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Abstract

Residential broadband Internet connectivity is a mature and popular service in
many countries. Indeed, according to the Organization for Economic Co-operation
and Development (OECD), there are more than 260 million broadband customers
world-wide. Understanding the nature of residential traffic characteristics is im-
perative for network operators to design and develop future network configurations
and architectures. However, the growing world-wide user population and the in-
troduction of new services and applications continuously changes the way users
use the Internet. Furthermore, users’ demands and expectations change as well.
Therefore, traffic and security characteristics of residential networks have to be
evaluated regularly. Yet, only few studies have examined the characteristics and
security aspects of residential traffic, thus its makeup, dynamics, evolution, and
variations remain underexamined.

We, in this thesis, undertake such a study. We describe observations from more
than 20,000 residential DSL customers in an urban area. To ensure privacy and
confidentiality, all data is immediately anonymized. Our contribution is the char-
acterization of several different aspects of residential broadband traffic: We charac-
terize DSL sessions, prevalence and use of network address translation (NAT), and
network usage in terms of application layer protocols. Furthermore, we investigate
possible performance limitations and new devices that users employ to connect to
the Internet. Finally, we analyze network security, security-awareness, and risky
behavior in residential networks.

DSL session characteristics, such as bandwidth utilization and online times, and
NAT usage, e. g., the number of hosts connected per DSL lines, have implications
for accurately provisioning access networks. Optimal access network architectures
can increase customer satisfactions while decreasing complexity and cost. Likewise,
the makeup of traffic, such as the application protocol mix, greatly influences the
decisions of network operators and content providers on where to place popular
servers and what kind of network connectivity and quality-of-service is required.

Understanding performance limitations is another critical aspect of network stud-
ies. To optimize performance and quality-of-experience, current limitations need
to be known and characterized so that one can develop new protocols or tune the
default settings of current protocols to achieve better performance.

In addition, the ever increasing minituarization has given rise to new classes of
devices that users utilize to connect to the Internet. Mobile hand-held devices
(MHDs, e. g., iPhones or BlackBerrys) are ubiquitous today. However, little is
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known about how they are used—especially at home. Understanding character-
istics of such novel device traffic can help network operators to anticipate future
networking demands.

Furthermore, while conventional wisdom holds that residential users are responsi-
ble for much of today’s Internet insecurity, few systematic studies have examined
whether such views in fact reflect reality. To tackle security problems, one needs to
understand the prevalence of such problems and the factors that influence security
problems and malicious activity.

We, in this thesis, answer such questions. We introduce a tool that enables efficient
retrospective traffic analysis. We also characterize DSL sessions and NAT usage.
Surprisingly, we find that DSL-session run quite short in duration, with a median
duration of only 20–30minutes. Furthermore, we show that NAT gateways are
deployed on 90% of DSL lines and that more than 10% of DSL lines connect
multiple, concurrently active, hosts.

When we investigate application protocols, we find that HTTP dominates the
application mix by volume, accounting for more than 57% of bytes, while peer-to-
peer (P2P) only contributes 14–25%. Around the turn of the century HTTP was
the dominating protocol by byte volume. The advent of P2P networks changed
that and P2P dominated the protocol mix. Our study indicates that today HTTP
is again on the rise, while P2P is on the decline.

To assess malicious activity, we develop a set of metrics and analyze the relationship
between problems flagged by these metrics and security awareness (e. g., using
anti-virus software). Furthermore, we compare our results with a rural community
network in India. To our surprise, we find that both environments have similar
levels of problematic behavior, in both cases indicating only a small fraction of
malicious hosts. However, we also find that risky behavior is quite widespread and
that security awareness steps, such as using anti-virus updates, do not correlate
with a lower degree of malicious activity.



Zusammenfassung

In vielen Ländern sind Breitbandinternetanschlüsse für Privathaushalte ein pop-
ulärer Dienst. Gemäß OECD gibt es weltweit mehr als 260 Millionen Breitband-
kunden. Einerseits ist es für Netzbetreiber essentiell, diese Netze zu verstehen,
um zukünftige Netzarchitekturen entwickeln und planen zu können. Andererseits
ändert die wachsende Zahl an Internetnutzern sowie die Einführung von neuen Di-
ensten und Anwendungen ständig die Art und Weise, in der das Internet genutzt
wird. Auch die Anforderungen und Erwartungen von Nutzern ändern sich laufend.
Bisher haben sich jedoch nur wenige Studien mit den Charakteristiken und Sicher-
heitsaspekten von Breitbandanschlüssen beschäftigt.

Das Thema dieser Dissertation ist eine derartige Studie. Wir beschreiben Messun-
gen des Netzverkehrs von mehr als 20.000 privaten DSL-Kunden in einer Stadt.
Der Datenschutz wird zu jeder Zeit sichergestellt, indem alle Daten unverzüglich
anonymisiert werden. Der wissenschaftliche Beitrag dieser Dissertation ist die Cha-
rakterisierung von Breitbandinternetverkehr: Wir charakterisieren DSL-Verbind-
ungen, die Verwendung von Network Address Translation (NAT), sowie verwendete
Anwedungsprotokolle. Außerdem untersuchen wir mögliche Performanzprobleme
und analysieren den Verkehr neuartiger Endgeräte (z.B. Smartphones), welche von
Benutzern verwendet werden, um sich mit dem Internet zu verbinden. Die Unter-
suchung von Sicherheitsaspekten in unseren Netzumgebungen bildet den Abschluss
dieser Arbeit.

Die Eigenschaften von DSL-Verbindungen, wie Bandbreitenausnutzung und On-
linezeiten, sowie Charakteristiken von NAT, wie die Anzahl an Computern pro
DSL-Anschluss, haben Auswirkungen auf die Dimensionierung von Zugangsnet-
zen. Optimal dimensionierte Zugangsnetze können die Nutzerzufriedenheit steigern
und gleichzeitig Komplexität und Kosten senken. Auch die Zusammensetzung des
Verkehrs beeinflusst Entscheidungen von Netzbetreibern und Dienstanbietern, wie
die Platzierung von populären Servern, die Art der Netzanbindung und die nötigen
Quality-of-Service-Garantien.

Ein weiterer wichtiger Aspekt ist die Performanz. Nur wenn aktuelle Performanz-
probleme bekannt und charakterisiert sind, können neue, bessere Protokolle ent-
worfen werden oder Standardeinstellungen von aktuellen Protokollen so angepasst
werden, dass sie optimale Performanz und Kundenzufriedenheit liefern.

Des Weiteren hat die zunehmende Miniaturisierung eine neue Art von Geräten
entstehen lassen, mit denen Benutzer sich mit dem Internet verbinden. Mobile
Endgeräte sind heutzutage weit verbreitet und ermöglichen es, immer “online” zu
sein – egal wo man sich gerade befindet. Die Verkehrseigenschaften von solchen
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Geräten sind aber bisher kaum erforscht, insbesondere wenn sie zu Hause über
WiFi mit dem Internet verbunden sind. Die Kenntnis der Verkehrseigenschaften
von derartigen Geräten kann Netzbetreibern helfen, zukünftige Anforderungen an
ihre Netze zu erkennen.

Außerdem besagt eine weit verbreitete Ansicht, dass Privatnutzer für einen Großteil
der “Unsicherheit” im Internet verantwortlich sind. Allerdings haben sich bisher
nur wenige systematische Studien mit der Frage beschäftigt, ob solche Ansicht-
en der Wahrheit entsprechen. Um Sicherheitsprobleme lösen zu können, müssen
sowohl ihre Verbreitung, als auch Faktoren, die diese Probleme beeinflussen, bekan-
nt sein.

In dieser Dissertation beantworten wir derartige Fragen. Wir präsentieren ein Soft-
waretool für effiziente retrospektive Verkehrsanalysen. Des Weiteren charakterisier-
en wir DSL-Verbindungen und die Verwendung von NAT. Zu unser Überraschung
stellen wir fest, dass Onlinezeiten im Allgemeinen sehr kurz sind, was wiederum
zu einem häufigem Wechsel der IP-Adressen führt. Wir zeigen auch, dass NAT-
Gateways von über 90% der DSL-Anschlüsse verwendet werden und dass an mehr
als 10% der Anschlüsse mehrere Computer gleichzeitig aktiv sind.

Wenn wir die Zusammensetzung des Netzverkehrs analysieren, stellen wir fest,
dass HTTP dominiert. Über 57% des Datenvolumens werden von HTTP verur-
sacht, wohingegen Peer-to-Peer-Protokolle (P2P) nur 14–25% zum Gesamtvolu-
men beitragen. Zur Jahrhundertwende hat HTTP dominiert. Durch die Einführung
von P2P-Netzen hat sich das grundlegend verändert. Seitdem dominierte P2P. Un-
sere Untersuchung zeigt, dass das Pendel wieder zurück schwingt und dass HTTP-
Verkehr zunimmt, während P2P-Verkehr abnimmt.

Um Sicherheitsprobleme zu finden, entwickeln wir mehrere Metriken – sowohl Sig-
naturen von bekannter Schadsoftware, als auch verhaltensbasierte Methoden. Wir
analysieren den Einfluss des Sicherheitsbewusstseins von Benutzern (z.B. Verwen-
dung von Antivirensoftware) auf Probleme, die von diesen Metriken erkannt wer-
den. Wir führen dieselben Analysen auch in einem Gemeinschaftsnetz in einer
ländlichen Region Indiens durch. Zu unserer Überraschung stellen wir fest, dass
wir in beiden Netzen eine ähnliche Menge an Sicherheitsproblemen finden – in
beiden Fällen finden wir deutlich weniger infizierte Computer als man erwarten
würde. Andererseits mussten wir feststellen, dass riskantes Verhalten relativ weit
verbreitet ist und dass übliche Gegenmaßnahmen, wie Antivirensoftware, nicht mit
einer geringeren Infektionswahrscheinlichkeit korreliert.
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Chapter 1

Introduction

Residential broadband Internet connectivity is a mature service in many coun-
tries. According to the Organization for Economic Co-operation and Development
(OECD) there are more than 260 million broadband customers world-wide. This
foundation of rich access allows users to tightly integrate network use into their
lives—from checking the weather or sports scores to shopping and banking to com-
municating with family and friends in myriad ways. However, the nature of the
connectivity differs from previously studied environments such as campus networks
and enterprises in salient ways. First, users of residential broadband connections
will often have different goals than those in other environments, and are not subject
to the same sorts of strict acceptable use policies that may regulate their access
at work or at school, such as prohibitions against accessing certain Web sites or
employing certain applications. In addition, we expect that the users who set up
hosts and ancillary equipment in residences often have no expertise in system ad-
ministration, nor much desire to understand any more than is necessary to “make
it work”. Unlike for campuses (and to a lesser extent, enterprises), researchers
rarely have large-scale access to residential traffic, and thus its makeup, dynamics,
and variations remain underexamined. Understanding traffic characteristics and
user behavior of residential networks is important to accurately design, plan, and
provision future network architectures.

Furthermore, the ever increasing minituarization has given rise to new classes of
devices that users utilize to connect to the Internet. Mobile hand-held devices
(MHDs, e. g., iPhones or BlackBerrys) are ubiquitous today. However, little is
known about how they are used—especially at home. Understanding character-
istics of such novel device traffic can help network operators to anticipate future
networking demands.

Finally, conventional wisdom says that residential users or users of community
networks are responsible for much of today’s Internet insecurity as they typically
lack the means to maintain and secure their systems to the necessary degree. In
particular, this must be the case for rural or developing regions, where the lack
of infrastructure and technical expertise further limits the sophistication of their
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protection. However, so far few systematic studies have examined whether this
presumption reflects reality. In addition, no studies have examined the influence
of security awareness, such as using anti-virus software or risky behavior (e. g.,
visiting potentially dangerous websites) on the level of malicious activity.

We, in this thesis, undertake a study to answer these questions. We base our
analysis on observations of more than 20,000 residential DSL lines from a major
European ISP. To ensure user privacy and confidentiality, all data is immediately
anonymized. Furthermore, for some of our findings, we also compare the results
from the European ISP to other network environments, including a university
network, a large research lab, and a community network in rural India that connects
several thousand users to the Internet.

These unique vantage points provide a broad view of Internet traffic—in particular
residential Internet traffic—enabling more comprehensive and detailed character-
izations than was possible in previous work, such as Cho et al.’s studies based
on backbone traces [24, 25, 46], other work that examined specific applications
like P2P-assisted content distribution [60] and Skype [19], or studies using active
measurements [35].

1.1 Goals

A first step towards this goal is understanding DSL session and network level
characteristics. We want to understand whether users are always connected to
the Internet or whether they connect on-demand and then quickly disconnect once
they are done. Furthermore, network address translation (NAT) is commonly
used to connect to the Internet. We want to detect NAT gateways and investigate
whether users connect using such gateways and if they do whether they connect
only a single host or multiple hosts. Answering these questions will also shed light
on how well IP addresses can be used as end-host identifiers.

For ISPs and content providers it is important to know which kind of contents
and applications are popular, since different content types and application proto-
cols require different traffic engineering approaches. We analyze the application
layer protocol mix and investigate the most popular protocol, HTTP, in more
depth. Next, we investigate network performance characteristics to assess whether
current transport protocols and their default settings are sufficient to utilize the
available network resources, or whether these settings limit the achievable quality-
of-experience of users.
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Finally, we examine malicious activity and risky behavior of residential users to
understand whether residential users are indeed responsible for most of today’s
Internet insecurity. We also assess the influence of security awareness and risky
behavior on malicious activity.

In summary, we, in this thesis, answer the following questions with regard to
residential networks:

• How can one efficiently record, index, and retrieve network traffic over longer
periods of time in order to facilitate retrospective analyses.

• Are well established properties of network traffic, such as the heavy-tailedness
of flow sizes and volume per host still applicable?

• How persistent are IP addresses and over what time-scales can they be used
as host (or DSL line) identifier?

• How can we detect NAT usage? What is the current deployment level of
NAT and how many hosts are connected behind such a NAT gateway?

• How can one reliably identify application layer protocols? What are the
popular application layer protocols used by residential customers and what
are their characteristics?

• Can we rely on transport layer port numbers to classify traffic?

• What level of network performance do users experience and what are the
limiting factors? To what degree are performance enhancing options (e. g.,
TCP window scaling) deployed?

• What is the traffic share of mobile devices and how does mobile device traffic
differ from overall residential traffic?

• How can we detect hosts that are infected with malware and how prevalent
are they? Do common counter-measures, such as regular software updates,
or risky behavior influence the likelihood of infections?

• How does malicious activity differ between residential networks in Europe,
security conscious enterprise networks, and rural community networks in
developing countries?
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1.2 Unexpected Results

Our study discovered a number of results we find surprising in terms of the stan-
dard “mental models” one develops from the Internet measurement and security
literature and by talking with operators and colleagues. For example:

• In our residential network HTTP traffic, not peer-to-peer, dominates. Over-
all, HTTP makes up nearly 60% of traffic by bytes while peer-to-peer con-
tributes roughly 14%. Even if we assume that all unclassified traffic is peer-
to-peer, this latter figure only rises to one-quarter, confirming contempora-
neous observations [41, 69, 98] from other network environments.

• DSL sessions run quite short in duration, with a median length of only 20–
30min. The short lifetime affects the rate of IP address reassignments, and
we find 50% of addresses are assigned at least twice in 24 h, and 1–5% of
addresses more than 10 times, with significant implications for IP address
aliasing. NAT gateways are widely deployed and up to 49% of DSL lines con-
nect multiple hosts to the Internet. Furthermore, 10% of DSL lines connect
multiple concurrently active hosts.

• Delays experienced from a residence to the ISP’s Internet gateway often
exceed those over the wide-area path from the gateway to the remote peer.
We find a median local component of 46ms (due to DSL interleaving), versus
a median remote component of 17ms.

• Users rarely employ the full capacity of their lines, confirming observations
by Siekkinen et al. [105]. 802.11 wireless networking in customers’ homes,
and TCP settings on the residential systems, appear to limit the achievable
throughput.

• We find only a small fraction of actively malicious hosts both at a European
ISP as well as a rural community network in India. Indeed, a comparison of
these two environments shows that there is no significant difference in the
levels of malicious activity.

• While OS software updates and anti-virus technology are widely deployed we
do not find a correlation with a lower degree of malicious activity. Likewise,
while we observe frequent risky behavior we find that such behavior does not
increase the probability of malicious activity as much as one might presume.
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1.3 Terminology

For clarity of exposition, we define the following terms. A line denotes a physical
DSL line as identified by a line-card identifier. We define a DSL-level session as
the period when the DSL modem and the line-card are together in operation. We
refer to the network between the monitoring point and the customer as the local
side, as opposed to the remote side (remainder of the Internet). Similarly, the
customer sends upstream traffic and receives downstream traffic. A flow refers to
unidirectional data transmission at the usual 5-tuple granularity (IP addresses,
transport protocol, transport ports). A connection is a bi-directional transport-
level communication channel, demarked for TCP by the usual control packets
(SYN, FIN/RST) and for UDP by the the arrival of the first packet and the
absence of activity detected using an idle timeout (20 sec). For TCP we further
consider the connection as having terminated if we do not observe any packets
for 180 sec. Finally, the originator endpoint actively initiated the connection, as
opposed to the responder, which passively awaited the connection request.

We commonly present the distribution of measurement data as empirical proba-
bility density functions (PDFs), empirical cumulative density functions (CDFs),
and empirical complimentary cumulative density functions (CCDFs). We refer to
these empirical functions using the abbreviations PDF, CDF, and CCDF. PDFs
are obtained by the density estimators of R and Splus.

1.4 Structure of This Thesis

The remainder of this thesis is structured as follows: In Chapter 2 we present our
data sets and vantage points we use in this thesis.

In Chapter 3 we introduce the Time Machine (TM), a tool that enables efficient
retrospective network traffic analysis. In many situations it can be important to
archive the raw contents of a network traffic stream to disk to enable later in-
spection. Yet, traffic volumes can total several TB per day, rendering wholesale
recording infeasible in many environments. We develop a TM for efficient record-
ing, indexing and retrieval of historic network data, that can be used in high-
throughput network environments. Using a simple heuristic we are able to reduce
traffic volume by more than 90% while still retaining over 90% of connections in
their entirety.

