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Outline of talk:

� A quick sketch of the evolution of end-to-end congestion control in the
Internet.

� The danger of congestion collapse.

� A discussion of interactions between various pieces.

� Speculations on the future evolution of end-to-end congestion control
in the Internet.
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Sub-themes:

� The Internet is a work in progress, with no central control or authority,
many players independently making changes, and many forces of change
(e.g., new technologies, new applications, new commercial forces, etc.)

� So far, the success of the Internet has rested on the IP architecture’s
robustness, flexibility, and ability to scale, and not on its efficiency, opti-
mization, or fine-grained control.

� The rather decentralized and fast-changing evolution of the Internet ar-
chitecture has worked reasonably well to date. There is no guarantee that
it will continue to do so.
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Disclaimers:

� The Internet is like the elephant, and each of us is the blind man who
knows only the part closest to us.

– The part of the Internet that I see is end-to-end congestion control.
– Other parts of the elephant:

routing; security; the web; the last mile; etc.

� This talk is an evolving attempt to understand where we have been and
where we might be going.

� The ideas in this talk are not original, but are drawn from many different
sources in the IETF and network research communities.
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� A quick sketch of the evolution of end-to-end congestion control in the
Internet.

�
�

�
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The environment of the Internet before 1988:

� Datagram routing, for robustness (“The Design Philosophy of the DARPA
Internet Protocols”, Clark 1998).

– Of the seven listed goals for the DARPA Internet Architecture, the most
important goal was survivability in the face of failure.

– Datagram routing was selected as the technique for multiplexing, in-
stead of circuit switching, because it matched the applications being sup-
ported (e.g., remote login).

� TCP used flow control to control the use of buffer space at the receiver,
and Go-Back-N retransmission after a packet drop for reliable delivery.

� Starting in October 1986, the Internet had a series of congestion col-
lapses.
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Congestion control in the Internet: 1988.

� Routers:
– FIFO scheduling;
– Packets dropped upon buffer overflow;

� Transport protocols:
– TCP incorporated end-to-end congestion control, based on a principle

of ‘conservation of packets’, to prevent future congestion collapse. Tahoe
TCP enters slow-start in response to a packet drop, then slowly rebuilds
the congestion window [Jacobson 1988];

– Packet drops as the only indications of congestion;
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Changes in the last ten years:

� The web:
– Many short web transfers (“web mice”), but

most packets still belong to the larger transfers (“elephants”).
– Asynchronous instead of synchronous communications is still

dominant.
– A growing web caching and data dissemination infrastructure.

� Transport:
– TCP is still the dominant transport protocol,

but there is increasing heterogeneity:
– UDP: Realaudio and realvideo;
– Reliable and unreliable multicast;
– IP Telephony.
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Changes in the last ten years, continued:

� Changes to TCP:
– Fast Recovery (Reno and NewReno TCP): No need to slow-start after

a packet drop. Simply reduce the congestion window in half.
– Selective Acknowledgements (SACK): More information from the re-

ceiver to the sender about data received out of order.
– Larger initial windows:

An initial window of two packets is proposed standard,
an initial window of three or four packets is experimental;

– TCP over wireless, over satellite.
– TCP over ATM: changes to ATM (Early Packet Discard), not to TCP.
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Congestion control in the Internet: changes in progress:

� The deployment of active queue management (e.g., RED, WRED);

� Diverse scheduling algorithms in routers
(e.g., per-flow or class-based scheduling);

� Differentiated services (diffserv);

� Continued development of the web caching and data dissemination in-
frastructures.

10



Changes still in the research or standardization stages:

� Explicit Congestion Notification.

� New end-to-end congestion control mechanisms:
– equation-based congestion control for unicast and multicast;
– layered multicast, with receivers subscribing and unsubscribing;

� Mechanisms for sharing congestion control state among connections
with the same source and destination IP addresses.

– More speculatively, mechanisms for sharing congestion control state
among macroflows.

� Router mechanisms for encouraging end-to-end congestion control.
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� Possible changes to TCP:
– Fewer retransmit timeouts?

(From improved responses to a single duplicate acknowledgement.)
– A more moderate response to a single packet drop? (Coupled with a

more moderate packet increase rate.)
– Smarter slow-start procedures?
– Explicit Loss Notification?
– Larger initial windows?

