SACK TCP: The sender's congestion control algorithms for the implementation “sack1” in the LBNL's “ns” simulator.

Sally Floyd
Lawrence Berkeley National Laboratory

Contributors to code: Kevin Fall, Sally Floyd, Steve McCanne (LBL), and Jamshid Mahdavi (PSC)

LA IETF
March 1996
The internet draft:
“The congestion control algorithms present in the de facto standard TCP implementations MUST be preserved.”

- Accomodates out-of-order delivery.
- Congestion window algorithms.
- Use of time-outs.
The implementation in the “ns” simulator:

- Three dup acks required to trigger Fast Recovery.
- Reduce congestion window by half; don't Slow-start.
- Response to further dup acks.

Main difference from Reno: When multiple packets are lost from a single window of data.
Two states: Regular and Fast Recovery

3 duplicate acknowledgements

Regular

Fast Recovery

acknowledgement for everything that was sent before Fast Recovery was entered ("recover_")
On entering Fast Recovery:

- Retransmit one packet.

- Cut the congestion window in half (“cwnd_”).

- Estimate the number of packets in the pipe (“pipe_”).
Behavior in Fast Recovery:

- When and how much to send: whenever the number of packets in the pipe is less than the congestion window.

- What to send: Fill “holes”, one packet at a time, in sequence number order. If there are no holes, send new packets.

- If a retransmitted packet is itself dropped, then slow-start. (The current implementation in ns waits for a retransmit timer to detect the dropped packet.)
Behavior in Fast Recovery: receiving ack packets

- Duplicate ACKs: Decrement “pipe_”, call “send”.

- An ACK that ends Fast Recovery: Call “send”.

- An ACK that does not end Fast Recovery:
 Decrement “pipe_” by two packets, once for the retransmitted packet, and once for the original packet (now presumed to have been dropped). Call “send”.
Behavior in Fast Recovery: details of sending data packets

- Send if the number of packets in the pipe ("pipe_") is less than the congestion window ("cwnd_`).

- Use the SACK scoreboard to determine which packet to send.

- Increment “pipe_”.
Details:

- MaxBurst parameter

- Overhead parameter - just for the simulator.
Ns simulator available from:

http://www-nrg.ee.lbl.gov/ns

These viewgraphs available from:

Papers available from:

http://www-nrg.ee.lbl.gov