The thesis continues in Chapter 4 with observations from the network activity of
more than 20,000 residential DSL lines. We show that online times of DSL lines
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are short, resulting in high IP address churn. We also develop a novel methodology
to detect network address translation (NAT) and find that 90% of DSL lines use
NAT gateways and that up to 49% of lines connect more than one host via such
NAT gateways.

To understand popular applications among the user population, we examine the
application protocol mix in Chapter 5. Surprisingly, we find that HTTP accounts
for more than 57% of all bytes, with P2P only contributing about 14% of bytes.
In order to understand why HTTP is the most popular protocol we conduct a
more in-depth analysis of HTTP and find that 25% of HTTP traffic is caused by
flash-video downloads (e.g., from YouTube).

In Chapter 6 we investigate performance characteristics in terms of TCP option
usage, observed round-trip-times, and achievable throughput per DSL line and
application. We show that DSL lines hardly ever utilize their available bandwidth,
mostly due to settings on the local host.

The next part of this thesis, Chapter 7, investigates the use of mobile hand-held
devices (MHDs, e.g., iPhones). MHDs are ubiquitous today and enable people
to be “online” wherever they are. We investigate MHD usage when the MHD is
connected via WiFi at home. The key findings are that iPhones and iPods are
the most commonly observed MHDs and that the largest fractions of MHD HTTP
volume are multimedia and application downloads.

The final part of this thesis, Chapter 8, analyzes malicious activity and risky be-
havior of residential users. We use the Time Machine to record traces of sufficient
length for security analyses without exceeding the available disk space. Conven-
tional wisdom holds that residential users are responsible for much of today’s
Internet insecurity. To assess malicious activity, we develop a set of metrics—
including signatures for known malware and behavioral techniques—and analyze
the relationship between problems flagged by these metrics and security awareness
(e. g., using anti-virus software). Furthermore, we compare our results with a rural
community network in India. To our surprise, we find that both environments
have similar levels of problematic behavior, in both cases indicating only a small
fraction of malicious hosts. However, we also find that risky behavior is quite
widespread and that security awareness steps, such as using anti-virus updates, do
not correlate with a lower degree of malicious activity.

Finally, we conclude this thesis in Chapter 9.



7/156

Chapter 2

Data Sets and Vantage Points

We base our study on a variety of passive network measurements. We use passive,
anonymized packet-level traces and live measurements at various vantage points.
Live measurements are important in order to assess performance characteristics of
deployed measurement tools and security systems, such as Network Intrusion De-
tection Systems (NIDS). Packet traces are invaluable for performing analyses that
cannot be performed using live traffic due to resource constraints. Furthermore,
packet traces facilitate reproduceability and enable us to investigate new aspects
of network traffic that only became relevant in retrospect. We first describe the
different vantage points and network environments before listing the traces we use
for this study.

2.1 Residential Broadband Network

Many analyses in this thesis are based on anonymized packet level traces of resi-
dential DSL connections collected at an aggregation point within a large European
ISP. Overall, the ISP has roughly 10 million (4%) of the 260 million worldwide
broadband subscribers [82]. They predominantly use DSL. The access bandwidth
of the monitored lines varies between 1,200/200Kbps (downstream/upstream) and
17,000/1,200Kbps, with the exact rate depending on both the customer’s contract
and their distance from the DSLAM (the ISP’s line-card). In the portion of the
network we monitored most users had distances low enough to in principle support
17Mbps. The ISP does not use any traffic filter or traffic shaper.

Our monitoring vantage point allows us to observe more than 20,000 DSL lines
from one urban area, connected to one access router, for which we employed Endace
DAG network monitoring cards [40] for traffic capture. The data anonymization,
classification, as well as application protocol specific header extraction is performed
immediately on the secured measurement infrastructure using the Bro NIDS [86]
with dynamic protocol detection [36]. We label traces from this ISP as ISP.
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In addition, we gathered anonymized DSL session information, including the ses-
sion start and end times, anonymized IP address, anonymized line-card identi-
fier, and the configured access-bandwidth. These DSL session traces allow us
to uniquely identify DSL lines as IP addresses are subject to re-assignment and
churn.

2.2 AirJaldi Network in India

The AirJaldi [5] wireless network is a non-profit community network in the Hi-
malayas of India. Using approximately 400 wireless routers, it covers a radius of
80 km in and around the city of Dharamsala. AirJaldi connects up to 10,000 users
and several thousand machines with two leased lines from broadband ISPs, which
provide a total uplink capacity of 10Mbps.

The majority of the rural population accesses the Internet via publicly shared
machines in cyber cafes and at Non Government Organizations (NGOs). In ad-
dition, several hundred residential users connect to the network with individually
administrated machines.

AirJaldi uses a multi-tiered network address translation (NAT) architecture, where
NAT gateways are connected through other NAT gateways. Due to this architec-
ture we cannot distinguish individual end-systems at our monitoring point, which
is located at the central uplink router. Our NAT detection approach, which is
based on OS diversity, see Section 4.1.3, can likewise not reliably estimate the
number of hosts behind such NAT gateways with many hosts.

2.3 Lawrence Berkeley National Laboratory

The Lawrence Berkeley National Laboratory (LBNL) is a large research institute
with more than 12,000 registered hosts connected to the Internet via a 10Gbps
uplink. LBNL’s traffic amounts to several TB per day. Our monitoring link here
is a 10Gbps tap into the upstream traffic. Since LBNL offers an open research
environment LBNL’s security policy is very liberal and defaults to unrestricted
access. LBNL has however a staff security team actively monitoring its network
for malicious activity. Systems found to be compromised are taken off the network
immediately.
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2.4 University Networks

The Münchner Wissenschaftsnetz (Munich Scientific Research Network, MWN)
connects two major universities and affiliated research institutes to the Inter-
net (roughly 50,000 hosts). MWN has a 10Gbps uplink, and its traffic totals
3–6TB/day. Since our monitoring comes from a 1Gbps SPAN port, data rates
can reach this limit during peak hours, leading to truncation. The University
of California, Berkeley (UCB) has about 45,000 hosts. It is connected to the
Internet by two 1Gbps links and has several TB of traffic per day. As SPAN
ports of the two upstream routers are aggregated into one 1Gbps monitoring link,
we can again reach capacity limits during peak times. We use these university
environments only to assess the performance of the Time Machine in Chapter 3.

2.5 Anonymized Packet-Traces

For our analysis we use the following anonymized packet-level traces collected at
the environments mentioned above. Table 2.1 provides an overview of the data
traces from the European ISP we use for characterizing residential broadband
traffic (see Chapter 4, Chapter 5, Chapter 6, and Chapter 7). The table includes
the time when the trace was gathered and overall size. While we typically do not
experience any packet loss, there are several multi-second periods (< 5min overall
per trace) with no packets to due OS/file-system interactions. WEEK reflects 14
different traces of 90minutes each collected over the course of one week. These
traces were gathered twice per day: during the busy-hour and during the night-
time “off-hour”.

In addition, we gathered anonymized DSL session information (see Table 2.2),
including the session start and end times, anonymized IP address, anonymized
line-card identifier, and the configured access-bandwidth. Along with DSL session
traces for each of our packet measurements, we obtained a 10-day DSL session-only
trace from Jan 2009 (TEN), as well as six separate 24 h session-only traces recorded
every 4th day in Jan–Feb 2009 (EVERY4).

For analyzing malicious activity and risky behavior, we want a longer observation
period in order to be able to analyze how such activity changes over the course
of several days. However, due to the high volume it is not feasible to record
the full data stream for a 14-day period, and we therefore take advantage of the
“Time Machine” (TM) (see Chapter 3) to reduce the stored amount of data. The
Time Machine records only the first n KB of each connection and discards the
remainder. We use n=50KB. Since we employ Endace monitoring cards and
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Table 2.1: Summary of anonymized packet traces for the European ISP.

Name Start date Duration Size
WEEK Sat Aug 02, 2008 4am 14× 90min ≈ 100–600GB ea.
SEP08 Thu Sep 18, 2008 4am 24h ≈ 4TB
APR09 Wed Apr 01, 2009 2am 24h ≈ 4TB
AUG09a (day1) Fri Aug 21, 2009 2am 24h ≈ 6TB
AUG09b (day2) Sat Aug 22, 2009 2am 24h ≈ 5TB

Table 2.2: Summary of additional anonymized DSL session information
for the European ISP.

Name Start date Duration Loss
TEN Tue Jan 08, 2009 10 days none
EVERY4 Thu Jan 20, 2009 6× 24 h; every 4 days none

Table 2.3: Trace summaries for the European ISP and LBNL collected
via Time Machine (TM).

Size
Location Start date Duration unfiltered after TM Loss
ISP Sat Mar 13, 2010 14 days ≈ 88TB ≈ 8TB 0%
LBNL Thu Apr 29, 2010 4 days ≈ 24TB ≈ 330GB 0.2%

Table 2.4: Trace summaries for the Indian AirJaldi network.

Name Start date # obs. IPs Duration Size Loss
AirJaldi1 Wed Mar 10, 2010 ≈ 260 40 h ≈ 60GB 0.35%
AirJaldi2 Sat Mar 13, 2010 ≈ 180 34 h ≈ 30GB 1.07%
AirJaldi3 Thu Apr 22, 2010 ≈ 260 34 h ≈ 50GB 0.44%



2.5 Anonymized Packet-Traces 11/156

discard the bulk of the data, we do not experience any packet loss. The traces’
specifics are summarized in Table 2.3.

At LBNL we use one 4 day long packet-level trace collected using the Time Machine
for security analysis. The trace covers two weekdays and a weekend, with a total
of 7,000 active hosts during that period. As individual large flows are common in
LBNL’s traffic, the Time Machine is generally able to skip a larger percentage of
the total byte volume than in a typical ISP environment. In addition, the LBNL
Time Machine also uses a smaller cut-off value (25KB) than we configured at the
European ISP. During our recording interval, 0.2% of the packets were reported
dropped by the capture mechanism.

Furthermore, we compare malicious activity to the rural AirJaldi community net-
work. We gathered three full packet traces at AirJaldi in March and April 2010.
The duration of each trace is between 34–40 h and we observe 180–260 distinct local
IP addresses per trace. The traces for AirJaldi are summarized in Table 2.4.
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Chapter 3

Enriching Network Security Analysis with

Time Travel

In many situations it can be enormously helpful to archive the raw contents of a
network traffic stream to disk, to enable later inspection of activity that becomes
interesting only in retrospect. We present a Time Machine (TM) for network traf-
fic that provides such a capability. The TM leverages the heavy-tailed nature of
network flows to capture nearly all of the likely-interesting traffic while storing
only a small fraction of the total volume. An initial proof-of-principle prototype
established the forensic value of such an approach, contributing to the investigation
of numerous attacks at a site with thousands of users. Based on these experiences,
a rearchitected implementation of the system provides flexible, high-performance
traffic stream capture, indexing and retrieval, including an interface between the
TM and a real-time network intrusion detection system (NIDS). The NIDS controls
the TM by dynamically adjusting recording parameters, instructing it to perma-
nently store suspicious activity for offline forensics, and fetching traffic from the
past for retrospective analysis. We present a detailed performance evaluation of
both stand-alone and joint setups, and report on experiences with running the
system live in high-volume environments.

3.1 Motivation and Background

When investigating security incidents or trouble-shooting performance problems,
network packet traces—especially those with full payload content—can prove in-
valuable. Yet in many operational environments, wholesale recording and reten-
tion of entire data streams is infeasible. Even keeping small subsets for extended
time periods has grown increasingly difficult due to ever-increasing traffic volumes.
However, almost always only a very small subset of the traffic turns out to be rel-
evant for later analysis. The key difficulty is how to decide a priori what data will
be crucial when subsequently investigating an incident retrospectively.
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For example, consider the Lawrence Berkeley National Laboratory (LBNL), a
security-conscious research lab (≈ 12,000 hosts, 10Gbps Internet connectivity).
The operational cybersecurity staff at LBNL has traditionally used bulk-recording
with tcpdump to analyze security incidents retrospectively. However, due to the
high volume of network traffic, the operators cannot record the full traffic volume,
which averages 1.5TB/day. Rather, the operators configure the tracing to omit
10 key services, including HTTP and FTP data transfers, as well as myriad high-
volume hosts. Indeed, as of this writing the tcpdump filter contains 72 different
constraints. Each of these omissions constitutes a blind spot when performing
incident analysis, one very large one being the lack of records for any HTTP ac-
tivity.

In this chapter we develop a system that uses dynamic packet filtering and buffering
to enable effective bulk-recording of large traffic streams, coupled with interfaces
that facilitate both manual (operator-driven) and automated (NIDS-driven) retro-
spective analysis. As this system allows us to conveniently “travel back in time,”
we term the capability it provides Time Travel, and the corresponding system a
Time Machine (TM)1. The key insight is that due to the “heavy-tailed” nature of
Internet traffic [84, 87], one can record most connections in their entirety, yet skip
the bulk of the total volume, by only storing up to a (customizable) cutoff limit of
bytes for each connection. We show that due to this property it is possible to buffer
several days of raw high-volume traffic using commodity hardware and a few hun-
dred GB of disk space, by employing a cutoff of 10–20 KB per connection—which
enables retaining a complete record of the vast majority of connections.

Preliminary work explored the feasibility of this approach and presented a pro-
totype system that included a simple command-line interface for queries [63]. In
this chapter we build upon experiences derived from ongoing operational use at
LBNL of that prototype, which led to a complete reimplementation of the system
for much higher performance and support for a rich query-interface. This oper-
ational use has also proven the TM approach as an invaluable tool for network
forensics: the security staff of LBNL now has access to a comprehensive view of
the network’s activity that has proven particularly helpful with tracking down the
ever-increasing number of attacks carried out over HTTP.

At LBNL, the site’s security team uses the original TM system on a daily basis
to verify reports of illegitimate activity as reported by the local NIDS installation
or received via communications from external sites. Depending on the type of
activity under investigation, an analyst needs access to traffic from the past few

1For what it’s worth, we came up with this name well before its use by Apple for their backup
system, and it appeared in our 2005 IMC short paper [63].
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hours or past few days. For example, the TM has enabled assessment of illegiti-
mate downloads of sensitive information, web site defacements, and configuration
holes exploited to spam local Wiki installations. The TM also proved crucial in
illuminating a high-profile case of compromised user credentials [27] by providing
evidence from the past that was otherwise unavailable.

Over the course of operating the original TM system within LBNL’s production
setup (and at experimental installations in two large university networks), several
important limitations of the first prototype became apparent and led us to develop
a new, much more efficient and feature-enhanced TM implementation that is cur-
rently running there in a prototype setup. First, while manual, analyst-driven
queries to the TM for retrieving historic traffic are a crucial TM feature, the great
majority of these queries are triggered by external events such as NIDS alerts.
These alerts occur in significant volume, and in the original implementation each
required the analyst to manually interact with the TM to extract the correspond-
ing traffic prior to inspecting it to assess the significance of the event. This process
becomes wearisome for the analyst, leading to a greater likelihood of overlooking
serious incidents; the analyst chooses to focus on a small subset of alerts that ap-
pear to be the most relevant ones. In response to this problem, our current system
offers a direct interface between the NIDS and the TM: once the NIDS reports an
alert, it can ask the TM to automatically extract the relevant traffic, freeing the
analyst of the need to translate the notification into a corresponding query.

In addition, we observed that the LBNL operators still perform their traditional
bulk-recording in parallel to the TM setup,2 as a means of enabling occasional ac-
cess to more details associated with problematic connections. Our current system
addresses this concern by making the TM’s parameterization dynamically adapt-
able: for example, the NIDS can automatically instruct the redesigned TM to
suspend the cutoff for hosts deemed to be malicious.

We also found that the operators often extract traffic from the TM for additional
processing. For example, LBNL’s analysts do this to assess the validity of NIDS
notifications indicating that a connection may have leaked personally identifiable
information (PII). Such an approach reflects a two-tiered strategy: first use cheap,
preliminary heuristics to find a pool of possibly problematic connections, and then
perform much more expensive analysis on just that pool. This becomes tenable
since the volume is much smaller than that of the full traffic stream. Our current
system supports such an approach by providing the means to redirect the relevant
traffic back to the NIDS, so that the NIDS can further inspect it automatically. By
coupling the two systems, we enable the NIDS to perform retrospective analysis.

2One unfortunate side-effect of this parallel setup is a significantly reduced disk budget available
to the TM.
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Finally, analysis of the initial TM prototype in operation uncovered a key perfor-
mance challenge in structuring such a system, namely the interactions of indexing
and recording packets to disk while simultaneously handling random access queries
for historic traffic. Unless we carefully structure the system’s implementation to ac-
commodate these interactions, the rigorous real-time requirements of high-volume
packet capture can lead to packet drops even during small processing spikes.

Our contribution is the development of a system that both supports such capture
and provides the capabilities required to use it effectively in operational practice,
namely dynamic configuration, and automated querying for retrospective analysis.
We provide the latter in the context of interfacing the TM with the open-source Bro
NIDS, and present and evaluate several scenarios for leveraging the new capability
to improve the detection process.

The remainder of this chapter is structured as follows. In Section 3.2 we introduce
the basic filtering structure underlying the TM. We present a design overview of
the TM, including its architecture and remote control capabilities, in Section 3.3.
In Section 3.4 we evaluate the performance of the TM when deployed in high-
volume network environments. In Section 3.5 we couple the TM with a NIDS. We
discuss deployment trade-offs in Section 3.6 and related work in Section 3.7. We
finish with a summary in Section 3.8.

