation** between sender and receiver:
 – (Ack-Congestion-Control-Permitted option).

• **Start** with an Ack Ratio of 2.

• The sender detects **lost Ack packets**:
 – And tells the receiver the new Ack Ratio.

• **The sender** uses Appropriate Byte Counting, and rate-based pacing (in response to Acks acking more than two packets).
Changes from last time:

- Added a section on "Keep-alive Packets". Feedback from Anantha Ramaiah.

- Added a section on "Possible Complication: TCP Implementations that Skip ACK Packets". Motivated by reports at IETF that many high-bandwidth TCPs don't follow the MUST of sending an ACK for every other packet, if they don't have time.

- Added that receivers might have buffer limitations that require that they ack at least every K packets, for some K. Feedback from Sara Landstrom.

- Added to the discussion of "Possible Complication: Two-Way Traffic". Feedback from Sara Landstrom.
More changes from last time:

• Added a section on "Possible Complication: Router or Middlebox-based ACK Mechanisms". Feedback from Sara Landstrom.

• Added that SACK is required with ACK congestion control. Feedback from Sara Landstrom.

• Added a discussion of "Reducing the TCP Acknowledgment Frequency" to the related work section.

• Added an appendix on "Design Considerations", with a subsection on "The TCP ACK Ratio Option, or an AckNow bit in data packets?".

• General editing from feedback from Alfred Hoenes.
Changes in
draft-floyd-tcpm-ackcc-03b.txt:

- **General editing.** Feedback from Alfred Hoenes.

- Added more about *keep-alive packets* and window update packets. Feedback from Anantha Ramaiah.
Possible Complication: TCP Implementations that Skip ACK Packets

- **One possible solution:**
 - TCP receivers using ACK congestion control would be required to send an acknowledgement for each R packets, for ACK Ratio R.”

- **A second possible solution:**
 - The receiver would use a TCP flag to inform the sender that the TCP receiver ‘skipped’ sending some ACK packets.
Future work:

• **Simulations** and other evaluation of proposed mechanism.
 – Planned to start in January.

• Ready to be a *working group document*, targeted as Experimental?
Slides from last time:
Possible Complications:

- Delayed acknowledgements.
- Duplicate acknowledgements.
- Two-way traffic.
- Reordering of Ack packets.
- Abrupt changes in the Ack path.
- ...

Congestion on the reverse path:

- **Does pure Ack traffic really contribute to congestion?**
 - Yes, somewhat, if the queue is in units of packets.
 - Measurement studies of congested links?

- **How might ackcc be useful to the connection?**
 - ECN-capable ACK packets.
 - Possibly reducing the ACK drop rate even without ECN.

- **How might ackcc be harmful to the connection?**
 - Costs of a larger Ack Ratio.
Security Considerations:

• Cheating with ECN-capable ACK packets?
 – If the receiver cheats, the sender could detect it.
 – If the sender cheats, the receiver can’t easily detect it.
• Middleboxes probably could detect it.