TCP Friendly Rate Control (TFRC):
Protocol Specification
RFC3448bis

draft-ietf-dccp-ric3448bis-02.txt
S. Floyd, M. Handley, J. Padhye, and J. Widmer

Testing and simulations from A. Sathiaseelan

July 2007,
DCCP Working Group

Reported 1n previous IETFs:

* Changes from RFC 3448, in draft-ietf-dccp-
rfc3448bis-00.txt

* Changes 1n draft-ietf-dccp-rfc3448bis-01.txt

e Reported for me in March 2007:

— Changes 1n draft-ietf-dccp-rtc3448bis-02b.txt,
(never submitted).

— A slide on “things that could be done”.

Changes from
draft-ietf-dccp-rtc3448bis-01.txt:

The 1nitial feedback packet after an i1dle period.
— The mechanism for dealing with this has changed.

Response to 1dle and data-limited periods.

— The sender is not limited by the receive rate if the
sender has been 1dle or data-limited for an entire
feedback interval.

Use of unused send credits:

— The sender may keep unused sent credits up to one
RTT.

Many clarifications and some small changes,
listed in the draft.

The 1nitial feedback packet
after an 1dle period:

e The mechanism for dealing with this has changed.

e The new mechanism:

— Keep X_recv_set, with X_recv from the last two RTTs.
— If (the entire interval covered by the feedback packet was a
data-limited interval)
e Replace X_recv_set contents by Infinity;

e Older mechanisms in older revisions:

— If (not the first feedback packet, and not the first feedback
packet after a nofeedback timer)

— If (feedback packet reports Limited Receive Rate or sender
has been data-limited over period covered by the last
feedback packet)

Response to Idle and Data-Limited Periods:

Protocol Long idle periods
Standard TCP: Window -> initial.
TCP with CWV: Halve window

(not below initial cwnd).
Standard TFRC: Halve rate

(not below 1 pkt/64 sec).
Revised TFRC: Halve rate

(not below initial rate).

Long data-limited periods

No change in window.

Reduce window half way
to used window.

Rate limited to
twice receive rate.

Rate not limited to
twice receive rate.

Response to Idle Periods:

e The initial version of RFC3448bis:

— After a long idle period, the sender doesn’t
reduce the allowed rate below the 1nitial rate.

— From RFC4342.

e This 1s still true.

— But the mechanisms have changed.

Response to Idle Periods:

e Current pseudocode:

— If (X_recv < recover_rate, and sender has been idle ever since
nofeedback timer was set)

e Don’t use X_recv to reduce sending rate.
e Initial versions of the draft (-00 and -01):

— The code for dealing with idle or data-limited periods
was 1n response to feedback packets, not in response to
the nofeedback timer.

— If (sender has been idle or data-limited)
e [ater versions of the draft (-02¢):

— The code for dealing with idle or data-limited periods
was moved to be 1n response to the nofeedback timer
(as it 1S now).

— If (X_recv < 4 packets per round-trip time, and sender has
been idle since nofeedback timer was set)

e Don’t use X_recv to reduce sending rate.

Response to Data-Limited Periods:

e This dratft:
— Follow Standard TCP, and don’t be limited by receive
rate during data-limited periods.

— If (the entire interval covered by the feedback packet was a
data-limited interval) {

Replace X_recv_set contents by Infinity;

e FHarlier -00, -01, and -02c revisions:

— During idle or data-limited periods, do be limited by
receive rate, but not below the initial sending rate.

— If (sender has been idle or data-limited within last two round-
trip times)
min_rate = max(2*X_recv, W_init/R);

Unused send credits:

e Specitied that the sender may maintain unused
sent credits up to one RTT.

— This gives behavior similar to TCP.

— A TFRC implementation MAY limit bursts to
less than one RTT, i1f desired.

e This was not explicitly addressed in RFC 3448, or
in earlier revisions of this dratft.

Basic Simulation Results - 1

e Long idle period behaviour.
e Sending rate never reduces below recover_rate

* Low receiver rate after idle period and initial startup rectified.

Bottleneck link = 1 0Mbps, 300ms; Sender sending at 50 pps, 160 bytes packets; Idle sender between 10s and 20s.
18000 T T T | T T

16000 pr —1 - 4
14000 | f ; : -
12000 F 1 i ; -
10000 : : f i

8000 f ann (i

Sending Rate (Bps)

6000 | | 1 | .
4000 bir H i

2000 | |- |

D 1 1 1 | 1 1 1 | 1

Time (s)
CCID 4 3448 -bis v2 -

Basic Simulation Results - 11

*[ong idle period behaviour.

*With loss, the sending rate 1s limited by the throughput
equation after the idle period.

Bottleneck link = 10Mbps, 300ms; Sender sending at S0 pps, 160 bytes packets; Idle sender between 10s and 20s. Loss = 10%, uniformly distributed
160[][] T T T T T T T T

14000 ™Y ' _ A
12000 | f 1 o -
10000 _ : (.

8000 | : | -

Sending Rate (Bps)

6000 || i j -
4000 | L : -

2000 7 by g ey ' N

=
pe

0

Time (5)
CCID 4: 3448-bis v2 -

Basic Simulation Results - 111

e Datalimited behaviour
e Low receiver rate problem rectified.
e 3448-bis now good for bursty traffic : gives high perceived quality.

Bottleneck link = 6llbps, Varying delay; Sender sending at 50 pps, 160 bytes packets; Varying Burst and Idle Parameters

1I‘I.'I | T I 1 !
*“““‘“mi-—-.._________\‘-_
80 | ' .
60 | _
o
o
0 ...
[r.
40 - _
20 |+ i, _
ﬂ | | | 1 |
0 50 100 150 200 250 300

Delay (ms)

CCID 4: 3448bis v2, (0.352,0.65) Burst/ldle —=—
CCID 4: 3448bis v2, (1.0,1.5) Burst/ldle

CCID 4: 3448bis v1, (0.352,0.65) Burstdle ---e---
CCID 4: 3448bis v1, (1.0,1.5) Burst/ldle

Change #1 from -02:

* For reducing sending rate during idle periods
during initial slow-start.

e Old:

Else if (X_recv < recover_rate, and
sender has been idle ever since nofeedback timer was set)
Timer_limit is not updated,;

e New:

Else if ((p>0 && X_recv < recover_rate) or

(o==0 && X < 2 * recover_rate)), and
sender has been idle ever since nofeedback timer was set)
Timer_limit is not updated;

Problem reported by Arjuna,

Change #2 trom -02:

* When datalimited and p =0, the sender still doubles the
allowed sending rate after each feedback packet.

e OId code, for when (p==0):
Else if ({_now - tld >=R) // initial slow-start
X = max(min(2*X, recv_limit), initial_rate);
tld = t_now;
 New code, for when (p==0):
Else if ({_now - tld >= R) and
(sender was not data-limited over entire feedback interval)
// initial slow-start
X = max(min(2*X, recv_limit), initial_rate);
tld = t_now;
Problem reported by Arjuna. (Fix not yet tested.)

Future work
(in a separate document):

e “Future work could explore alternate
responses to using the receive rate during a
data-limited period.”

— E.g., more like TCP with Congestion Window
Validation.

e At a minimum, we could have more limits
on *Increasing™ the allowed sending rate
during a data-limited period.