3.2 Exploiting Heavy-Tails

The key strategy for efficiently recording the contents of a high-volume network
traffic stream comes from exploiting the heavy-tailed nature of network traffic:
most network connections are quite short, with a small number of large connec-
tions (the heavy tail) accounting for the bulk of total volume [84, 87]. Thus, by
recording only the first N bytes of each connection (the cutoff ), we can record
most connections in their entirety, while still greatly reducing the volume of data
we must retain. For large connections, we keep only the beginning; however, for
many uses the beginning of such connections is the most interesting part (contain-
ing protocol handshakes, authentication dialogs, data items names, etc.). Faced
with the choice of recording some connections completely versus recording the be-
ginning of all connections, we generally prefer the latter. (We discuss the evasion
risk this trade-off faces, as well as mitigation strategies, in Section 3.6.)

To directly manage the resources consumed by the TM, we configure the system
with disk and memory budgets, which set upper bounds on the volume of data
retained. The TM first stores packets in a memory buffer. When the budgeted
buffer fills up, the TM migrates the oldest buffered packets to disk, where they
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Figure 3.1: Required Time Machine buffer size with tr = 4d and 10KB
cutoff.

reside until the TM’s total disk consumption reaches its budgeted limit. After
this point, the TM begins discarding the oldest stored packets in order to stay
within the budget. Thus, in steady-state the TM will consume a fixed amount of
memory and disk space, operating continually (months at a time) in this fashion,
with always the most recent packets available, subject to the budget constraints.

As described above, the cutoff and memory/disk budgets apply to all connections
equally. However, the TM also supports defining storage classes, each characterized
by a BPF filter expression, and applying different sets of parameters to each of
these. Such classes allow, for example, traffic associated with known-suspicious
hosts to be captured with a larger cutoff and retained longer (by isolating its
budgeted disk space from that consumed by other traffic).

We now turn to validating the effectiveness of the cutoff-based approach in reducing
the amount of data we have to store. To assess this, we use a simulation driven off
connection-level traces. The traces record the start time, duration, and volume of
each TCP connection seen at a given site. Such traces capture the nature of their
environment in terms of traffic volume, but with much less volume than would full
packet-level data, which can be difficult to record for extended periods of time.
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Since we have only connection-level information for the simulation, we approximate
individual packet arrivals by modeling each connection as generating packets at a
constant rate over its duration, such that the total number of (maximum-sized)
packets sums to the volume transferred by the connection. Clearly, this is an
oversimplification in terms of packet dynamics; but because we consider traffic
at very large aggregation, and at time scales of hours/days, the inaccuracies it
introduces are negligible [122].

For any given cutoff N , the simulation allows us to compute the volume of packet
data currently stored. We can further refine the analysis by considering a specific
retention time tr, defining how long we store packet data. While the TM does
not itself provide direct control over retention time, with our simulation we can
compute the storage the system would require (i.e., what budget we would have
to give it) to achieve a retention time of at least tr.

For our assessment, we used a set of connection-level logs gathered between Novem-
ber 5–18, 2007, at three institutions: Münchner Wissenschaftsnetz (Munich Scien-
tific Research Network, MWN), Lawrence Berkeley National Laboratory (LBNL),
and University of California, Berkeley (UCB). See Chapter 2 for details of these
vantage points.

The connections logs contain 3120M (UCB), 1898M (MWN), and 218M (LBNL)
entries respectively. The logs reveal that indeed 91–94% of all connections at the
three sites are shorter than a cutoff value of N =10KB. With a cutoff of 20KB,
we can record 94–96% of all connections in their entirety. (Of all connections,
only 44–48% have any payload. Of those, a cutoff value of N =10KB truncates
14–19%; N =20KB truncates 9–13%.)

Figure 3.1 plots the disk budget required for a target retention time tr =4days,
when employing a 10KB cutoff. During the first 4 days we see a ramp-up phase,
during which no data is evicted because the retention time tr has not yet passed.
After the ramp-up, the amount of buffer space required stabilizes, with variations
stemming from diurnal patterns. For LBNL, a quite modest buffer of 100GB
suffices to retain 4 days of network packets. MWN and UCB have higher buffer
requirements, but even in these high-volume environments buffer sizes of 1–1.5TB
suffice to provide days of historic network traffic, volumes within reach of commod-
ity disk systems, and an order of magnitude less than required for the complete
traffic stream.
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3.3 The Time Machine Design

In this section we give an overview of the design of the TM’s internals, and its
query and remote-control interface, which enables coupling the TM with a real-
time NIDS (Section 3.5). What we present reflects a complete reworking of the
original approach framed in [63], which, with experience, we found significantly
lacking in both necessary performance and operational flexibility.

3.3.1 Architecture

While in some ways the TM can be viewed as a database, it differs from conven-
tional databases in that (i) data continually streams both into the system and out
of it (expiration), (ii) it suffices to support a limited query language rather than
full SQL, and (iii) it needs to observe real-time constraints in order to avoid failing
to adequately process the incoming stream.

Consequently, we base the TM on the multi-threaded architecture shown in Fig-
ure 3.2. This structure can leverage multiple CPU cores to separate recording and
indexing operations as well as external control interactions. The Capture Thread is
responsible for: capturing packets off of the network tap; classifying packets; mon-
itoring the cutoff; and assigning packets to the appropriate storage class. Index
Threads maintain the index data to provide the Query Threads with the ability to
efficiently locate and retrieve buffered packets, whether they reside in memory or
on disk. The Index Aggregation Thread does additional bookkeeping on index files
stored on disk (merging smaller index files into larger ones), and User Interface
Threads handle interaction between the TM and users or remote applications like
a NIDS.

Packet Capture

The Capture Thread uses libpcap to access the packets on the monitored link and
potentially prefilter them. It passes the packets on to Classification.

Classification

The classification stage maps packets to connections by maintaining a table of all
currently active connections, as identified by the usual 5-tuple. For each connec-
tion, the TM stores the number of bytes already seen. Leveraging these counters,
the classification component enforces the cutoff by discarding all further packets
once a connection has reached its limit. In addition to cutoff management, the
classification assigns every connection to a storage class. A storage class defines
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# Query. Results are sent via network connection.

query feed nids-61367-0 tag t35654 index conn4 "tcp 1.2.3.4:42 5.6.7.8:80"

subscribe

# In-memory query. Results are stored in a file.

query to_file "x.pcap" index ip "1.2.3.4" mem_only start 1200253074 end

1200255474 subscribe

# Dynamic class assignment.

set_dyn_class 5.6.7.8 alarm

Figure 3.3: Example query and control commands of the Time Machine.

which TM parameters (cutoff limit and budgets of in-memory and on-disk buffers)
apply to the connection’s data.

Storage Classes

Each storage class consists of two buffers organized as FIFOs. One buffer is located
within the main memory; the other is located on disk. The TM fills the memory
buffer first. Once it becomes full, the TM migrates the oldest packets to the
disk buffer. Buffering packets in main memory first allows the TM (i) to better
tolerate bandwidth peaks by absorbing them in memory before writing data to
disk, and (ii) to rapidly access the most recent packets for short-term queries, as
we demonstrate in Section 3.5.4.

Indexing

The TM builds indexes of buffered packets to facilitate quick access to them. How-
ever, rather than referencing individual packets, the TM indexes all time intervals
in which the associated index key has been seen on the network. Indexes can be
configured for any subset of a packet’s header fields, depending on what kind of
queries are required. For example, setting up an index for the 2-tuple of source
and destination addresses allows efficient queries for all traffic between two hosts.
Indexes are stored in either main memory or on disk, depending on whether the
indexed data has already been migrated to disk.

3.3.2 Control and Query Interface

The TM provides three different types of interfaces that support both queries
requesting retrieval of stored packets matching certain criteria, and control of the
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TM’s operation by changing parameters like the cutoff limit. For interactive usage,
it provides a command-line console into which an operator can directly type queries
and commands. For interaction with other applications, the TM communicates via
remote network connections, accepting statements in its language and returning
query results. Finally, combining the two, we developed a stand-alone client-
program that allows users to issue the most common kinds of queries (e.g, all
traffic of a given host) by specifying them in higher-level terms.

Processing of queries proceeds as follows. Queries must relate to one of the indexes
that the TM maintains. The system then looks up the query key in the appropriate
index, retrieves the corresponding packet data, and delivers it to the querying
application. Our system supports two delivery methods: writing requested packets
to an output file and sending them via a network connection to the requester. In
both cases, the TM returns the data in libpcap format. By default, queries span all
data managed by the system, which can be quite time-consuming if the referenced
packets reside on disk. The query interface thus also supports queries confined to
either specific time intervals or memory-only (no disk search).

In addition to supporting queries for already-captured packets, the query issuer
can also express interest in receiving future packets matching the search criteria
(for example because the query was issued in the middle of a connection for which
the remainder of the connection has now become interesting too). To handle these
situations, the TM supports query subscriptions, which are implemented at a per-
connection granularity.

Queries and control commands are both specified in the syntax of the TM’s in-
teraction language; Figure 3.3 shows several examples. The first query requests
packets for the TCP connection between the specified endpoints, found using the
connection four-tuple index conn4. The TM sends the packet stream to the re-
ceiving system nids-61367-0 (“feed”), and includes with each packet the opaque
tag t35654 so that the recipient knows with which query to associate the packets.
Finally, subscribe indicates that this query is a subscription for future packets
relating to this connection, too.

The next example asks for all packets associated with the IP address 1.2.3.4

that reside in memory, instructing the TM to copy them to the local file x.pcap.
The time interval is restricted via the start and end options. The final example
changes the traffic class for any activity involving IP 5.6.7.8 to now be in the
“alarm” class.
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Figure 3.4: CDF of bandwidth before/after applying a 15 KB cutoff.

3.4 Performance Evaluation

We evaluate the performance of the TM in both controlled environments and live
deployments at MWN and LBNL. The MWN deployment uses a 15KB cutoff,
a memory buffer size of 750MB, a disk buffer size of 2.1TB, and four different
indexes (conn4, conn3, conn2, ip).3 The TM runs on a dual-CPU AMD Opteron
244 (1.8GHz) with 4GB of RAM, running a 64-bit Gentoo Linux kernel (ver-
sion 2.6.15.1) with a 1Gbps Endace DAG network monitoring card [40] for traffic
capture. At LBNL we use a 15KB cutoff, 150MB of memory, and 500GB of disk
storage, with three indexes (conn4, conn3, ip). The TM runs on a system with
FreeBSD6.2, two dual-core Intel Pentium D 3.7GHz CPUs, a 3.5TB RAID-storage
system, and a Neterion 10Gbps NIC.
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3.4.1 Recording

We began operation at MWN at 7PM local time, Jan. 11, 2008, and continued for
19 days. At LBNL the measurement started at Dec. 13, 2007 at 7AM local time
and ran for 26 days. While the setup at MWN ran stand-alone, the TM at LBNL is
coupled with a NIDS that sends queries and controls the TM’s operation as outlined
in Section 3.5.1.4 During the measurement period, the TM setup experienced only
rare packet drops. At MWN the total packet loss was less than 0.04% and at LBNL
less than 0.03%. Our investigation shows that during our measurement periods
these drops are most likely caused by computation spikes and scheduling artifacts,
and do not in fact correlate to bandwidth peaks or variations in connection arrival
rates.

We start by examining whether the cutoff indeed reduces the data volume suffi-
ciently, as our simulation predicted. Figure 3.4 plots the original input data rates,
averaged over 10 sec intervals, and the data rates after applying the cutoff for
MWN and LBNL. (One can clearly see that at MWN the maximum is limited by
the 1Gbps monitoring link.) Figure 3.5 shows the fraction of traffic, the reduction
rate, that remains after applying the cutoff, again averaged over 10 sec intervals.
While the original data rate reaches several hundred Mbps, after the cutoff less
than 6% of the original traffic remains at both sites. Hereby, the reduction rate at
LBNL exhibits a higher variability. The reduction ratio shows a diurnal variation:
it decreases less during daytime than during nighttime. Most likely this is due to
the prevalence of interactive traffic during the day which causes short connections
while bulk-transfer traffic is more prevalent during the night due to backups and
mirroring.

Next, we turn to the question whether the TM has sufficient resources to leave
head-room for query processing. We observe that the CPU utilization (aggregated
over all CPU cores, i.e., 100% reflects saturation of all cores) measured in 10 sec
intervals, shown in Figure 3.6, averages 25% (maximum ≈ 85%) for MWN indi-
cating that there is enough head room for query processing even at peak times.
For LBNL, the CPU utilization is even lower, with an average of 5% (maximum
≈ 50%). (The two local maxima for MWN in Figure 3.6 are due to the diurnal
effects.)

Figure 3.7 shows how the retention time changes during the run at MWN. The

3
conn4 uses the tuple (transport protocol, ip1, ip2, port1, port2); conn3 drops one port; conn2
uses just the IP address pair; and ip a single ip address. Note, each packet leads to two conn3

keys and two ip keys.
4During two time periods (one lasting 21 h, the other 4 days) the NIDS was not connected to

the TM and therefore did not send any queries.
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Figure 3.6: PDF of Time Machine’s CPU utilization (across all cores).
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MWN.
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Figure 3.8: PDF of Time Machine retention time in memory buffer.

2.1TB disk buffer provides ≈ 4 days during a normal work week, as one would ex-
pect given a ≈ 90% reduction in capture volume starting from 3–6TB/day. After
an initial ramp-up phase, the system retains an average of 4.3 days of network
packets. As depicted in Figure 3.8, the retention time in the memory buffer is
significantly shorter: 169 sec of network traffic on average (41 sec minimum) for
MWN. The local maxima are at 84 sec, and 126 sec respectively, due to the diur-
nal effects. At LBNL we achieve larger retention times. The 500 GB disk buffer
retained a maximum of more than 15 days, and the 150MB memory buffer (Fig-
ure 3.8) was able to provide 421 sec on average (local maxima at 173 sec, and
475 sec).

Overall, our experience from these deployments is that the TM can satisfy queries
for packets observed within the last days (weeks), providing that these are within
the connection’s cutoff. Moreover, the TM can answer queries for packets within
the past couple of minutes very quickly as it stores these in memory.
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3.4.2 Querying

As we plan to couple the TM with other applications, e.g., an intrusion detection
system, that automatically generates queries it is important to understand how
much load the TM can handle. Accordingly, we now examine the query perfor-
mance of the TM with respect to (i) the number of queries it can handle, and
(ii) the latency between issuing queries and receiving the corresponding replies.
For these benchmarks, we ran the TM at LBNL on the same system as described
above. For all experiments, we configured the TM with a memory buffer of 150MB
and a cutoff of 15KB.

We focus our experiments on in-memory queries, since according to our experience
these are the ones that are issued both at high rates and with the timeliness
requirements for delivering the replies. In contrast, the execution of disk-based
queries is heavily dominated by the I/O time it takes to scan the disk. They can
take seconds to minutes to complete and therefore need to be limited to a very
small number in any setup; we discuss this further in Section 3.6.

Load

We first examine the number of queries the TM can support. To this end, we
measure the TM’s ability to respond to queries that a simple benchmark client
issues at increasing rates. All queries request connections for which the TM has
data, so it can extract the appropriate packets and send them back in the same
way as it would for an actual application.

To facilitate reproducible results, we add an offline mode to the TM: rather than
reading live input, we preload the TM with a previously captured trace. In this
mode, the TM processes the packets in the trace just as if it had seen them live,
i.e., it builds up all of its internal data structures in the same manner. Once
it finishes reading the trace, it only has to respond to the queries. Thus, its
performance in this scenario may exceed its performance in a live setting during
which it continues to capture data thus increasing its head-room for queries. (We
verified that a TM operating on live traffic has head-room to sustain a reasonable
query load in realistic settings, see Section 3.5.3.)

We use a 5.3GB full trace captured at LBNL’s uplink, spanning an interval of
3min. After preloading the TM, the cutoff reduces the buffered traffic volume to
117MB, which fits comfortably into the configured memory buffer. We configure
the benchmark client to issue queries from a separate system at increasing rates:
starting from one query every two seconds, the client increases the rate by 0.5
queries/sec every 10 seconds. To ensure that the client only issues requests for
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Figure 3.9: Issuing queries to the Time Machine at increasing rates.

packets in the TM’s memory buffer, we supplied it with a sample of 1% of the
connections from the input trace. Each time the client requests a connection, it
randomly picks one from this list to ensure that we are not unfairly benefiting from
caching.

On the TM, we log the number of queries processed per second. As long as the TM
can keep up, this matches the client’s query rate. Figure 3.9 plots the outcome of
the experiment. Triangles show the rate at which queries were issued, and circles
reflect the rate at which the TM responded, including sending the packets back
to the client. We see that the TM can sustain about 120 queries/secs. Above
that point, it fails to keep up. Overall, we find that the TM can handle a high
query rate. Moreover, according to our experience the TM’s performance suffices
to cope with the number of automated queries generated by applications such as
those discussed in Section 3.5.

Latency

Our next experiment examines query latency, i.e., the time between when a client
issues a query and its reception of the first packet of the TM’s reply. Naturally,
we wish to keep the latency low, both to provide timely responses and to ensure
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accessibility of the data (i.e., to avoid that the TM has expunged the data from
its in-memory buffer).

To assess query latency in a realistic setting, we use the following measurement
with live LBNL traffic. We configure a benchmark client (the Bro NIDS) on a
separate system to request packets from one of every n fully-established TCP
connections. For each query, we log when the client sends it and when it receives
the first packet in response. We run this setup for about 100 minutes in the early
afternoon of a work-day. During this period the TM processes 73GB of network
traffic of which 5.5GB are buffered on disk at termination. The TM does not
report any dropped packets. We choose n = 100, which results in an average
of 1.3 connections being requested per second (σ=0.47). Figure 3.10 shows the
probability density of the observed query latencies. The mean latency is 125ms,
with σ=51ms and a maximum of 539ms (median 143ms). Of the 7881 queries,
1205 are answered within less than 100ms, leading to the notable peak “(a)” in
Figure 3.10. We speculate that these queries are most likely processed while the
TM’s capture thread is not performing any significant disk I/O (indeed, most of
them occur during the initial ramp-up phase when the TM is still able to buffer the
network data completely in memory). The second peak “(b)” would then indicate
typical query latencies during times of disk I/O once the TM has reached a steady-
state.

