TFRC for Voice: the VoIP Variant

Sally Floyd, Eddie Kohler.
November 2005

draft-ietf-dccp-tfrc-voip-02.txt

Slides: http://www.icir.org/floyd/talks.html

Graphics:
VoIP: fairness in Bps.

• In the TCP throughput equation, use the measured loss event rate and a packet size of 1460 bytes.

• Reduce the allowed transmit rate to account for the fraction of the VoIP bandwidth that would be used by 40-byte headers:

• Enforce a Min Interval between packets of 10 ms.

• For short loss intervals (at most two RTTs), count the actual packet loss rate (but don’t increase the number of loss intervals).
Report from the last IETF: Issues remaining

• The problem:
 – VoIP TFRC, with small packets, can see different packet drops that it would have with larger packets. When is this a problem?

• For simulations with configured byte drop rates (where small packets are less likely to be dropped than large packets):
 – When compared with 1460-byte TCP, even standard TFRC with small packets can get much more than its share of the bandwidth in times of high congestion.
The status for TFRC using small packets:

- **Configured *packet* drop rates:**
 - Standard TFRC with small packets doesn’t do well;
 - VoIP TFRC with small packets achieves reasonable fairness with large-packet TCP.

- **Configured *byte* drop rates:**
 - With byte drop rates, TCP sometimes does better with smaller packets.
 - Standard TFRC with small packets achieves reasonable fairness with TCP using the optimal packet size for that level of congestion.
 - VoIP TFRC with small packets achieves more bandwidth than TCP using optimal packet sizes.
Configured *packet* drop rates, with 200-byte TFRC segments, 1460-byte TCP segments:
Configured *byte* drop rates, with 14-byte TFRC segments, 1460-byte TCP segments:
Configured *byte* drop rates, with 14-byte TFRC segments, “optimal” TCP segment sizes:
Question from last time, and an answer:

- Is it ok to have congestion control for small-packet flows that lets small-packet flows receive more bandwidth than large-packet TCP flows in environments where small packets are less likely to be dropped than large ones?

- Answer: I think so, as an Experimental CCID. It seems that for many paths in the Internet, small packets don’t receive favorable treatment.
Drop rates with different packet sizes:

Downloads from web servers, from Alberto Medina.
Annotation: total # of drops / total # of packets