Equation-based TCP-friendly Congestion Control

Mark Handley and Sally Floyd

Reliable Multicast Research Group
November 1999
Outline of presentation:

- Brief review of "Strawman Specification for TCP Friendly (Reliable) Multicast Congestion Control (TFMCC)"

- New work on unicast equation-based congestion control.

- Implications for multicast equation-based congestion control.
Brief review of "Strawman Specification":

- The response function:

\[
T = \frac{s}{RTT \sqrt{\frac{2p}{3}} + t_0 (3 \sqrt{\frac{3p}{8}}) p (1 + 32p^2)}
\]

\(T \): sending rate in bytes/sec
\(s \): packet size in bytes
\(p \): packet drop rate
\(t_0 \): retransmission timeout value

Strawman: Calculating loss fraction at the receiver:

- The receiver calculates the expected packet drop rate p for the current sending rate, and measures the number of loss events over k/p arrivals, for $k = 4$.

- The measurement interval should be extended to include at least four loss events.
Strawman: Calculating the RTT at the receiver:

- Different mechanisms for NACK-based and Hierarchical ACK feedback mechanisms.

Estimating the retransmit timeout value t_0

- Set $t_0 = \max[20\, ms, 4t_{RTT}]$
Strawman: Increase mechanism:

- Increase at most up to the rate specified by the equation?
 - Increase limited to one packet per RTT, or limited by a fraction of the current rate?

Strawman: Decrease mechanism:

- Decrease down to the rate specified by the equation.
Strawman: Slow-start?

Strawman: Behavior after idle or application-limited periods?
Unicast equation-based congestion control:

- Joint work with Mark Handley, Jitendra Padhye, and Joerg Widmer.

- Implementation in NS:
 - NS Simulations of TCP-Friendly Congestion Control,
 - URL ”http://www.aciri.org/floyd/friendly.html”.
Unicast: Estimating the packet drop rate:

- Goals for the receiver’s estimated packet loss rate:
 - Maintains history of most recent loss events;
 - Estimates loss rate smoothly;
 - Responds promptly to successive loss events;
 - Estimated loss rate increases only in response to a new loss event;
 - Estimated loss rate decreases only in response to a new loss event, or to a longer-than-average interval since the last loss.
Unicast: Estimating the packet drop rate, cont.:

- The receiver estimates the average loss interval (e.g., the number of packet arrivals between successive loss events), and inverts to get the packet loss rate.
 - Most of the weight is on the most recent four lost intervals, with slowly decaying weight on older loss intervals.
 - (The average weighs the $K+1$, $K+2$, and $K+3$-rd loss intervals, for $K = 4$, with reduced weights.)
 - A loss interval is a sending period ending in a loss event (e.g., one or more packet drops in a window of data); or the most recent interval without a loss, if longer than the average loss interval.
 - The receiver reports the loss average to the sender once per RTT.
Unicast: The sender estimating the roundtrip time:

- The sender averages the roundtrip over the most recent several measured roundtrip times, using an exponential weighted moving average.

- The equation of the response function is based on the model of a fixed roundtrip time:
 - In environments with high levels of statistical multiplexing, the delay and packet drop rate is largely independent of the flow’s sending rate.
 - This is not true with small-scale statistical multiplexing.
Unicast: The sender’s increase/decrease algorithms:

- If allowed sending rate < current sending rate, decrease sending rate:
 - down to allowed sending rate.

- If allowed sending rate > current sending rate, increase sending rate:
 - by at most one packet/RTT;
 - If the sending rate is less than one packet/RTT,
 - increase the sending rate more slowly;
 - increase half way up to the sending rate indicated by the equation.
Unicast: Goals for slow-start:

- Perform roughly as aggressively as TCP.

- Exit slow-start if regular feedback is not received from the receiver.

- Never send more than twice as fast as the receiver is actually receiving.

- On exiting slow-start, smoothly transition to equation-based congestion control:
 - Don’t use the experienced packet drop rate directly;
 - Receiver estimates the available bandwidth;
 - Receiver computes the packet drop rate that corresponds to that bandwidth;
Unicast: slow-start:

- Increase the sending rate by a factor 2 (e.g., 2) each RTT.
 - Rate increases are “smoothed out” over a RTT.
 - Upper bound on sending rate:
 Twice the receiver’s reported receive rate.

- If two report intervals pass without receiving the expected report from the receiver, cut the sending rate in half.
Unicast: Dealing with a changing RTT:

- Proposal: If the RTT is increasing for four RTTs, and the sending rate has also been increasing over those four RTTs, then stop increasing the sending rate.
- Two TRFC (TCP-friendly rate control) connections.
Unicast: The validation test in NS, cont.:

- Two TFRC connections.
- Two TCP connections.
Unicast: The validation test in NS, cont.:

- Two TCP connections.
Unicast: Simulations exploring oscillations:

TFRC Only, 60Mb/s RED, from tfrm15.tcl

More analysis would be useful...
Unicast: Simulations exploring fairness with TCP:

15Mb/s 250 bufs RED, from tfrm6.tcl

- Simulations with a range of bandwidths, packet sizes, etc..
Unicast: Simulations about delay in making use of available bandwidth:
Unicast: Simulations of the autocorrelation function:
Unicast experiments: London to Berkeley

- Experiments by Joerg Widmer. Four TCPs, one TFRC.
Unicast experiments: Dummynet

DUMMYNET, tcp: 4 tfrc: 1, duration: 180s
tfrc: 11631.356 byte/s, tcp: 9514.268 byte/s, friendlyness ratio 0.45
Unicast experiments: Dummynet

DUMMYNET, tfrc: 1, duration: 180s

throughput (KByte/s) vs. time (s)
Unicast: Issues that need further work.

- Receiver’s algorithm for estimating the packet drop rate when it has been a long time since the most recent packet drop.

- Interactions with changing RTTs.

- Analysis of stability, oscillations.
 - How to avoid overshooting or undershooting on adjustments in the sending rate.

- Interactions in more complex environments.

- Idle and application-limited periods.
Complications introduced by multicast:

- How aggressively can the sender slow-start?

- In unicast, the sender needs positive feedback to keep on sending. For multicast, receivers can have the responsibility to unsubscribe if their congestion control feedback is not reaching the sender.

- Transient traffic dynamics with changing round trip times?