Overall, we conclude that the query interface is sufficiently responsive to support
automatic Time Travel applications.

3.5 Coupling TM with a NIDS

Network intrusion detection systems analyze network traffic in real-time to monitor
for possible attacks. While the real-time nature of such analysis provides major
benefits in terms of timely detection and response, it also induces a significant
constraint: the NIDS must immediately decide when it sees a network packet
whether it might constitute part of an attack.

This constraint can have major implications, in that while at the time a NIDS
encounters a packet its content may appear benign, future activity can cast a
different light upon it. For example, consider a host scanning the network. Once
the NIDS has detected the scanning activity, it may want to look more closely
at connections originating from that source—including those that occurred in the
past. However, any connection that took place prior to the time of detection has
now been lost; the NIDS cannot afford to remember the details of everything it has



3.5 Coupling TM with a NIDS 31/156

0 100 200 300 400 500

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

Latency [ms]

D
e

n
s
it
y

(a)

(b)

Figure 3.10: PDF of latency between Time Machine queries and replies.

ever seen, on the off chance that at some future point it might wish to re-inspect
the activity.

The TM, on the other hand, effectively provides a very large buffer that stores
network traffic in its most detailed form, i.e., as packets. By coupling the two
systems, we allow the NIDS to access this resource pool. The NIDS can then tell
the TM about the traffic it deems interesting, and in turn the TM can provide the
NIDS with historic traffic for further analysis.

Given the TM capabilities developed in the previous section, we now explore the
operational gains achievable by closely coupling the TM with a NIDS. We structure
the discussion in five parts: (i) our prototype deployment at LBNL; (ii) experiences
with enabling the NIDS to control the operation of the TM; (iii) the additional
advantages gained if the NIDS can retrieve historic data from the TM; (iv) the
benefits of tightly coupling the two systems; and (v) how we implemented these
different types of functionality.
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Figure 3.11: Coupling Time Machine and NIDS at LBNL.

3.5.1 Prototype Deployment

Figure 3.11 shows the high-level structure of coupling the TM with a NIDS. Both
systems tap into the monitored traffic stream (here, a site’s border) and therefore
see the same traffic. The NIDS drives communication between the two, controlling
the operation of the TM and issuing queries for past traffic. The TM then sends
data back to the NIDS for it to analyze.

We install such a dual setup in the LBNL environment, using the open-source
Bro NIDS [86]. Bro has been a primary component of LBNL’s network monitoring
infrastructure for many years, so using Bro for our study as well allows us to closely
match the operational configuration.

The TM uses the same setup as described in Section 3.4: 15KB cutoff, 500GB
disk budget, running on a system with two dual-core Pentium Ds and 4GB of
main memory. We interface the TM to the site’s experimental “Bro Cluster” [119],
a set of commodity PCs jointly monitoring the institute’s full border traffic in a
configuration that shadows the operational monitoring (along with running some
additional forms of analysis). The cluster consists of 12 nodes in total, each a
3.6GHz dual-CPU Intel PentiumD with 2GB RAM.

We conducted initial experiments with this setup over a number of months, and
in Dec. 2007 ran it continuously through early Jan. 2008 (see Section 3.4.1). The
experiences reported here reflect a subsequent two-week run in Jan. 2008. During
this latter period, the systems processed 22.7TB of network data, corresponding
to an average bitrate of 155Mbps. The TM’s cutoff reduced the total volume to
0.6TB. It took a bit over 11 days until the TM exhausted its 500GB disk budget
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for the first time and started to expire data. The NIDS reported 66,000 operator-
level notifications according to the configured policy, with 98% of them referring
to scanning activity.

3.5.2 NIDS Controls the Time Machine

The TM provides a network-accessible control interface that the NIDS can use
to dynamically change operating parameters based on its analysis results such as
cutoffs, buffer budgets, and timeouts. In our installation, we instrument the NIDS
so that for every operator notification5, it instructs the TM to (i) disable the cutoff
for the affected connection for non-scan notifications, and (ii) change the storage
class of the IP address the attacker is coming from to a more conservative set of
parameters (higher cutoffs, longer timeouts), and also assign it to separate memory
and buffer pools. The latter significantly increases the retention time for the host’s
activity, as it now no longer shares its buffer space with the much more populous
benign traffic.

In concrete terms, we introduce two new TM storage classes: scanners, for hosts
identified as scanners, and alarms, for hosts triggering operator notifications other
than scan reports. The motivation for this separation is the predominance of
Internet-wide scanning: in many environments, scanning alerts heavily dominate
the reporting. By creating a separate buffer for scanners, we increase the reten-
tion time for notifications not related to such activity, which are likely to be more
valuable. The classes scanners and alarms are provided with a memory budget of
75MB and a disk budget of 50GB each. For scanners, we increase the cutoff from
15KB to 50KB; for all other offenders we disable the cutoff altogether. Now, when-
ever the NIDS reports an operator notification, it first sends a suspend_cutoff

command for the triggering connection to the TM. It then issues a set_class com-
mand for the offending host, putting the address into either scanners or alarms.

Examining the commands issued by the NIDS during the two-week period, we
find that it sent 427 commands to suspend the cutoff for individual connections.
Moreover, it moved 12,532 IP addresses into the scanners storage class and 592
into the alarms storage class.6

5We note that the specifics of what constitutes an operator notification vary from site to site,
but because we cannot report details of LBNL’s operational policy we will refer only to broad
classes of notifications such as “scans”.

6We note that the number of issued commands does not directly correspond to the number of
operator notifications generated by the NIDS. The NIDS often reports hosts and connections
multiple times, but only sends the corresponding command once. Furthermore, the NIDS
sometimes issues commands to change the storage class for activity which does not generate
a notification.
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3.5.3 NIDS Retrieves Data from Time Machine

Another building block for better forensics support is automatic preservation of
incident-related traffic. For all operator notifications in our installation, the NIDS
queries the TM for the relevant packets, which are then permanently stored for
later inspection.

Storage

The NIDS issues up to three queries for each major (non-scan) notification. Two
to_file queries instruct the TM to store (i) all packets of the relevant connec-
tion and (ii) all packets involving the offender’s IP address within the preceding
hour. For TCP traffic, the NIDS issues a feed query asking it to also return the
connection’s packets to the NIDS. The NIDS then stores the reassembled payload
stream on disk. For many application protocols, this eases subsequent manual
inspection of the activity. We restrict connection queries to in-memory data, while
host queries include disk-buffered traffic as well. Our motivation is that connection
queries are time-critical while host queries are related to forensics.

During the examined two-week period, the NIDS issued queries for 427 connections
(after duplicate elimination) and 376 individual hosts. As queries for connec-
tions were limited to in-memory data, their mean processing time was 210ms
(σ=510ms). Among the queries, there was one strong outlier that took 10.74 sec
to complete: it yielded 299,002 packets in response. Manual inspection of the ex-
tracted traffic showed that this was a large DNS session. Excluding this query, the
mean time was 190ms (σ=100ms). Queries for individual hosts included on-disk
data as well, and therefore took significantly longer; 25.7 sec on average. Their
processing times also varied more (median 10.2 sec, σ=54.1 sec).

Interactive Access

To further reduce the turnaround time between receiving a NIDS notification and
inspecting the relevant traffic, we developed a Web-based interface that enables
browsing of the data associated with each notification; Figure 3.12 shows a snap-
shot. The prototype interface presents the list of notifications and indicates which
kind of automatically extracted TM traffic is available. The operator can then in-
spect relevant packets and payload using a browser, including traffic that occurred
prior to the notification.
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Figure 3.12: Web-interface to security notifications and their correspond-
ing network traffic (packets and payload).
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Experiences

We have been running the joint TM/NIDS setup at LBNL for two months, and have
used the system to both analyze packet traces and reassembled payload streams
for more detailed analysis. During this time, the TM has proven to be extremely
useful. First, one often just cannot reliably tell the impact of a specific notification
without having the actual traffic at hand. Second, it turns out to be an enormous
timesaver to always have the traffic related to a notification available for immediate
analysis. This allows the operator to inspect a significantly larger number of cases
in depth than would otherwise be possible, even those that appear to be minor
on first sight. Since with the TM/NIDS setup double-checking even likely false-
positives comes nearly for free, the overall quality of the security monitoring can
be significantly improved.

Our experience from the deployment confirms the utility of such a setup in sev-
eral ways. First, the TM enables us to assess whether an attack succeeded. For
example, a still very common attack includes probing web servers for vulnerabili-
ties. Consider Web requests of the form foo.php?arg=../../../etc/passwd with
which the attacker tries to trick a CGI script into returning a list of passwords.
Since many attackers scan the Internet for vulnerable servers, simply flagging such
requests generates a large number false positives, since they very rarely succeed.
If the NIDS reports the server’s response code, the operator can quickly weed out
the cases where the server just returned an error message. However, even when
the server returns an 200 OK, this does not necessarily indicate a successful at-
tack. Often the response is instead a generic, harmless page (e.g., nicely formatted
HTML explaining that the request was invalid). Since the TM provides the served
web page in its raw form, we can now quickly eliminate these as well. To further
automate this analysis, we plan to extend the setup so that the NIDS itself checks
the TM’s response for signs of an actual password list, and suppresses the noti-
fication unless it sees one. Similar approaches are applicable to a wide range of
probing attacks.

For applications running on non-standard ports the TM has the potential to sig-
nificantly help with weeding out false-positives. Bro, for example, flags outgoing
packets with a destination port 69/udp as potential “Outbound TFTP” (it does
not currently include a TFTP protocol analyzer). Assessing the significance of this
notification requires looking at the payload. With the TM recordings we were able
to quickly identify in several instances that the reported connection reflected Bit-
Torrent traffic rather than TFTP. In another case, Bro reported parsing errors for
IRC traffic on 6667/tcp; inspection of the payload quickly revealed that a custom
protocol was using the port.
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XXX.XXX.XXX.XXX/57340 > XXX.XXX.XXX.XXX/smtp same gap on

link/time-machine (> 124/6296)

XXX.XXX.XXX.XXX/55529 > XXX.XXX.XXX.XXX/spop same gap on

link/time-machine (> 275/165)

XXX.XXX.XXX.XXX/2050 > XXX.XXX.XXX.XXX/pop-3 same gap on

link/time-machine (> 17/14)

Figure 3.13: Example of drops confirmed by the Time Machine.

The information captured by the TM can also shed light on how attacks work. In
one instance, a local client downloaded a trojan via HTTP. The NIDS reported the
fact and instructed the TM to return the corresponding traffic. Once the NIDS
had reassembled the payload stream, the trojan’s binary code was available on
disk for further manual inspection (though truncated at the 15KB cutoff).

Finally, the TM facilitates the extraction of packet traces for various interesting
network situations, even those not necessarily reflecting attacks. Among others,
we collected traces of TCP connections opened simultaneously by both sides; sud-
den FIN storms of apparently misconfigured clients; and packets that triggered
inaccuracies in Bro’s protocol processing.

3.5.4 Retrospective Analysis

In the following, we demonstrate the potential of a tighter integration of TM and
NIDS by examining forms of retrospective analysis this enables.

Recovering from Packet Drops

Under heavy load, a NIDS can lack the processing power to capture and analyze
the full packet stream, in which case it will incur measurement drops [37]. Working
in conjunction with the TM, however, a NIDS can query for connections that are
missing packets and reprocess them. If the same gap also occurs in the response
received from the TM, the NIDS knows that most likely the problem arose external
to the NIDS device (e.g., in an optical tap shared by the two systems, or due to
asymmetric routing).

We implemented this recovery scheme for the Bro NIDS. With TCP connections,
Bro infers a packet missing if it observes a sequence gap purportedly covered by
a TCP acknowledgment. In such cases we modified Bro to request the affected
connection from the TM. If the TM connection is complete, Bro has recovered
from the gap and proceeds with its analysis. If the TM connection is however also
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missing the packet, Bro generates a notification (see Figure 3.13). In addition to
allowing Bro to correctly analyze the traffic that it missed, this also enables Bro
to differentiate between drops due to overload and packets indeed missing on the
link.

Offloading the NIDS

NIDS face fundamental trade-offs between depth of analysis and resource us-
age [107]. In a high-volume environment, the operator must often choose to forego
classes of analysis due to limited processing power. However, by drawing upon
the TM, a NIDS can make fine-grained exceptions to what would otherwise be
analysis omissions. It does so by requesting initially excluded data once the NIDS
recognizes its relevance because of some related analysis that is still enabled.

For example, the bulk of HTTP traffic volume in general originates from HTTP
servers, rather than clients. Thus, we can significantly offload a NIDS by restricting
its analysis to client-side traffic, i.e., only examine URLs and headers in browser
requests, but not the headers and items in server replies. However, once the
NIDS observes a suspicious request, it can query the TM for the complete HTTP
connection, which it then analyzes with full server-side analysis. The benefit of this
setup is that the NIDS can now save significant CPU time as compared to analyzing
all HTTP connections, yet sacrificing little in the way of detection quality.

FTP data transfers and portmapper activity provide similar examples. Both of
these involve dynamically negotiated secondary connections, which the NIDS can
discern by analyzing the (lightweight) setup activity. However, because these con-
nections can appear on arbitrary ports, the NIDS can only inspect them directly
if it foregoes port-level packet filtering. With the TM, however, the NIDS can re-
quest subscriptions (Section 3.3.2) to the secondary connections and inspect them
in full, optionally also removing the cutoff if it wishes to ensure that it sees the
entire contents.

We explore the HTTP scenario in more detail to understand the degree to which a
NIDS benefits from offloading some of its processing to the TM. For our assessment,
we need to compare two different NIDS configurations (with and without the TM)
while processing the same input. Thus, we employ a trace-based evaluation using
a 75min full-HTTP trace captured on LBNL’s upstream link (21GB; 900,000
HTTPsessions), using a two-machine setup similar to that in Section 3.4.2. The
evaluation requires care since the setup involves communication with the TM: when
working offline on a trace, both the NIDS and the TM can process their input more
quickly than real-time, i.e., they can consume 1 sec worth of measured traffic in
less than 1 sec of execution time. However, the NIDS and the TM differ in the
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Figure 3.14: PDF of Bro’s CPU load with and without Time Travel.

rate at which they outpace network-time, which can lead to a desynchronization
between them.

To address these issues, the Bro system provides a pseudo-realtime mode [108]:
when enabled, it inserts delays into its execution to match the inter-packet gaps
observed in a trace. When using this mode, Bro issues queries at the same time
intervals as it would during live execution. Our TM implementation does not pro-
vide a similar facility. However, for this evaluation we wish to assess the NIDS’s
operation, rather than the TM’s, and it therefore suffices to ensure that the TM
correctly replies to all queries. To achieve this, we preload the TM with just the
relevant subset of the trace, i.e., the small fraction of the traffic that the Bro NIDS
will request from the TM. The key for preloading the TM is predicting which
connections the NIDS will request. While in practice the NIDS would trigger
HTTP-related queries based on URL patterns, for our evaluation we use an ap-
proach independent of a specific detection mechanism: Bro requests each HTTP
connection with a small, fixed probability p.

Our first experiment measures the performance of a stand-alone NIDS. We config-
ure Bro to perform full HTTP processing. To achieve a fair comparison, we modify
Bro to ignore all server payload after the first 15KB of each connection, simulating
the TM’s cutoff. We then run Bro in pseudo-realtime mode on the trace and log
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the CPU usage for each 1 sec interval. Figure 3.14 shows the resulting probability
density.

With the baseline established, we then examine the TM/NIDS hybrid. We config-
ure Bro to use the same configuration as in the previous experiment, except with
HTTP response processing disabled. Instead, we configure Bro to issue queries to
the TM for a pre-computed subset of the HTTP sessions for complete analysis. We
choose p = 0.01, a value that from our experience requests full analysis for many
more connections than a scheme based on patterns of suspicious URLs would. We
supply Bro with a prefiltered version of the full HTTP trace with all server-side
HTTP payload packets excluded.7 As described above, we provide the TM with
the traffic which Bro will request.

We verify that the TM/NIDS system matches the results of the stand-alone setup.
However, Figure 3.14 shows a significant reduction in CPU load. In the stand-
alone setup, the mean per-second CPU load runs around 40% (σ=9%). With
TM offloading, the mean CPU load decreases to 28%, (σ=7%). We conclude that
offloading indeed achieves a significant reduction in CPU utilization.

Broadening the analysis context

Finally, with a TM a NIDS can request historic network traffic, allowing it to
perform analysis on past traffic within a context not available when the traffic
originally appeared. For example, once the NIDS identifies a source as a scanner,
it is prudent to examine all of its traffic in-depth, including its previous activity.
The same holds for a local host that shows signs of a possible compromise. Such an
in-depth analysis may for example include analyzers that were previously disabled
due to their performance overhead. In this way the NIDS can construct for the
analyst a detailed application-level record of the offender, or the NIDS might itself
assess this broader record against a meta-policy to determine whether the larger
view merits an operator notification.

3.5.5 Implementing Retrospective Analysis

Implementing the TM/NIDS interface for the above experiments requires solving
a number of problems. The main challenge lies in that processing traffic from
the past, rather than freshly captured, violates a number of assumptions a NIDS

7We prefilter the trace, rather than installing a Bro-level BPF filter, because in a live setting
the filtering is done by the kernel, and thus not accounted towards the CPU usage of the Bro
process.
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typically makes about packets appearing in real-time with a causal order reflecting
a monotonic passage of time.

A simple option is to special-case the analysis of resurrected packets by intro-
ducing a second data path into the NIDS exclusively dedicated to examining TM
responses. However, such an approach severely limits the power of the hybrid sys-
tem, as we in this case cannot leverage the extensive set of tools the NIDS already
provides for live processing. For example, offloading applications, as described in
Section 3.5.4, would be impossible to realize without duplicating much of the ex-
isting code. Therefore, our main design objective for our Bro implementation is
to process all TM-provided traffic inside the NIDS’s standard processing path, the
same as for any live traffic—and in parallel with live traffic. In the remainder of
this section, we discuss the issues that arose when adding such a TM interface to
the Bro NIDS.