(Perhaps contingent on the deployment of mechanisms for sharing con-
gestion control state among multiple TCP connections to the same desti-
nation.)
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Revolutions or incremental changes that never happened:

� Some of the failed revolutions:
– Integrated services (intserv).
– The One Technology: global end-to-end ATM.

� Why didn’t these things take?
Were they premature, or were these simply not the right direction?
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�
� The danger of congestion collapse.

�
�
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Scenarios for congestion collapse:

Congestion collapse occurs when the network is increasingly busy, but lit-
tle useful work is getting done.

Problem: Classical congestion collapse:
Paths clogged with unnecessarily-retransmitted packets [Nagle 84].

Fix: Modern TCP retransmit timer and congestion control algorithms [Ja-
cobson 88].

– Unnecessarily-retransmitted packets from users hitting the ”Reload”
button on their web browsers are a similar problem at the application level.
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Fragmentation-based congestion collapse:

Problem: Paths clogged with fragments of packets invalidated because
another fragment (or cell) has been discarded along the path. [Kent and
Mogul, 1987]

Fix: MTU discovery [Kent et al, 1988],
Early Packet Discard in ATM networks [Romanow and Floyd, 1995].
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Congestion collapse from undelivered packets:
Problem: Paths clogged with packets that are discarded before they reach
the receiver [Floyd and Fall, 1998].

Fix: End-to-end congestion control (or virtual circuits).
Disincentives at the routers for flows that do not use either end-to-end
congestion control or explicit bandwidth allocation mechanisms.
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Congestion collapse from undelivered packets, continued.

� Congestion collapse from undelivered packets is a danger even in the
presence of better-than-best-effort differentiated services, Explicit Con-
gestion Notification, per-flow scheduling, router mechanisms to encour-
age end-to-end congestion control, and all.

� There are only two ways to avoid congestion collapse from undelivered
packets:

– The effective use of end-to-end congestion control; or
– A virtual-circuit style of guarantee that packets that enter the network

will be delivered to the receiver.
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Congestion collapse from increased control traffic:

Problem: With increasing load, an increasing fraction of the bytes in the
network belong to control packets or packet headers.

Fix: Not a present danger. Avoid increasing levels of control traffic as
levels of congestion increase.
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Congestion collapse from stale or unwanted packets:

Problem: With increasing load, an increasing fraction of the packets ar-
riving at the receiver are no longer wanted (or were never wanted).

Fix: Not a present danger. Avoid unbounded delays or badly-designed
web “push” mechanisms.
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�
�

� Interactions between various pieces:

�
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Interactions between active queue management, scheduling, and Ex-
plicit Congestion Notification:

� Explicit Congestion Notification presupposes some form of active queue
management.

� Per-flow scheduling is incomplete without active queue management.

� How would Explicit Congestion Notification be used in routers with per-
flow scheduling?
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Interactions between scheduling, router mechanisms, and end-to-
end congestion control:

� Would ubiquitous per-flow scheduling (or ubiquitously-deployed router
mechanisms to police flows that don’t do end-to-end congestion control)
eliminate the need for end-to-end congestion control? Nope.

– The only thing that would eliminate the need for end-to-end conges-
tion control would be network mechanisms that only allowed packets to
enter the network when there were reasonable guarantees that the pack-
ets would be delivered to the intended receiver(s).
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Interactions between differentiated services and end-to-end conges-
tion control:

� Does ECN eliminate the need for differentiated services, by dramati-
cally improving the performance of best-effort traffic?

Nope.

� Does differentiated services (coupled with new pricing models) elimi-
nate the need for end-to-end congestion control?

Nope.

� Would the ubiquitous deployment of new scheduling algorithms (e.g.,
class-based or per-flow queueing) perhaps with differentiated services,
allow the deployment of end-to-end congestion control mechanisms that
would not necessarily compete fairly with TCP in an environment of FIFO
scheduling?

– Hopefully.

24



Interactions between web caching infrastructures and end-to-end con-
gestion control:

� A ubiquitous web caching intrastructure might change traffic dynam-
ics, in that many more connections would travel short distances (cache
to cache, or cache to user) rather than long ones.

� A ubiquitous web caching intrastructure would open up new possibili-
ties for congestion collapse, in terms of increasing levels of control traffic,
or increasing levels of “push” data that is never delivered to a receiver.
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Interactions between link-level technologies and end-to-end conges-
tion control:

� Wireless links can have higher bit-error rates that are interpreted as
indications of congestion by the transport protocol.

