
An Extension to the Selective Acknowledgement (SACK) Option for TCP

draft-floyd-sack-00.txt
Sally Floyd, Jamshid Mahdavi, Matt Mathis,

Matthew Podolsky, and Allyn Romanow

IETF, Transport Area Working Group
November 1999

1



Outline of presentation:

� Review of RFC 2018, the SACK Option for TCP,

� Motivations for an extension to SACK.

� Details of the D-SACK (duplicate-SACK) extension.

� Uses of the D-SACK block.

2



Review of RFC 2018, the SACK Option for TCP:

� The TCP sender and receiver negotiate SACK capability.

� The TCP receiver uses the SACK option to acknowledge blocks of data
not covered by the Cumulative Acknowledgement field.

� RFC 2018: ”The first SACK block ... MUST specify the contiguous block
of data containing the segment which triggered this ACK, unless that seg-
ment advanced the Acknowledgment Number field in the header.”

� However, RFC 2018 does not specify the use of the SACK option when
duplicate segments of data are received.

3



Motivations for an extension to SACK:

� The TCP sender could learn the order in which the receiver received
packets, including duplicate packets.

� As a result, the TCP sender could detect (some) unnecessary retrans-
mits, ACK loss, and packet replication within the network.

� This could be used to make TCP more robust to reordered packets,
ACK loss, packet replication, and/or early retransmit timeouts.

� As a result, TCP could be more robust in environments with:
– link-level retransmissions;
– widely-varying roundtrip times;
– loss on the return (ACK) path;
– routing mechanisms that result in packet reordering.

4



The D-SACK extension to the SACK option:

� A D-SACK block reports a duplicate contiguous sequence of data re-
ceived by the receiver in the most recent packet.

� Each duplicate contiguous sequence of data received is reported at most
once.

� The left and right edges of the D-SACK block specify the duplicate con-
tiguous sequence, following the SACK conventions.

5



The D-SACK extension to the SACK option, cont.:

� If the D-SACK block reports a duplicate contiguous sequence from a
(possibly larger) block of data in the receiver’s data queue above the cu-
mulative acknowledgement, then the second SACK block in that SACK
option should specify that (possibly larger) block of data.

– E.g., the D-SACK block reports segment 5, and the second SACK
block reports segments 5-7.

� Following the SACK blocks described above for reporting duplicate seg-
ments, additional SACK blocks can be used for reporting additional blocks
of data, as specified in RFC 2018.

6



Examples of the D-SACK extension to the SACK option:

� The internet draft gives the following examples for using D-SACK:

– Reporting a duplicate segment.

– Reporting an out-of-order segment and a duplicate segment.

– Reporting a duplicate of an out-of-order segment.

– Reporting partial duplicate segments.

7



Interpreting the D-SACK block at the sender:

� Look at the first SACK block:

– If the first SACK block is covered by the Cumulative Acknowledge-
ment field, then it is a D-SACK block, and is reporting duplicate data.

– Else, if the first SACK block is covered by the second SACK block,
then the first SACK block is a D-SACK block, and is reporting duplicate
data.

� Otherwise, interpret the SACK blocks using the normal SACK proce-
dures.

8



Identifying a retransmit timeout due to ACK loss:

� This can be conclusively identified as an unnecessary retransmit time-
out with D-SACK. This can not be so identified without D-SACK.

Transmitted Received ACK Sent

Segment Segment (Including SACK Blocks)

500-999 500-999 1000 (ACK dropped)

1000-1499 1000-1499 1500 (ACK dropped)

1500-1999 1500-1999 2000 (ACK dropped)

2000-2499 2000-2499 2500 (ACK dropped)

(timeout)

500-999 500-999 2500, SACK=500-1000

--------

9



Identifying an early retransmission timeout:

� This can be conclusively identified as an unnecessary retransmit with
D-SACK.

� Without D-SACK, *if* the sender received all of the duplicate acknowl-
edgements sent by the receiver, and none were piggy-backed on data
packets, then the sender could determine that *either* some data or ACK
packet had been replicated in the network, or that an unnecessary retrans-
mit timeout had occurred.

10



Transmitted Received ACK Sent
Segment Segment (Including SACK Blocks)

500-999 (delayed)
1000-1499 (delayed)
1500-1999 (delayed)
2000-2499 (delayed)
(timeout)
500-999 (delayed)

500-999 1000
1000-1499 (delayed)

1000-1499 1500
...

1500-1999 2000
2000-2499 2500
500-999 2500, SACK=500-1000

--------
1000-1499 2500, SACK=1000-1500

---------
...

11



Identifying a false retransmit due to reordering:

	 With D-SACK, the TCP sender knows that either the retransmitted packet
was duplicated in the network, or the packet was unnecessarily transmit-
ted.

	 Without D-SACK, the TCP sender knows that either *some* packet was
duplicated in the network, the ACK was duplicated in the network, or the
retransmitted packet was unnecessarily transmitted.

12



Identifying a false retransmit due to reordering, cont.:

Transmitted Received ACK Sent

Segment Segment (Including SACK Blocks)

500-999 500-999 1000

1000-1499 (delayed)

1500-1999 1500-1999 1000, SACK=1500-2000

2000-2499 2000-2499 1000, SACK=1500-2500

2500-2999 2500-2999 1000, SACK=1500-3000

1000-1499 1000-1499 3000

1000-1499 3000, SACK=1000-1500

---------

13



Identifying data packet replication in the network:


 Without D-SACK, the TCP sender can not distinguish between the repli-
cation of a data packet and the replication of an ACK packet.

Transmitted Received ACK Sent

Segment Segment (Including SACK Blocks)

500-999 500-999 1000

1000-1499 1000-1499 1500

(replicated)

1000-1499 1500, SACK=1000-1500

---------

14