Bro Implementation

Bro provides an extensive, domain-specific scripting language. We extend the
language with a set of predefined functions to control and query the TM, mirroring
the functionality accessible via the TM’s remote interface (see Section 3.3.2), such
as changing the TM class associated with a suspect IP address, or querying for
packets based on IP addresses or connection 4-tuples. One basic requirement for
this is that the interface to the TM operates asynchronously, i.e., Bro must not
block waiting for a response.

Sending commands to the TM is straight-forward and thus omitted. Receiving
packets from the TM for processing, however, raises subtle implementation issues:
the timestamp to associate with received query packets, and how to process them
if they are replicates of ones the NIDS has already processed due to direct capture
from the network, or because the same packet matches multiple streams returned
for several different concurrent queries.

Regarding timestamps, retrieved packets include the time when the TM recorded
them. However, this time is in the past and if the NIDS uses it directly, con-
fusion arises due to its assumptions regarding time monotonicity. For example,
Bro derives its measure of time from the timestamps of the captured packets. For
example it uses these timestamps to compute timer expirations and to manage
state. The simple solution of rewriting the timestamps to reflect the current time
confounds any analysis that relies on either absolute time or on relative time be-
tween multiple connections. Such an approach also has the potential to confuse
the analyst that inspects any timestamped or logged information.
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The key insight for our solution, which enables us to integrate the TM interface into
Bro with minimal surgery, is to restrict Bro to always request complete connections
from the TM rather than individual packets. Such a constraint is tenable because,
like all major NIDS, connections form Bro’s main unit of analysis.

We implement this constraint by ensuring that Bro only issues queries in one of two
forms: (i) for all packets with the same 4-tuple (address1,port1, address2,port2),
or (ii) for all packets involving a particular address. In addition, to ensure that
Bro receives all packets for these connections, including future ones, it subscribes
to the query (see Section 3.3.2).

Relying on complete connections simplifies the problem of timestamps by allowing
us to introduce the use of per-query network times: for each TM query, Bro tracks
the most recently received packet in response to the query and then maintains
separate per-query timelines to drive the management of any timer whose instan-
tiation stems from a retrieved packet. Thus, TM packets do not perturb Bro’s
global timeline (which it continues to derive from the timestamps of packets in its
direct input stream).

We also rely on complete connections to address the issue of replicated input. When
retrieved packets for a connection begin to arrive while Bro is processing the same
connection via its live feed, it discards the live version and starts afresh with the
TM version. (It also discards any future live packets for such connections, since
these will arrive via its TM subscription.) Moreover, if Bro is processing packets of
a connection via the TM and then receives packets for this same connection via its
live feed (unlikely, but not impossible if the system’s packet capturing uses large
buffers), then Bro again ignores the live version. Finally, if Bro receives a connec-
tion multiple times from the TM (e.g., because of multiple matching queries), it
only analyzes the first instance.

Our modifications to Bro provide the NIDS with a powerful interface to the TM
that supports forensics as well as automatic, retrospective analysis. The additions
introduce minimal overhead, and have no impact on Bro’s performance when it
runs without a TM.

3.6 Deployment Trade-Offs

In an actual deployment, the TM operator faces several trade-offs in terms of CPU,
memory, and disk requirements. The most obvious trade-off is the design decision
of foregoing complete storage of high-volume connections in order to reduce mem-
ory/disk consumption. There are others as well, however.
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Risk of Evasion

The TM’s cutoff mechanism faces an obvious risk for evasion: if an attacker de-
lays his attack to occur after the cutoff, the TM will not record the malicious
actions. This is a fundamental limitation of our approach. However, short of com-
prehensively storing all packets, any volume reduction heuristic faces such a blind
spot.

The cutoff evasion problem is similar in risks to the problem NIDS face when
relying on timeouts for state management. If a multi-step attack is stretched over
a long enough time period such that the NIDS is forced to expire its state in the
interim the attack can go undetected. Yet, to avoid memory exhaustion state must
be expired eventually. Therefore, NIDS rely on the fact that an attacker cannot
predict when exactly a timeout will take place [37].

Similarly, the TM has several ways for reducing the risk of evasion by making the
cutoff mechanism less predictable. One approach is to use different storage classes
(see Section 3.3.1) with different cutoffs for different types of traffic, e.g., based
on applications (for some services, delaying an attack to later stages of a session
is harder than for others). As discussed in Section 3.5.2, we can also leverage
a NIDS’s risk assessment to dynamically adjust the cutoff for traffic found more
likely to pose a threat. Finally, we plan to examine randomizing the cutoff so that
(i) an attacker cannot predict at which point it will go into effect, and (ii) even
when the cutoff has been triggered, the TM may continue recording a random
subset of subsequent packets.

Network Load

When running in high-volume 10Gbps environments, the TM can exceed the limits
of what commodity hardware can support in terms of packet-capture and disk
utilization. We can alleviate this impact with use of more expensive, special-
purpose hardware (such as the Endace monitoring card at MWN), but at added
cost and for limited benefit. We note, however, that the TM is well-suited for
clustering in the same way as a NIDS [119]: we can deploy a set of PCs, each
running a separate TM on a slice of the total traffic. In such a distributed setting,
an additional front-end system can create the impression to the user of interacting
with a single TM by relaying to/from all backend TMs.

Floods

Another trade-off concerns packet floods, such as encountered during high-volume
DoS attacks. Distributed floods stress the TM’s connection-handling, and can thus
undermine the capture of useful traffic. For example, during normal operation
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at MWN an average of 500,000 connections are active and stored in the TM’s
connection table. However, we have experienced floods during which the number
of connections increased to 3–4million within 30 seconds. Tracking these induced
massive packet drops and eventually exhausted the machine’s physical memory.

In addition, adversaries could attack the TM directly by exploiting its specific
mechanisms. They could for example generate large numbers of small connections
in order to significantly reduce retention time. However, such attacks require the
attacker to commit significant resources, which, like other floods, will render them
vulnerable to detection.

To mitigate the impact of floods on the TM’s processing, we plan to augment the
TM with a flood detection and mitigation mechanism. For example, the system can
probabilistically track per-source thresholds of connection attempts and resort to
address-specific packet sampling once a source exceeds these. Alternatively, when
operating in conjunction with a NIDS that includes a flood detection mechanism,
the TM can rely upon the NIDS to decide when and how the TM should react.

Retrieval Time

When running a joint TM/NIDS setup, we need to consider a trade-off between the
response time for answering a query versus the time range that the TM examines to
find the relevant packets. As discussed in Section 3.4.2, the TM can answer queries
quite quickly as long as it restricts its retrieval to in-memory data. However, once
the TM needs to search its disk, queries can take seconds to minutes, even if they
include a time interval to limit the scope of the search. Thus, the NIDS must issue
such queries carefully so as to not exhaust the TM’s resources. We do not yet have
enough long-term operational experience to have determined good rules for how to
manage such queries, but this is part of the near-term focus of our future work.

NIDS and Cutoff

A final issue concerns the impact of the TM’s cutoff on the NIDS processing. In
our NIDS implementation, we minimize the limitations resulting from the cutoff by
combining each NIDS query with a request to remove the cutoff for the associated
connections or addresses. This takes care of future activity via the TM. But there
is little we can do about connections curtailed in the past—those for which the
TM already applied the cutoff. Recall that the general premise of the TM is that
we usually can operate the TM with a sufficiently large cutoff that information
of interest is captured. To further reduce this problem the TM always stores
all TCP control packets (SYN/FIN/RST), thus enabling a NIDS to perform its
connection-level analysis.
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3.7 Related Work

We develop a “Time Machine” for efficient network packet recording and retrieval,
and couple the resulting system with a NIDS. The basic approach is to leverage the
heavy-tailed nature of Internet traffic [84, 87] to significantly reduce the volume
of bulk traffic recording. Our work builds on the proof-of-principle prototype
described by Kornexl et al. [63], greatly increasing its performance and coupling it
to external systems to support automated querying, live connections to a NIDS,
and “subscriptions” to future packets satisfying a given query. These features
have enabled us to then use the system in conjunction with the Bro NIDS in an
operational high-volume setting.

Different approaches have been suggested in the literature to record high-volume
network traffic. First, several systems aim to record full packet traces: Anderson
et al. [8] records at kernel-level to provide bulk capture at high rates, and An-
tonelli et al. [10] focuses on long-term archive and stores traffic on tapes. However,
these systems do not provide automated and efficient real-time query interfaces.
Hyperion [34] employs a dedicated stream file system to store high-volume data
streams, indexing stream data using Bloom filters. Hyperion bulk-records entire
traffic streams, and does not a provide features for automatic or semi-automatic
forensics nor coupling with a NIDS. Gigascope [31], on the other hand, supports
SQL-like queries on a packet stream, but no long-term archiving. In 2007 Schneider
et al. [101] analyze traffic capture performance of different commodity computer
and operating systems and found that AMD Opterons with FreeBSD outperforms
all other OS/CPU combinations.

Another approach is to store higher-level abstractions of the network traffic to
reduce the data volume: Reiss et al. [95] record flows and provide real-time query
facilities; Shanmugasundaram et al. [104] record key events of activity such as con-
nections and scans; and [23, 76] both provide frameworks suitable for performing
different data reduction techniques. ([76] is based on the CoMo platform [28]).
Cooke et al. [30] aggregate data as it ages: first packets are stored; these are than
transformed into flows. They focus on storage management algorithms to divide
storage between the different aggregation levels. Ponec et al. [89] store traffic di-
gests for payload attribution; the queries do not yield the actual content. Any
data reduction decreases the amount of information available. We argue that for
security applications, the TM’s approach of archiving the head of connections at
the packet-level provides an attractive degree of detail compared to such abstrac-
tions.

Reducing traffic volume by omitting parts of the traffic is employed by the Shunt [49].
The Shunt is a programmable NIC that an associated NIDS/NIPS instructs to for-
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ward, drop, or divert packets at a per-connection granularity. The drop function-
ality supports intrusion prevention; the forward functionality supports offloading
the NIDS for streams it has determined it will forego analyzing; and the divert
functionality allows the NIDS to inspect and potentially intercede any traffic it
wishes. The TM could leverage the Shunt to impose the cutoff directly on the
NIC.

While intrusion detection systems such as Snort [97] and Bro [86] can record traf-
fic, they typically keep only a small subset of the network’s packets; for Snort,
just those that triggered an alert, and for Bro just those that the system selected
for analysis. Neither system—nor any other of which we are aware—can incorpo-
rate network traffic recorded in the past into their live analysis. We added this
capability to the Bro system.

Commercial vendors, e.g., [26, 40, 55], offer a number of packet recorders. Due to
their closed nature, it is difficult to construct a clear picture of their capabilities
and performances. As far as we can tell, none of these has been coupled with a
NIDS.

Finally, the notion of “time travel” has been discussed in other contexts of computer
forensics. For instance, ReVirt [38] can reconstruct past states of a virtual machine
at the instruction-level.

3.8 Summary

In this chapter we explore the significant capabilities attainable for network security
analysis via Time Travel, i.e., the ability to quickly access past network traffic for
network analysis and security forensics. This approach is particular powerful when
integrating traffic from the past with a real-time NIDS’s analysis. We support
Time Travel via the Time Machine (TM) system, which stores network traffic in
its most detailed form, i.e., as packets. The TM provides a remote control-and-
query interface to automatically request stored packets and to dynamically adapt
the TM’s operation parameters. To reduce the amount of traffic stored, the TM
leverages a simple but effective “cutoff” heuristic: it only stores the first N bytes
of each connection (typically, N = 10–20KB). This approach leverages the heavy-
tailed nature of network traffic to capture the great majority of connections in
their entirety, while omitting storage of the vast majority of the bytes in a traffic
stream.

We show that the TM allows us to buffer most connections completely for minutes
in memory, and on disk for days, even in 10Gbps network environments, using
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only commodity hardware. The cutoff heuristic reduces the amount of data to
store to less than 10% of the original traffic. We add TM support to the open-
source Bro NIDS, and examine a number of applications (controlling the TM,
correlating NIDS alarms with associated packet data, and retrospective analysis)
that such integration enables. In addition, we explore the technical subtleties that
arise when injecting recorded network traffic into a NIDS that is simultaneously
analyzing live traffic. Our evaluation using traces as well as live traffic from two
large sites finds that the combined system can process up to 120 retrospective
queries per second, and can potentially analyze traffic seen 4–15 days in the past,
using affordable memory and disk resources.

A previous proof-of-principle TM implementation has been in operational use for
several years at LBNL. The new, joint TM/NIDS installation is now running there
continuously in a prototype setup, and the site’s operators are planning to integrate
it into their operational security monitoring.

To further improve performance in high-volume environments, we plan to develop
a version of the system that implements cutoff processing in dedicated hardware
(such as the Shunt FPGA [49]) or in the kernel, in order to reduce the traffic
volume as early as possible. Using ideas from [30], we also plan to further extend
the period we can “travel back in time” by aggregating packet data into higher
level representations (e.g., flows) once evicted from the TM’s buffers.

Overall, we have found that retrospective analysis requires a great deal of expe-
rience with a TM/NIDS setup in operational environments to identify the most
useful applications, especially considering the trade-offs discussed in Section 3.6.
Now that we have the TM/NIDS hybrid in place, the next step is to pursue a study
of these possibilities. We also show the utility of the Time Machine for large scale
traffic measurements and security analysis in Chapter 8.
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Chapter 4

DSL Line and NAT Characteristics

We now turn to the characterization of residential broadband traffic. We begin
with a look at the behavior of the users’ DSL sessions (periods of connection to the
ISP’s network) and network address translation (NAT) usage characteristics. A
first basic question concerns the durations of such connections. Network analysis
studies often make the assumption that one can use IP addresses as host identifiers
(for example, for studies that count the number of systems exhibiting a particular
phenomenon), and previous studies have found stability in these mappings on
the order of several hours to days. Moore et al. analyzed the 2001 Code Red
outbreak and found that for larger timescales (days to weeks), IP addresses cannot
be used as reliable host identifiers due to IP reassignment [79]; they did not examine
timescales below several hours. Xie et al. observed some highly volatile dynamic
IP address ranges, which they attributed mainly to dial-up hosts [132]. On the
other hand, Casado et al. [21] found relatively low IP address churn. We find that
DSL sessions run quite short in duration, with a median length of only 20–30 min.
The short lifetime affects the rate of IP address reassignments, and we find 50%
of addresses are assigned at least twice in 24 h, and 1–5% of addresses more than
10 times, with significant implications for IP address aliasing.

Network address translation (NAT) can also skew the reliability of IP addresses
as host identifiers. Today, NAT is commonly used when residential users connect
their computers and laptops to the Internet. Indeed, most ISPs typically offer
WiFi enabled NAT home gateways to their broadband customers such that they
can connect multiple wireless (or wired) devices. These NAT gateways enable
customers to connect several devices to the Internet while needing only one public
IP address. The prevalence of NAT devices and the number of terminals connected
through a NAT gateway thus has implications on whether a public IP address can
be used as a unique host identifier and if it is possible to estimate population sizes
using IP addresses.

We examine the number of DSL lines using NAT and how many distinct devices or
hosts are connected via such NAT gateways. Furthermore, for DSL lines showing



50/156 Residential Broadband Internet Traffic: Characterization and Security Analysis

evidence of activity by more than one host we also study if these hosts are used
concurrently.

Most previous studies on identifying NAT gateways and infering the number of
hosts behind such gateways rely on information available in the packet headers,
e. g., IPids, IP TTLs, or ports. Our approach takes advantage of HTTP user-
agent information in addition to IP TTLs. In 2002, Bellovin [15] proposed and
discussed the possibility to identify end-hosts by leveraging the fact that IPids
are usually implemented as a simple counter. Nowadays an increasing number of
IP-stacks implement random IPid, reducing utility of his approach. Beverly [17]
evaluated several techniques to perform TCP/IP fingerprinting and found a host
count inflation due to NAT by 9% based on a one hour trace from 2004. Phaal [88]
also takes advantage of the IP TTL. Furthermore, there is work in the area of OS
fingerprinting, e. g., Miller [78].

Armitage [12] performed a measurement study in 2002 by offering Quake III servers
at well connected Internet sites and monitoring the incoming connections. He iden-
tified NATed players by checking for non-default Quake client ports and found that
17–25% of the players where located behind a NAT. Xie et al. [131] track IP-to-
host bindings over time for counting hosts. However, they consider all host behind
a NAT gateway as a single host. Casado et al. [21] use active web content to ana-
lyze NAT usage and IP address churn. By comparing local to public IP addresses
they find that 5–10% of IPs contacting the monitored web services have multiple
hosts over a 7 month period. While their approach relies on clients contacting their
web services, we can observe all traffic from the monitored DSL lines. We report
on NAT usage from the perspective of Web service providers in Section 4.4.

Our analysis of NAT usage shows that roughly 90% of the studied lines connect
to the Internet via a NAT gateway, presenting a high potential for IP ambiguity.
Indeed, for our data sets we find that 30–49% of the lines host multiple end-hosts.
Investigating the influence of shorter time-scales reveals that 20% of lines have
multiple end-hosts that are active within 1 hr of each other and 10% of lines have
activity from multiple hosts within 1 sec, i.e., on 10% of DSL-lines the shortest
observed time between activity from different hosts is less than 1 sec. These results
emphasize the large error potential of techniques that rely on an IP address to
uniquely identify an end-host.

The remainder of this chapter is structured as follows: We present our methodology
in Section 4.1. In Section 4.2 we present observed DSL session characteristics.
Next, we present our results on NAT usage and the number of hosts in Section 4.3
and the impact of shorter time-scales in Section 4.4. We then discuss limitations
in Section 4.5 and conclude in Section 4.6.
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4.1 Methodology

We use anonymized Radius logs (see Chapter 2) of the European ISP in order to
analyze the characteristics of DSL level sessions. To analyze NAT usage among
residential customers we use our 24 h traces (SEP08, APR09, and AUG09). For
NAT we have to (i) identify lines that use a NAT gateway (e.g., a home router) to
connect to the Internet and (ii) differentiate between the hosts behind the NAT
gateway.