� Link-level retransmissions can interact with end-to-end retransmissions,
or with end-to-end estimates of the roundtrip time, or with retransmit time-
out algorithms.

� Link-level or cloud-level congestion control can interact with end-to-end
congestion control.

PILC, Performance Implications of Link Characteristics.
URL “http://pilc.lerc.nasa.gov/pilc/”.
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Interactions between higher layers and end-to-end congestion con-
trol:

� Many web browsers open four concurrent TCP connections to the same
destination, with each TCP connection having its own independent end-
to-end congestion control.

– HTTP could use persistent connections, and open several transfers
over a single TCP connection.

– A single congestion window could be shared among multiple TCP
connections.

– A congestion manager could share congestion control state among
multiple TCP and UDP connections.

Multiplexing, TCP, and UDP: Pointers to the Discussion.
URL “http://www.aciri.org/floyd/tcp mux.html”
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Interactions between congestion and pricing:

� One conjecture is that a key component of congestion in the Internet
is due not to a lack of available bandwidth, but to the underlying economic
structure of an ISP-based Internet.

– The conjecture is that much of the congestion is at the public ex-
change points; and that ISPs have an incentive to have limited bandwidth
to the public exchange points, to give other ISPs a concrete incentive to
enter into peering agreements with them.
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�
�

�
� Speculations on the future evolution of end-to-end congestion control

in the Internet.
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The future of congestion control in the Internet: several possible
views:

� View #1: No congestion, infinite bandwidth, no problems.

� View #2: The “co-operative”, end-to-end congestion control view.

� View #3: The game theory view.

� View #4: The virtual circuit view.

� The darker views: Congestion collapse and beyond.
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View #1: No congestion, infinite bandwidth, no problems.

� No congestion, essentially infinite bandwidth, no problems.

Well, if this happens, that is fine. I wouldn’t want to count on it in all
places all of the time.

31



View #2: The “co-operative”, end-to-end congestion control view.

� The ubiquitous use of end-to-end congestion control for best-effort and
better-than-best-effort traffic, encouraged by policing mechanisms at the
routers.

� “Smoother” and less obtrusive mechanisms for end-to-end congestion
control, with active queue management, Explicit Congestion Notification,
equation-based congestion control, mechanisms for detecting unused band-
width, etc.

� End-to-end bandwidth guarantees in some form, used by that small sub-
set of traffic with hard bandwidth requirements.

� Traffic dominated by asynchronous communications (helped by a global
caching infrastructure), with an significant mix of synchronous unicast and
multicast communications.

� Evaluation: It has mostly worked so far, but how well will it scale?
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View #3: The game theory view.

� Ubiquitous per-flow scheduling.

� End users greedily optimizing their own utility functions [Shenker 1994].

� A wide range of differentiated services, along with a wide range of pric-
ing structures.

� Evaluation: I believe there can be a danger of congestion collapse in
this scenario, in the absence of reasonable end-to-end congestion control.
Ubiquitous per-flow scheduling provides fairness, but does not prevent the
tragedy of the commons.

– A pricing structure that makes packet drops expensive gives users an
incentive to use end-to-end congestion control.
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View #4: The virtual circuit view.

� A “virtual-circuit” style of coordination within the network, so that pack-
ets don’t enter the global network unless there are reasonable guarantees
that they can be delivered to the end receiver.

� With a virtual-circuit model, there is no need for end-to-end conges-
tion control, and no danger of congestion collapse.

� Evaluation: There are many costs of this approach, in terms of tight
couplings in a far-flung global Internet, and missed opportunities for the
opportunistic use of available bandwidth.
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The darker views: Congestion collapse and beyond

� Periodic congestion collapse, because of an uneven use of end-to-end
congestion control.

� The “Balkanization” of the Internet on ISP boundaries, resulting in effec-
tive congestion control and differentiated services only within ISP bound-
aries, and degraded performance for traffic that crosses ISP boundaries.

� No coherent global architecture, and therefore missed opportunities (in
the development of differentiated services, of multicast capabilities, of co-
herent web caching architectures, etc.)
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� Unrestrained “optimization” at all levels, and between levels, producing
greater efficiency in the short term, but rigidity and an inability to accomo-
date change in the longer term.

� Short-term fixes are deployed, possibly blocking the path for longer-term
evolution.

� Inherently difficult traffic patterns?
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Conclusions:

� It won’t be boring or easy.

� Many of the current steps are in the right direction.

� The challenge is to keep a coherent and flexible global architecture.
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