IAB Concerns Regarding Congestion Control for Voice Traffic in the Internet

draft-iab-congestion-00.txt
http://www.icir.org/floyd/talks/avt-Jul03.pdf

Sally Floyd, James Kempf, editors
July, 2003
AVT presentation, IETF
Concerns about end-to-end congestion control for best-effort voice traffic in the Internet

This draft does not recommend any particular deployment path for VoIP in the Internet (e.g., best-effort, QoS, reservations, etc.).

The draft observes that in fact, some VoIP traffic ends up competing as best-effort traffic with other best-effort traffic over some link in the Internet.

The draft recommends that such flows with a minimum sending rate should terminate in the presence of sufficiently-high, persistent packet drop rates.

The draft further observes that adaptive codecs can expand the available range for VoIP.
The Reality:

- A VoIP flow between the Atlanta IETF and Nairobi, Kenya:
 - 64 kbps plus FEC plus framing.
 - A shared, congested 128 Kbps access link.
 - Good voice quality in the presence of 5-40% drop rates.

- The problems:
 - Congestion collapse;
 - User quality;
 - Fairness.
Developments in the IETF:

*

- **RTP:**
 - RTP Profile for Audio and Video Conferences with Minimal Control

- **TFRC:**
 - TFRC-PS, still under development, would be for applications with a fixed sending rate but varying packet sizes.
 - DCCP.

- **Adaptive Rate Audio Codecs:**
 - RFC 3267: Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) audio codecs.
 - iLBC: Internet Low Bit Rate Codec.
 - Ivox: Interactive VOice eXchange.
Minimum Acceptable Sending Rates for Best-Effort Traffic

- Assume (generously) a network limited in bandwidth, not CPU cycles.
- Consider fairness with TCP flows with the same RTT and 1500-byte packets.
- Take into account packet header size.
- Don’t assume that N small packets dropped equals one large packet dropped.
Minimum Acceptable Sending Rates: the details

- For a VoIP flow at 4.75 kbps, 20 pps, 100 ms RTT:
 - A TCP flow sending at the same rate in bps would have a persistent packet drop rate between 35 and 40%.

- For a VoIP flow at 64 kbps, 50 pps, 100 ms RTT:
 - A TCP flow sending at the same rate in bps would have a persistent packet drop rate between 20 and 25%.
Recommendations:

• (1) In IETF standards for protocols regarding best-effort flows with a minimum sending rate, a packet drop rate must be specified, such that the best-effort flow terminates when the steady-state packet drop rate significantly exceeds the specified drop rate.

• (2) The specified drop rate for the minimum sending rate should be consistent with the use of Tables 1 and 2 as illustrated in this document.
Extra viewgraphs:
More on minimum sending rates.

• For the heavy packet drop regime, the standard TCP response function overestimates TCP’s sending rate.

• The standard TCP response function:
 – For a packet drop rate of 50%, a sending rate of 0.1 ppr.

• From simulations:
 – For a packet drop rate of 50%, a sending rate of 0.018 ppr.

(For an RTO set to twice the RTT.)