4.1.1 Session Characteristics

We base our analysis on Radius [96] logs, which many European ISPs use for
authentication and IP address leasing. Radius supports two timeouts, Session-
Timeout and IdleTimeout, though in general the monitored ISP only makes use of
the first. SessionTimeout performs a role similar to the DHCP lease time, limiting
the maximum lifetime of a session. The ISP sets it to 24 hr (a popular choice
among European ISPs [81, 125]). DSL home routers generally offer an option to
reconnect immediately after a session expires. However, in contrast to DHCP,
Radius does not provide an option to request a particular IP address and Radius
does not try to reassign the previously assigned IP address.

4.1.2 Detecting the Presence of NAT

To detect whether NAT is used on a DSL line, we utilize the fact that operating
systems’ networking stacks use well-defined initial IP TTL values (initTTL) in
outgoing packets (e. g., Windows uses 128, MacOS X and Linux use 64). Further-
more, we know that our monitoring point is at a well defined hop distance (one
IP-level hop) from the customers’ equipment. Since NAT devices do routing they
decrement the TTLs for each packet that passes through them.

These observations enable us to infer the presence of NAT based on the TTL
values of packets sent by customers. If the TTL is initTTL−1 the sending host is
directly connected to the Internet (as the monitoring point is one hop away from
the customer). If the TTL is initTTL − 2 then there is a routing device (i.e., a
NAT gateway) in the customers’ premises. Accordingly, if we observe a TTL equal
to initTTL− n there are multiple routing devices on the path.

We note that users could reconfigure their systems to use a different TTL. However,
we do not expect this to happen often. Indeed, we do see that almost all observed
TTLs are between initTTL− 1 and initTTL − 3. While there are some packets
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with TTL values outside these ranges, they contribute less than 1.9% of packets
(1.7% of bytes). Moreover, approximately half of those are due to IPSEC which
uses a TTL of 255 and no other TTL has more than 0.44% of packets. Given the
low number of such packets, we discard them for our NAT detection.

A NAT gateway can come in one of two ways. It can be a dedicated gateway
(e. g., a home-router) or it can be a regular desktop or notebook, that has Internet
connection sharing activated. A dedicated NAT gateway will often directly interact
with Internet services, e.g., by serving as DNS resolver for the local network or for
synchronizing its time with NTP servers. Moreover, they generally do not use the
Web or use HTTP. Some NAT gateways however use HTTP to update dynamic
DNS information. We therefore define a dedicated NAT gateway as a device, that
is directly connected to the Internet (based on TTL observations) and that does
not use HTTP except for dynamic DNS updates.

4.1.3 Number of Hosts per DSL Line

We also want to count how many hosts are connected to each DSL line behind a
NAT gateway to enable us to estimate the ambiguity when using IP addresses as
host identifiers. A first step towards identifying a lower bound for the number of
hosts per line is to count the number of distinct TTLs observed per line. Recall
that Windows uses an initTTL of 128 and that MacOS X and Linux use 64 and
that most of the observed TTL values are within the ranges of 61–63, and 125–
127. These ranges are far enough apart to make them clearly distinguishable at
our monitoring point. Therefore, we can use observed TTLs to distinguish between
Windows and non-Windows operating systems, yet we cannot distinguish between
distinct Windows systems. This is rather unfortunate since HTTP user-agent
information shows, that Windows is the dominating operating system in our user
population.

However, we can use additional information to distinguish hosts. HTTP user-agent
strings of regular browsers (as opposed to user-agent strings used e.g., by software
update tools or media players) include information about the operating system,
browser versions, etc. This can help us differentiate between hosts with the same
operating system family. We find that 90% of all active DSL lines have user-agent
strings that contain such operating system and browser version information. For
example, consider the following summary of all network activity of one DSL line:
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Form Pkt Header From HTTP User-Agent
IP TTL Proto OS Family Version
63 53/DNS – – –
126 80/HTTP Win2k Firefox 2.0.1
126 80/HTTP WinXP Firefox 3.0.2
126 80/HTTP WinXP MSIE 6
126 80/HTTP WinXP Firefox 2.5.1

We see a directly connected device (TTL 63 == initTTL− 1) that is only using
DNS. According to our definition in Section 4.1.2 this device is classified as a
dedicated NAT gateway. We also observe TTLs of 126, which is consistent with
a Windows OS behind a NAT gateway. Examining the HTTP user-agent strings
we see that both Win2k and WinXP are present. Thus, we can assume that there
are at least two distinct hosts behind the NAT gateway. However, we also see that
the WinXP OS uses several different browser families and versions. While it can
happen that users use two different browser families on a single host (e. g., MSIE
and Firefox), it seems rather unlikely that they use different versions of the same
browser family on the same host. Using this rationale, the two different Firefox
versions on WinXP indicate two distinct hosts, yielding a total of 3 end-hosts.

Or consider this example:

From Pkt Header From HTTP User-Agent
IP TTL Port OS Family Version
63 53/DNS – – –
63 80/HTTP Linux Firefox 3.0.1
62 80/HTTP Linux Firefox 3.0.1
126 80/HTTP WinVista MSIE 8
126 80/HTTP WinVista Firefox 3.0.2

Here we also see a directly connected device (TTL 63), however there is also HTTP
activity with the same TTL. We therefore classify this device as a host. We also see
TTLs that are consistent with NATed Windows and Linux systems, so we conclude
that the directly connected device serves a dual function: as NAT gateway and
as regular computer. Moreover, we see one OS/browser combination with TTL
62—another host. For TTL 126 we see only WinVista as OS but two different
browser families, which likely indicates just one host with both Firefox and MSIE
installed. Overall, we infer for this example that there are 3 active hosts.
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4.1.4 NAT Analysis Tool

We develop a small C program, ttlstats, to implement our NAT analysis. For
each DSL line, the tool records whether a particular protocol was used by that line,
which TTL was used in packets of this protocol, and for HTTP which user-agents
were used. To identify protocols we use their well-known ports, which works well
for the protocols we consider (see Section 5.1.3).

For HTTP we parse the user-agent strings and extract the operating system ver-
sion (OS) and the browser version. We limit our analysis to user-agent strings
from typical browsers (Firefox, Internet Explorer, Safari, and Opera), user-agents
from mobile hand-held devices (see Chapter 7), and gaming consoles (Wii, Xbox,
PlayStation). We do not consider other user-agents (e. g., from software update
clients) since those often do not include OS information or host identifiers.

To estimate a lower bound for the number of hosts behind a NAT gateway we use
two approaches:

• We only count different 〈TTL,OS〉 combinations as distinct hosts. We term
this method OS only.

• For each 〈TTL,OS〉 combination we also count the number of different browser
versions from the same browser family as distinct hosts. We term this method
OS + browser version. Browser families are, e. g., Firefox and Internet Ex-
plorer. We do not consider different browser families as additional hosts.

In our first example above, OS only yields a host count of 2 while OS + browser
version yields a host count of 3. In our second example both counting methods yield
a host count of 3: one Linux system that is used as gateway and regular computer,
one NATed Linux system, and one NATed computer with Windows Vista.

4.1.5 NAT Analysis for Different Data Set Types

Often the kind of data (anonymized packet-level information with HTTP) we use
for this NAT analysis is not available. However (anonymized) HTTP logs might be
more readily available. Vice versa IP/TCP header only traces are also common in
the measurement community. Thus, we compare how well NAT analysis schemes
perform when fewer information is available. For this we use several reduced infor-
mation data sets, and repeat the analysis. In particular we analyze the accuracy of
(i) using only IP TTL information (no useragent), (ii) using only HTTP user-agent
strings (no TTL), and (iii) using only HTTP traffic augmented with IP TTLs (but
excluding non-HTTP protocols, http). See Table 4.1 for a comparison.
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Table 4.1: Information used for different types of data sets for NAT de-
tection.

Information all http no TTL no useragent

HTTP User-Agent 4 4 4

IP TTLs 4 4 4

Protocol Usage 4

4.2 DSL Session Characteristics

Looking at DSL session lengths, we expected to find typical session lengths of
several hours. We analyzed the DSL session duration of the Radius logs, excluding
sessions lasting under 5 minutes. Surprisingly, we find that sessions are quite short,
with a median duration of only 20–30 minutes. Figure 4.1 shows the distribution of
DSL session durations for those longer than 5 minutes, computed over all sessions,
along with the distribution of the median session duration computed per DSL
line. The data exhibits two strong modes around 20–30 minutes and 24 hr (the
maximum duration given the Radius setup), partitioning the DSL lines in two
large groups: always-connected lines, and lines that only connect on demand and
disconnect shortly after. We do not find much in between (lines connected for
several hours). While previous work found short sessions (70% lasting at most
1 hour) in the context of wireless university networks [65], we found it striking to
discover such short DSL sessions in residential networks, in violation of our mental
model that sessions would be significantly longer-lived.

To check if there is a significant difference in DSL session durations for P2P users
vs. non-P2P users (see Section 5.1), we partitioned the DSL-lines into two groups.
Overall, the characteristics of the distribution are similar, with two prevalent
modes. However, we find that P2P users tend to have longer session durations
and that a larger fraction of P2P users always remain connected.

To better understand the high prevalence of short sessions, we examined the Radius
termination status in the logs. Radius differentiates between 18 termination causes.
Figure 4.2 shows the distribution of causes for sessions longer than 5 min. We
observe that more than 80% of sessions are terminated by user request (this rises
to 95% for sessions under 5 min). Most likely these are caused by idle timeouts
in the DSL modem on the client side. While most current broadband contracts
are flat-rate, in the past time-based contracts were popular in Europe. Indeed,
these latter are still offered by most European ISPs. Therefore, it is likely that
consumer DSL routers come with a small idle timeout as a factory default in an
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utes for dataset TEN.
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Figure 4.2: DSL (Radius) session termination causes distribution for ses-
sions lasting longer than 5 minutes.
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Figure 4.4: Bandwidth usage of all DSL lines across time (1 min bins).

effort to aid users in keeping down costs. We checked the default settings for
several popular home routers available to us and verified that they indeed have
a small idle timeout. The second most common termination cause is PortError,
which likely results when users power off their DSL modem as part of powering
down their entire computing setup.

Since many DSL sessions are short and Radius does not preserve IP address as-
signments across sessions, we therefore expect (and find) IP addresses used for
multiple DSL lines across each dataset. During a 24 hr period we find 50% of the
IP addresses assigned to at least two distinct DSL lines, and 1–5% to more than
ten DSL lines. These results underscore the peril involved in using an IP address
as a long-term reliable host identifier.

Previous work found that for consumers diurnal patterns start with activity in the
morning, steadily increasing throughout the course of the day, with the height of
activity starting in the early evening and lasting till midnight [43, 46]. We see this
same overall pattern in terms of the number of active DSL sessions, as shown in
Figure 4.3. However, we note that the variation is in fact modest, with 40% of
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Table 4.2: Overview of NAT results. Top three rows are relative to total
number of active lines, remaining rows are relative to “Lines
with active hosts” (B.2)

Ref. Description SEP08 APR09 AUG09a AUG09b Base

A.1 Lines using NAT 89 % 91 % 92 % 92 % num.
total
lines

B.1 Lines on which only NAT gateway is
active

9 % 10 % 14 % 18 %

B.2 Lines with active hosts (NATed and
unNATed)

91 % 90 % 86 % 82 %

C.1 Lines with unNATed Windows 9 % 8 % 7 % 7 %
C.2 Lines with unNATed Linux/Mac 1 % 1 % 1 % 1 %
D.1 Total systems (OS only) 141 % 142 % 143 % 140 %
D.2 Total systems (OS + browser version) 155 % 162 % 179 % 172 %
E.1 Lines with > 1 host (OS only) 30 % 31 % 31 % 30 %
E.2 Lines with > 1 host (OS + browser

version)
36 % 39 % 49 % 46 %

the lines permanently connected. We also observe a slight day-of-week effect, with
Sundays having larger numbers of concurrent sessions, and Friday/Saturday lower
daily maxima than other weekdays.

We also observe a diurnal pattern in bandwidth usage, per Figure 4.4, with the
relative differences now being much more pronounced. After all, keeping a session
alive does not imply any bandwidth usage per se.

4.3 NAT Usage and Hosts per DSL Line

In this section we present the results from our NAT analysis. We first discuss the
prevalence of NAT devices at DSL lines before continuing with the number of hosts
per line. Finally, we investigate NAT detection with different data set types.

4.3.1 NAT Usage

Overall, we find that NAT is prevalent and that the vast majority of DSL lines use
NAT to connect hosts to the Internet. We also find that a significant number of
lines connects more than one host. Table 4.2 summarizes our key findings. More
than 90% of lines utilize NAT (Table 4.2, row A.1). This result is in contrast to
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the findings of Armitage [12] who only found 25% of the IPs were behind a NAT.
On 9–18% of lines (B.1) only the NAT devices itself is active1, that is, we see only
traffic that we attribute to the NAT gateway and no traffic from regular hosts.
The remaining lines (82–91%, B.2) have active hosts (those lines may or may not
be NATed).

We next take a closer look at DSL lines with active hosts and determine how
many of these lines are using NAT. We find that only 8–10% (C.1 and C.2) of
lines with active hosts are not NATed, i.e., there is only one host which is directly
connected.

Finally, we investigate how many more hosts than lines are present: the ratio of
detected hosts to the number of lines. In rows D.1 and D.2 we show the number of
observed hosts relative to the number of lines with active hosts. For D.1 we use the
heuristic which counts every unique TTL and OS combination as a separate host
(OS only). For row D.2 we also increment the per line host count if we observe TTL-
OS combinations with multiple version of the same browser family (OS + browser
version). According to our definition, we will always see more hosts than lines with
active hosts. However, the differences are strikingly large—up to 1.79 times as
many hosts than lines in AUG09a using the OS + browser version counting method.
Independent of the estimation method the number of hosts behind NAT gateways,
our host counts are far larger than the estimations by Beverly [17] from 2004,
who estimated 1.09 times more hosts than IPs. This difference might be due to
6 additional years of NAT gateway deployment, different vantage points (Internet
peering/exchange point vs. broadband access), different observation periods (1 h
vs. 24 h), and/or information base (SYN trace vs. TTL plus HTTP logs).

4.3.2 Number of Hosts per Line

Given that we see so many more hosts than lines with active hosts, we next inves-
tigate lower bounds for the number of lines with more than one host. If there are
many such lines it implies there are many public IP addresses with more than one
host, thus limiting the utility of IP addresses as host identifiers. We see (Table 4.2,
rows E.1 and E.2) that 30–49% of lines have more than one active host. We note
that between APR09 and AUG09a the number of lines with more than one host
(OS + browser version, row E.2) increases significantly. We attribute this to an
increase in browser heterogeneity. Following the release of MSIE 8 in late March
2009, we observe a significant share of MSIE 6, 7, and 8 in AUG09, while only
MSIE 6 and 7 have a significant share in SEP08 and APR09. Consider the example

1We term a device or host as active if it sent IP packets during the trace
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that two hosts use a DSL-line and both have WinXP and MSIE 7. In this case we
cannot distinguish between them. However, if one is upgraded to MSIE 8 while
the other is not, then we can distinguish them.

In Figure 4.5 we present a more detailed look by plotting the fraction of lines with
n hosts. We only present plots for SEP08 and AUG09a, the other traces exhibit
similar behavior. We focus on the bars labeled “all” first. Note that we observe
up to 7% of lines with more than 3 hosts. We also investigate whether this high
number of lines with multiple hosts is due to several computers (PCs or Macs) that
are used via the same line or whether mobile hand-held devices (e.g., iPhones, see
Chapter 7), or game consoles (e.g., Wii) are responsible for this. We identify these
devices by examining the HTTP user-agent string. If we exclude mobile hand-held
devices and game consoles, 25–28% (OS only; 34–44% with OS + browser version)
of lines have more than one host (not shown in table). Therefore, we conclude
that multiple end-hosts are in general due to users connecting several computers.
However, we also find that the more hosts we observe behind a NAT, the higher
the probability that a mobile or gaming device is present.

4.3.3 NAT Analysis with Different Data Set Types

As discussed in Section 4.1.5, we also use reduced data sets (http, no TTL, and no
useragent) and compare the NAT usage estimates to those based on the full data
set available to us (all). Figure 4.5 compares the number of hosts per line for the
different data sets. Note, without HTTP user-agent data there is no difference
between the scheme for OS only and OS + browser version. Most accuracy is lost
when relying on IP TTL only (no useragent). Removing the IP TTL (no TTL)
and relying on HTTP user-agents information only shows slightly better results.
Compared to all information, using HTTP logs annotated with TTL information
(but discarding all non-HTTP activity, http) gives a very good estimate of NAT
prevalence.

4.4 Impact of Shorter Time-Scales on NAT

So far we have limited our discussion to a static view of NAT behavior, i. e., we
analyzed whether a DSL line is NATed and how many hosts are connected via
this line. If a line has more than one host, IP addresses cannot be reliably used
as host identifiers when considering time-scales of one day (our trace duration).
However, it is possible that even though a line has two hosts, the first host is
only active in the morning while the second host is only active in the evening.
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Figure 4.5: Fraction of DSL lines vs. number of hosts per line for SEP08
and AUG09a

Thus, although the line has two hosts, they are not used at the same time. This
reduces the ambiguity of using IP addresses as host identifiers over smaller time
intervals (e. g., by utilizing timeouts). Likewise, two hosts behind a NAT device
may contact different network services. Therefore, we also analyze whether we still
observe multiple hosts behind a single IP address when considering only traffic
to/from particular Web domains.

4.4.1 Analysis Approach

To answer if multiple devices are used at the same time, we compute the minimum
inter activity time (IAT) between a HTTP request from one host to the HTTP
request from another host on the same DSL line. If we observe an minimum IAT
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of T seconds then we know that two or more distinct hosts were active at this
line within T seconds. As we need timestamps for this analysis we cannot use the
output of the ttlstats tool (Section 4.1.4) as it aggregates all activity of a line
for scalability reasons. Therefore, we revert to using HTTP request logs2, which
corresponds to the “http” data type and use the “OS only” counting method.

To decide whether multiple hosts at a DSL line contact the same domains at the
same time, we include the second level domains (e.g., example.com, example.at)
from HTTP’s Host header into our analysis, i.e., we calculate the IATs between
different hosts on the same line accessing the same web service. This enables us
to see the effects of multiple hosts behind a NAT device when only analyzing a
subset of the data, i. e., traffic to/from a specific web service. We focus on at set
of web services that are popular among our user population.

4.4.2 Results

In Figure 4.6 we plot the fraction of lines with two or more hosts for increasing
minimum IATs. This plot enables us to study how close in time two (or more) hosts
are active via the same line. This allows us to estimate by how much ambiguity
can be reduced by using a timeout, i. e., by using the IP-to-host mapping only for
a limited time.

Even with intervals as low as 1 sec we observe more than 10% of lines with multiple
hosts. When considering IATs of 1 h, almost 20% of lines see activity from multiple
hosts. We thus conclude that if a line has multiple hosts they are likely active at
the same time or within a short time period. We confirm these results by applying
the static analysis (see Section 4.1.3 and Section 4.3.2) for slices of the traces, i. e.,
we subdivide each trace into time bins of 1, 5, 10, 30, and 60 minutes and repeat
the analysis for each bin.

Next, we explore if this ambiguity in IP to end host mappings persists when looking
at a specific web service (by second level domains). In Figure 4.7 we again plot
the fraction of lines with multiple hosts for increasing minimum IATs when only
considering traffic to/from a specific Web service3 in AUG09a. We normalize by
the number of users observed per web service. For comparison we repeat the result
from Figure 4.6 (top most points, label “all domains”). As expected the different
domains do not experience as many DSL lines with multiple hosts, especially for
short intervals (1s to 1min). Nevertheless, except for Microsoft, looking at IATs of

2These logs include timestamps for every request. We rely on Bro [86] for HTTP parsing.
3We present results on Apple, Doubleclick, Facebook, Google, Microsoft, Rapidshare, and

YouTube
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Figure 4.6: Fraction of DSL lines with more than one active host within a
particular time interval using OS only (y-axis starts at 10%).

10 hours we observe multiple hosts on 5-15% of the DSL lines (IPs) using the web
service. Furthermore, we note that ubiquitous services such as Google or third-
party Ad-servers, such as Doubleclick, are exposed to a higher fraction of IPs with
multiple hosts. Another notable difference is observed for Rapidshare. Rapidshare
starts with a high fraction of lines with multiple hosts even for short IATs (8%)
which is closer to the overall data set.

In 2007, Casado et al. [21] analyzed NAT from the perspective of Web service
providers. They found that over their 7 month observation period 5–10% of the
IPs contacting their services had multiple hosts. However, they report a total
177M Web request over 7month, while we record over 70M requests per day (up
to 4M per service). Therefore, our results focus on the popular Web services.

4.5 NAT Analysis Considerations

We aim at estimating the number of active end-hosts per DSL line. Our method-
ology is tailored towards underestimating the actual number of end-hosts per line
for the following reasons: As explained in Section 4.1.3 we do not count differ-
ent browser types as multiple hosts, although this might be a good indicator for
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Figure 4.7: Fraction of DSL lines with more than one active host within
a particular time interval by Web service using OS only for
AUG09a.

multiple hosts. How likely is it to have multiple Browsers installed? Furthermore,
we focus mainly on IP and HTTP. Parsing additional application protocol headers
might reveal additional hosts that were not counted (e. g., P2P peer IDs; however
only a small fraction of DSL lines use P2P protocols).

On the other hand there are factors that can bias our results towards overestimating
the number of hosts per DSL line: If a user has two operating systems installed
on one host (e. g., Windows for gaming and Linux for working) our method counts
this machine as two different hosts. Likewise, if a user updates his browser during
our observation period we also count the same machine twice. However, these
artifacts decrease as we consider shorter IATs since it requires time to reboot
another operating system and/or update a browser. Therefore, the results for
small IATs are reasonable lower bounds for the number of hosts per line.

4.6 Summary

We started this chapter with DSL level characteristics, examining session dura-
tions, their termination causes, and the number of concurrent sessions. Session
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durations are surprisingly short, with a median duration of only 20–30 minutes,
while we would have expected several hours to days. Our termination cause analy-
sis turned up that most sessions end due to termination from the user end, which
we attribute to default router configurations based on former timed contracts. As
a consequence, IP addresses are reassigned frequently, with up to 4% of addresses
assigned more than 10 times a day. This indicates that the use of IP addresses as
host identifiers can prove quite misleading over fairly short time scales.

Next, we presented a novel approach for detecting DSL lines that use network
address translation to connect to the Internet. Our approach is able to infer the
presence of a NAT device and to provide lower bounds for the number of hosts
connected behind the NAT gateway. For lines with multiple hosts connected we
also studied the temporal behavior to see whether multiple hosts are active at the
same time. Our approach relies on IP TTL information and HTTP user-agent
strings and we analyze the accuracy when using less information (e.g., only TTLs,
or only user-agent strings) for the NAT analysis. We find that most accuracy is
lost when user-agent strings are omitted.

We find that 10% of DSL lines have more than one host active at the same time
and that almost 20% of lines have multiple hosts that are active within one hour
of each other. Overall 30–49% of lines have multiple hosts. Checking if multiple
simultaneously active hosts per line contact the same remote destination we show
that the fraction of lines with multiple hosts drops significantly. However, still
remains noticeable. These results underscore the perils involved when using IPs
as host identifiers.



67/156

Chapter 5

Application Layer Characteristics

To understand the popular applications among our user population, we exam-
ine our application classifications and anonymized application-layer header traces.
We in addition assess how well purely port-based classification would perform for
correctly identifying residential traffic patterns, and characterize traffic asymme-
tries.

We then focus on the dominant protocol, HTTP, and analyze its usage in depth
before turning to the achievable throughput that various P2P and client-server
application protocols achieve.

To simplify the presentation, we focus our discussion on SEP08. However, we
verified our results across all traces (WEEK, APR09, AUG09) and explicitly point
out differences. In particular, we use the 14 samples from WEEK to verify that
there are no dominant day-of-week or other biases apparent in the 24 h traces. In
addition, we cross-checked our results with sampled NetFlow data exported by 10 of
the ISP’s routers. This further increases our confidence in the representativeness
of our application mix results.

5.1 Application Protocol Usage

Previous studies of Internet application mix found HTTP to predominate around
the turn of the century. Fraleigh et al. [45] analyzed packet level traces recorded
from the Sprint backbone in 2001, finding that in most traces HTTP contributed
> 40% of all bytes, though several traces had P2P contributing 80%.

Subsequent studies found that P2P became the dominant application. Ipoque
and Cachelogic both used data from their deployed deep packet inspection and
traffic management systems at selected customers sites to assess the application
usage [85, 102, 103]. Cachelogic claimed that by 2006 P2P accounted for more
than 70% of the traffic, with Ipoque supporting this claim for 2007. For 2008
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Figure 5.1: Application protocol mix for trace SEP08.

Ipoque found that P2P in Europe accounted for more than 50% of traffic (with
Web contributing another 25%).

On the other hand, Hyun-chul et al. reported that payload-based analysis con-
ducted in 2004 from within the PAIX backbone found almost no P2P traffic, but
more than 45% HTTP [54]. On the other hand, the same study developed how at
various university networks the traffic differs; for example, at KAIST in 2006 they
found under 10% HTTP, and 40–50% P2P.

Cho et al. [24, 25] also found in 2008 that TCP port 80 contributed only 14% of
all bytes in Japanese ISP backbones (9% in 2005), with the bulk of traffic being on
unassigned ports. None of the default P2P ports contributed more 1% of the traffic
volume. (The authors point out that WINNY, the most prevalent P2P application
in Japan, uses unassigned ports.) They found that residential traffic exhibited a
shift to more streaming and video content, which agrees with recent blog and news
reports that claim that P2P traffic has somewhat declined, with streaming media
increasing [9, 116]. With an assumption that the unassigned ports indeed reflected
P2P, their datasets indicated that P2P dominated the total traffic volume.

From a somewhat different perspective, Kotz and Essien [64, 65] reported that
50% of wireless traffic in 2001 on a university campus, which included residential
buildings, used HTTP’s well-known ports, with 40% of this traffic incoming to
local servers. Henderson et al. [53] compared these results with newer traces from
2003/2004 of the same network, finding major shifts in the application mix (HTTP
63%→27%, File systems 5%→19%, P2P 5%→22%), and that more traffic stayed
on-campus than in 2001 (70%, up from 34%). Of the P2P traffic, 73% remained
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internal. Therefore, we cannot easily compare these results to residential broad-
band use. Finally, Fraleigh et al. [45] also used a port-based approach on 2001
data, finding that on some links 60% of the bytes come from P2P and only 30%
from HTTP, although most of their traces have more than 40% HTTP.

Given this context, we now turn to an analysis of application usage in our 2008/2009
residential traces.

5.1.1 Application Usage Analysis

To robustly identify application protocols, we employ the Bro system’s Dynamic
Protocol Detection (DPD) [36]. DPD essentially tries to parse each connection’s
byte stream with parsers for numerous protocols, deferring determination of the
corresponding application until only that application’s parser recognizes the traffic.
DPD also uses regular expression signatures to winnow down the initial set of
candidate parsers. The Bro distribution includes full DPD parsers/recognizers for
BitTorrent, FTP, HTTP, IRC, POP3, SMTP, SSH, and SSL. We extended the
set of detectors with partial recognizers for eDonkey and Gnutella (both based on
L7-filter signatures [68]), NNTP, RTP, RTSP, SHOUTcast, SOCKS, and Skype.

In the SEP08 trace we can classify more than 85% of all bytes, with another
3.6% using well-known ports, as reflected in Figure 5.1. We find that HTTP,
not P2P, is the most significant protocol, accounting for 57% of residential bytes.
We also find that NNTP contributes a significant amount of volume, nearly 5%.
Almost all of the NNTP bytes arise due to transfers of binary files, with RAR-
archives (application/rar) being among the most common file types, suggesting
that the traffic reflects the equivalent of file-sharing. Indeed, Kim et al. [61] did
a subsequent study of NNTP traffic and found that most NNTP traffic is due to
binary downloads.

We find that P2P applications—BitTorrent, Gnutella, and eDonkey—contribute
< 14% of all bytes, with BitTorrent the most prevalent, and Gnutella almost non-
existent. However, the L7-filter signatures for eDonkey may be incomplete. We
observe a significant amount of traffic (1.2%) on well-known eDonkey ports that
the classifier fails to detect as eDonkey. The distribution of connection sizes for
this traffic closely matches that for traffic positively identified as eDonkey (and
differs from other applications). If we presume that this indeed reflects eDonkey
traffic, then the overall share of P2P traffic increases to 17–19%, with eDonkey’s
popularity roughly the same as BitTorrent’s. But even if we assume that all
unclassified traffic is P2P, the total P2P share still runs below 25%.
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P2P applications could also in principle use HTTP for data download, thus “hiding”
among the bulk of HTTP traffic and increasing the significance of P2P traffic
volume. However, our in-depth analysis of HTTP traffic (Section 5.2) finds that
this is not the case.

Streaming protocols1 (RTSP, RTMP, SHOUTcast) account for 5% of the traffic
in terms of bytes. We identify RTSP and SHOUTcast using partial DPD parsers,
while we identify RTMP’s based only on its well-known port. We also find notice-
able Voice-over-IP traffic (Skype [19], RTP), about 1.3% of the total bytes.

In order to increase our confidence in the representativeness of our application mix
results, we analyzed sampled NetFlow data exported by 10 of the ISP’s routers.
This data shows that 50% of the traffic comes from TCP port 80. We further
compared our results with those from a commercial deep-packet-inspection system
deployed at a different network location, finding a close match.

Our analysis of the other traces confirms the findings outlined above. In particular
the other traces confirm that our results are not biased by the day-of-week we
choose. However, while the HTTP traffic share in the APR09 trace is about the
same, we find slightly more unclassified traffic. We note that the overall P2P traffic
decreases somewhat, and shifts from eDonkey to BitTorrent (now 9.3%). Also the
fraction of NNTP traffic decreases. On this day it only accounted for 2.2% of the
traffic. When we investigate the rural Indian AirJaldi community network, we find
that HTTP dominates the application protocols mix here as well, accounting for
56–72% of the total traffic volume. However, instant messenger and VoIP traffic
also contribute a significant share, which is in contrast to the European ISP where
we observe more NNTP and P2P.

We might expect that application usage differs widely between users with different
access speeds. Figure 5.2 shows the application mix seen for different downstream
bandwidth rates. Although the mix does vary, the changes are modest, other than
for more P2P traffic with higher bandwidths, and much higher NNTP prevalence
for the 17000 Kbps class. However, only a small percentage of lines use NNTP, so
its contribution to traffic mix can see more variation.

However, we do find that lines with higher access bandwidth have a higher utiliza-
tion in terms of average volume per line. Lines in the 3500 and 6500 Kbps categories
contribute about twice as many bytes per line than lines in the 1200 Kbps class,
and 17,000 Kbps lines three times more. We also find that general traffic per line
is consistent with a heavy-tailed distribution, and the top 2.5% of lines account
for 50% of the traffic.

1We do not consider video delivery via HTTP as streaming. We refer to those as progressive
HTTP downloads.
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To see if time-of-day effects influence the application mix, we examine the appli-
cation mix per hour, see Figure 5.3. We would expect to to observe more bulk
downloads and less interactive traffic during off-hour period, which our data con-
firms. Night-time traffic includes a larger fraction of P2P traffic, though HTTP
remains dominant during every time slot. Also, we again note high variability in
NNTP due to the small number of lines using it.

In contemporaneous work Erman et al. [41], Labovitz et al. [69], and Sandvine
Inc. [98] also studied the application mix in different network environments. Er-
man et al. analyzed the traffic of a major US broadband provider in the context
of understanding the potential for forward caching. They find that HTTP con-
tributes 61% on average and 68% during the busy-hour to the traffic volume in
the downstream direction while P2P only contributes 12%. Labovitz et al. and
Sandvine used results from their deployed deep packet inspection and traffic man-
agement systems at selected customers sites to assess the application mix and came
to similar conclusions as we. As such, their results strengthen our observation that
HTTP is again on the rise and P2P on the decline.

5.1.2 Application Mix of P2P vs. Non-P2P Lines

Next we study if the application usage of those lines that frequently use P2P differs
from those that do not. We find that roughly 3% of DSL-lines use P2P protocols
and that their traffic contribution accounts for 30% of overall volume. If a line
uses P2P protocols, they usually also account for most of the line’s traffic: 29%
BitTorrent and 17% eDonkey. However, HTTP is still popular and is responsible
for 23% of transferred bytes. We also note that the fraction of unclassified traffic
is higher at 23%, corresponding to roughly 64% of all unclassified traffic. There is
hardly any NNTP usage, only 0.6% of bytes.

Non-P2P lines predominantly use HTTP, for which it contributes 72% of their traf-
fic volume, followed by NNTP with 6.5%, with only 5.2% of the traffic unclassified.
Streaming services are also more dominant in this group (6.7%).

5.1.3 Does Port-Based Classification Work?

Very often in networking studies it is easier or more tenable to acquire TCP/IP
transport information rather than relying on deep packet inspection systems. A
significant question concerning the accuracy of such studies regards the degree to
which one can soundly infer application protocols based solely on the TCP/UDP
port numbers that connections use. Certainly, in adversarial settings, classification
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Table 5.1: DPD vs. destination port based application detection for
SEP08. VD is the volume identified by DPD for a given pro-
tocol P, VP is the volume observed on the P’s default port(s),
and VDP is the intersection of the two (running on P’s default
port and detected as P).

Protocol VPD/VD VPD/VP

HTTP 97.5% 98.1%
BitTorrent 4.8% 66.1%
eDonkey 36.6% 55.9%
SSL 75.2% 86.1%
NNTP 66.7% 95.3%
RTSP 92.6% 99.1%

based on port numbers has quite limited power, due to the ease by which end
systems can vary the ports they use. However, for non-adversarial situations, one
might hope to leverage a predominant tendency for applications to indeed stick
with the port assigned for their use.

Our DPD-based analysis—which is highly accurate for those applications where
we have a full protocol parser, and still potentially quite accurate when we employ
only a partial parser—presents an opportunity to assess the accuracy of port-based
classification using fairly solid ground truth.

Numerous previous studies have indicated that the advent of P2P has rendered
port-based approaches infeasible. Cho et al. [25] found that on Japanese Internet
backbone links, 79% of traffic (by bytes) uses unknown ports, and that TCP port
80 contributes only 14% of bytes. In 2004 Karagiannis et al. [59] found P2P traffic
increasingly moving away from well-known ports to dynamically negotiated ports.
Kim et al. [54] found that port-based detection quality is inversely proportional to
the fraction of P2P traffic.

We confirm that for current residential traffic a port-based approach works quite
well. Table 5.1 shows for dominant application layer protocols how well a port-
based approach would have performed. For each protocol P, column VPD/VD is the
fraction of the traffic volume observed on P’s default port(s) that DPD identifies
as P. Column VPD/VP shows the proportion of the traffic on P’s port that would
be correctly identified by only inspecting the port number.

We interpret the table as follows. Most of the HTTP traffic (97.5% of bytes) does
indeed appear on port 80 (middle column), and when looking at traffic on port 80
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we find that 98.1% of those bytes come from HTTP (righthand column). The
largest non-HTTP application on port 80 is SHOUTcast, a HTTP-like streaming
protocol. We therefore conclude that for our traffic, classifying port 80 traffic as
HTTP yields a good approximation for the total volume of HTTP traffic.

NNTP can only be partially identified by its default port (119). About two-thirds
of NNTP traffic uses that port, and of the traffic appearing on that port, nearly
all (95.3%) is indeed NNTP. From DPD we know that the remainder uses the
well-known HTTP proxy port, 3128. For SSL-based protocols (HTTPS, IMAPS,
POP3S, SSMTP, NNTPS) we find roughly 75% using well-known ports, while more
than 90% of RTSP bytes appear on its default port (554).

The story is vastly different for P2P protocols, however. Since many institutions
try to block P2P traffic with port-based filters, most P2P protocols have evolved
to use non-standard, dynamically negotiated ports. Still, one third of the detected
eDonkey traffic uses its well-known ports, and finding traffic on either those ports
or on the BitTorrent ports generally means that the traffic is indeed caused by
those protocols. (Interestingly, we find that 3% of BitTorrent traffic appears on
eDonkey ports.)

5.1.4 Traffic Symmetry

A common assumption regarding residential traffic is that the downstream domi-
nates the upstream, i.e., most bytes are transfered to the local side. Indeed, this
assumption has shaped—and is ingrained in—the bandwidth allocations of ADSL
and cable broadband offerings.

In our datasets, we observe that most bytes appear in connections originated lo-
cally, with only 10% due to connections originated remotely. The largest fraction
of incoming traffic is unclassified (33% of bytes), significantly higher than for out-
going connections, and with P2P the most significant contributor by volume (28%
BitTorrent, 17% eDonkey). Voice-over-IP and streaming protocols also contribute
significant volume to incoming connections (10%). Incoming FTP data connections
for active FTP sessions account for just over 1% of bytes in incoming connections.
Finally, we find that very few lines offer “classic” Internet services like SMTP or
HTTP.

When looking at the number of bytes transfered upstream and downstream, i.e.,
the symmetry of traffic, we find that 85% of all bytes come downstream, i.e.,
the asymmetry assumption does hold (though likely bandwidth asymmetry helped
shape this). This proportion is much higher than seen in the Japanese backbone
studies [24, 46], which found only 55% of volume was downstream. However, they
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found P2P dominated their traffic mix, thus contributing to symmetry. For our
traffic, we find that for P2P applications only 59% of bytes come downstream,
yielding an upload/download “share-ratio” of 41/59 ≈ 0.7—still resulting in less
symmetry than seen in the Japanese studies.

5.2 HTTP Usage

As HTTP dominates the traffic in our datasets, we now examine it more closely
to characterize its usage. A basic question concerns what has led to its resurgence
in popularity versus P2P traffic, with two possible reasons being (i) HTTP offers
popular high-volume content, e.g., [22, 94], and/or (ii) HTTP serves as a transport
protocol for other application layer protocols, including possibly P2P [9, 116]. We
find that 25% of all HTTP bytes carry flash-video, and data exchanged via RAR
archives contributes another 14%. Thus, clearly much of HTTP’s predominance
stems from its use in providing popular, high-volume content. We further find
that in terms of volume, HTTP is not significantly used for tunneling or P2P
downloads.

Many facets of HTTP usage have seen extensive study, as thoroughly surveyed
by Krishnamurthy and Rexford [66]. Some studies have focused on understanding
user behavior [11, 14, 32], while others have examined changes in content [128]
and the performance of web caching [1, 3, 14, 42]. Other work has looked at
media server workloads regarding file popularity and temporal properties, such as
in terms of live media streams collected from a large CDN [111], and file reference
characteristics and user behavior of a production video-on-demand system in large-
scale use [133].

More recently, various efforts have aimed at understanding from passive measure-
ments how the rapid advent of “Web 2.0” applications has changed HTTP traffic
patterns [99], as well as Web-based applications such as YouTube [47, 136] and
online social networks [48, 80, 100]. Others have employed active probing to study
specific features of such applications [22].

Sites like alexa.com employ user-installed toolbars to track the popularity of various
Web sites across demographic groups. They find that google.com, yahoo.com,
youtube.com, and facebook.com currently rank among the most popular sites in
terms of number of visits. In contrast, in this study we analyze popularity in
terms of traffic volume.
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Figure 5.4: Top HTTP content-types by volume for trace SEP08.

5.2.1 Content Type Distribution

We use Bro’s HTTP analyzer to parse the anonymized HTTP headers and compute
the size of each HTTP request/response pair. To identify the content types of
objects, we both examine the HTTP Content-Type header and analyze the initial
part of the HTTP body using libmagic. We find more than 1,000 different content-
types in HTTP headers. Surprisingly, the results of these two approaches often
disagree: 43% of all HTTP bytes (28% of requests) exhibit a mismatch. Some
disagreements are minor and easy to resolve. For example, in the absence of a
standardized MIME type representation we can find several different strings used
for the same type. We also often see generic use of application/octet-stream as
Content-Type. In other cases, the sub-type differs: for example, the Content-Type
header may specify “ image/gif,” while libmagic yields “ image/jpeg”.

When Content-Type and libmagic disagree, we try to identify the most likely “true”
content type by using heuristics. We start by normalizing the content types and
giving priority to libmagic for those content types with well-known formats, e.g.,
most image and video types. For other formats, we manually examine the mis-
matches and pick the most likely resolution. We report mismatches we could not
resolve as “x/x” in our results, and generic or unidentified content types, such as
application/octet-stream, as “n/n”. All in all, our analysis illustrates the need for
considerable caution when basing an assessment of content types solely on the
Content-Type header.

Figure 5.4 shows a pie chart of the distribution of bytes per content type from the
SEP08 trace. The most common content-type by volume is flash-video (video/flv)—
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the format used by sites such as youtube.com and many news sites—which con-
tributes 25% of the bytes. This is followed by the archive format RAR (application/rar),
which accounts for 15% of HTTP traffic.

The unknown or unidentifiable content-types together account for 18% of the
HTTP traffic. We find that a significant portion of this traffic reflects automated
software updates, as 14% of the unidentifiable bytes come from a single software
update site. Image types (GIF, PNG, and JPEG) contribute 11.4% of bytes, while
video types other than Flash account for only 7.6%.

During the night we observe a higher fraction of RAR objects and unknown objects,
while the relative popularity of HTML and image types decreases. This indicates
that the former arise due to bulk transfers rather than interactive browsing.

The general content-type distribution is essentially unchanged when considering
the APR09 trace. However, the fraction of non-flash-video (video/flv) video content
(9%) increases, while audio content decreases. Moreover, the fraction of unknown
content types from the automated software site falls to 7.5% in APR09. We also
confirmed that the presented results are not subject to day-of-week effects by
comparing them with results from WEEK trace.

Drawing upon recent data from a major US broadband provider, Erman et al. [41]
also report similar content type distributions. They find that video content cor-
responds to 32% of HTTP traffic, and compressed file downloads, e.g., RAR, for
16% of traffic.

When separating lines with and without P2P protocol usage, we find that the
content-type distribution for non-P2P lines closely matches the overall one. How-
ever, lines that use P2P have a smaller fraction of flash-video (20%) and RAR
archives (11%), and a larger fraction of unidentified content-types (25%) We note
that 28% of this unidentified traffic is served from CDNs and 8% from a Direct
Download Provider.

5.2.2 Distribution Across Domains

Next we examine the distribution across domains, presenting the results for the
SEP08 trace in Table 5.2. We base our analysis on extracting the second-level do-
main from the HTTP Host header. We find that the byte distribution per domain
fairly closely matches a Zipf distribution, per Figure 5.5. The top 15 domains
account for 43% of all HTTP bytes. Since flash-video is the most voluminous
content-type, it is not surprising to find sites offering videos among the top do-
mains, and indeed most of the traffic to/from these video portals has type video/flv.
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Table 5.2: Top HTTP domains (anonymized) for trace SEP08

Rank Domain Fraction of Traffic

1 Direct Download Provider 15.3%
2 Video portal 6.1%
3 Video portal 3.3%
4 Video portal 3.2%
5 Software updates 3.0%
6 CDN 2.1%
7 Search engine 1.8%
8 Software company 1.7%
9 Web portal 1.3%

10 Video Portal 1.2%
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Figure 5.5: CCDF of HTTP volume per domain, for domains with >1 MB
of total traffic for trace SEP08.
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Table 5.3: Top HTTP user-agents by volume for SEP08.

Rank User-agent Fraction of Traffic

1 Firefox 3 24.6%
2 MSIE 7 20.4%
3 MSIE 6 13.6%
4 Firefox 2 11.9%
5 Unclassified 5.5%
6 Safari 4.3%
7 Network libraries 4.0%
8 Opera 2.8%
9 Streaming clients 2.5%

10 Download managers 1.6%

A Direct Download (DDL) provider also accounts for a significant fraction of HTTP
traffic. These DDL providers (also called “One-click providers”) host large files for
their customers. When a user uploads a file, they receive a (encoded) URL that
provides subsequent access for downloading the file. Users can then distribute the
URLs to friends or share them in online forums. About 16% of the HTTP traffic
involves Direct Download providers, with one provider in particular heavily domi-
nating this traffic (93% of DDL traffic volume). Nighttime traffic exhibits a strong
shift towards DDL sites; they account for 24% of HTTP bytes during the 4 AM
hour. DDL providers also originate almost 90% of all application/rar bytes.

Similar results hold for the other traces, with only some changes in the lower ranks.
Given the small difference in volume for these domains, we attribute such changes
to normal day-to-day differences rather than long-term trends.

5.2.3 User-Agent Popularity

To assess the popularity of different types of web clients, we extract the User-Agent
headers from the HTTP requests, group them into broader categories, and then
rank these categories by transfered volume. We group user-agents that we cannot
classify, and requests lacking a User-Agent header, as “Unclassified”. Table 5.3 shows
the results. We can attribute more than 82% of HTTP traffic to traditional Web
browsers, with Firefox and Internet Explorer each having a share of approximately
35% each, while Safari and Opera only contribute 6% and 3% of HTTP traffic. We
also crosschecked with the results described above to verify that a large fraction of
the traffic due to these traditional web clients involves well-known domains. We do



5.3 Achieved Throughput 81/156

time

F
ra

c
ti
o
n
 o

f 
a
c
ti
v
e
 l
in

e
s
 [
%

]

0
2
0

4
0

6
0

8
0

 4h  6h  8h  12h  16h  20h  0h  2h

50% downstream

50% upstream

10% downstream

10% upstream

Figure 5.6: Fraction of active lines using 50%/10% of their available up-
stream/downstream bandwidth at least once per 5 minute bin
(smoothed) for SEP08.

not see a significant volume contribution by advertised P2P clients. Further, even
if such P2P traffic falls into the “Unclassified” bin, it represents little in terms of
overall volume. Therefore, in our dataset we do not observe a large proportion of
P2P systems running on top of HTTP, unless they employ mimicry of well-known
browsers, and also manipulate content types and domains.

5.3 Achieved Throughput

Next, we examine how many lines actually utilize their available access bandwidth
across a substantial period of time. We count the number of transfered bytes per
DSL line across 1 sec bins and then calculate the throughput per bin. We call a
line active if it sent at least one packet, or received at least 5 KB, in each bin. We
then compare these results to the available access bandwidth for each DSL line,
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determining how many lines exceeded 10% or 50% of their bandwidth for at least
one second during a given 5 min period.

Figure 5.6 shows that most lines use only a small fraction of their bandwidth.
Less than a quarter of the active lines exceed 50% of their bandwidth for even one
second over a 5 minute time period. However, during the day we observe 50–70%
of active lines achieving at least a 10% bandwidth utilization. These results are
consistent with findings from Siekkinen et al. [105].

To gauge whether there is a principle network limitation on obtainable perfor-
mance, we analyzed the achieved throughput per unidirectional flow, distinguishing
flows by their application-layer protocol. To do so, we constructed the equivalent
of NetFlow data from our packet traces, using an inactivity timeout of 5 sec. Fig-
ure 5.7 shows the distribution of the achieved throughput for downstream flows,
given they transfered at least 50 KB. We observe that HTTP and NNTP achieve
throughputs an order of magnitude larger than those for P2P and unclassified traf-
fic (note the logarithmic scale). We also find that other DPD-classified traffic, as
well as traffic on well-known ports, achieves throughput similar to that for HTTP
and NNTP. These findings suggest that a portion of unclassified traffic is likely
P2P. For flows with more data (> 500 KB), the difference in throughput actu-
ally increases slightly. Furthermore, we see that the throughput for all of these
larger flows increases as well. When looking at flows in the upstream direction
(not shown) we find that all applications achieve similar throughput.

Some P2P applications open multiple parallel connections in order to download
content from several peers at the same time. To analyze this behavior, we con-
structed hostflows. For each DSL-line we aggregate all flows of size > 50KB that
overlap time-wise into one hostflow. We calculate the throughput of such a host-
flow by dividing the total number of transfered bytes by the total duration. We
plot the distribution of hostflow throughput for the downstream direction in Fig-
ure 5.8. The plot reveals that the difference in achieved throughput between P2P
applications and client-server-based applications remains. As such, the upstream
capacity of other peers combined with application restrictions effectively throttles
P2P transfers. Interestingly, we find that NNTP performs even better when consid-
ering host flows, yet still fails to fully utilize the available access bandwidth. This
is most likely a result of users using a customized NNTP client that uses multiple
connections for bulk download rather than a traditional newsgroup reader [61].
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by application protocol for SEP08.
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5.4 Summary

We examined usage of different applications and their impact on overall traffic.
We observed that P2P no longer dominates in terms of bytes. Rather, HTTP
once more carries most of the traffic, by a significant margin (>50%). We further
found that NNTP has a significant traffic share. While we used Bro’s DPD [36]
to identify applications, we also examined the efficacy we would obtain from a
simple, purely port-based approach for application classification, finding it works
quite well for our datasets, due to the prevalence of HTTP, NNTP, and streaming
applications. It does not work as well for P2P, however.

To understand why HTTP is again the dominant application, we looked at a
number of facets of its usage. We found that flash-video, the format used by
video portals such as youtube.com and news sites, contributes 25% of all HTTP
traffic, followed by RAR archives. The latter are mostly downloaded from Direct
Download providers associated with file-sharing. We did not find a significant
share of HTTP traffic attributable to P2P protocols or application protocols using
HTTP as a transport protocol.

We also observed that connections from client-server applications, like HTTP and
NNTP, achieve an order of magnitude higher throughput than P2P connections,
yet still fail to fully utilize the available access bandwidth.

We note that a number of these results agree with those of other contemporaneous
studies of Internet traffic [41, 69, 98], suggesting that the trends are representative
for a significant fraction of the Internet.
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Chapter 6

Transport Protocol Features

We next delve into exploring transport protocol layer features of residential broad-
band traffic. We start this analysis with investigating the prevalence of TCP op-
tions and TCP configurations, in order to get an overview of possible performance
limitations due to TCP option usage. We then explore the factors that affect the
performance that users experience.

To simplify the presentation, we focus our discussion on SEP08. However, we
verified our results across all traces (WEEK, APR09, AUG09) and explicitly point
out differences. In particular, we use the 14 samples from WEEK to verify that
there are no dominant day-of-week or other biases apparent in the 24 h traces.

6.1 TCP Characteristics

We start with exploring which of the various TCP options and configurations we
see in actual use. Doing so allows us to calibrate our expectations with regard to
TCP throughput performance. We limit our analysis to connections that transfer
some actual TCP payload, which excludes a large number of unproductive con-
nections caused by backscatter, scanning, or other establishment failures. The
excluded connections contribute about 0.1% of all bytes, but amount to 35% of all
connections.

To compare our results to previous studies, we need to determine the usage of
options on a per-host basis. However, unlike previous studies we have a significant
number of DSL lines using NAT (see Section 4). Since we cannot identify the
originating host for each TCP connections, we assess option usage in two ways.
The first technique considers each DSL line identifier as a single host, and attributes
any options observed in packets associated with the line to that host. Doing so
obviously undercounts the number of hosts. For the second approach, we assume
that each distinct TCP option set represents a distinct host. This likely overcounts
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the number of hosts, so by employing both strategies we can bracket the ranges
for host-based use of various TCP options.

Window Scaling

Window Scaling enables efficient data transfer when the bandwidth-delay product
exceeds 64 KB. We find window scaling advertisements in 32–35% of the SYNs
in our dataset, with 4% of the connections failing to successfully negotiate the
use of window scaling. When focusing on only connections transferring more than
50 KB, we find only a small change, with 34–38% successfully negotiated window
scaling. Finally, we observe that 45–62% of the hosts we monitor advertise window
scaling (across traces and across our under- and over-estimates for host count). In
contrast, Medina et al. reported that 27% of the observed client hosts advertised
window scaling in early 2004 [77]. Of those advertisements, 97% were found to be
zero (i.e., the client advertises the ability to scale windows, but not the desire to
do so). In our dataset, we do not find a predominance of scale factors of zero; most
scale factors are in fact non-zero, and cover a wide range. Even with our rough
counting of hosts, we can see that use of larger windows has become more routine
over the past 5 years.

TCP Timestamp

Timestamps help TCP to compute more accurate round-trip time estimates, and
serve to disambiguate old packets from new ones in very high-speed transfers. We
observe timestamps advertised in 11–12% of the connections in our dataset, with
8% of the connections ultimately negotiating their use. We further observe that 21–
39% of the hosts (across traces and host-counting methods) advertise timestamps,
versus 22% as observed by Medina et al. [77]. Further, Veal [120] probed a variety
of web servers and concluded that 76% of the servers will use timestamps when
requested by the client.

Selective Acknowledgment (SACK)

SACK facilitates more effective recovery from lost data segments. We find that
97% of connections in our dataset advertise support for SACK, with 82% of the
connections successfully negotiating its use. In addition, we observe that roughly
9% of the connections that negotiate SACK have at least one instance whereby
a receiver uses SACK to report a discontinuous arrival (either due to loss or re-
ordering). Finally, we observe 82–94% of the hosts we monitor advertising SACK
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(across traces and host-counting strategies). Medina et al. reported that in 2004
88% of the clients attempted to use SACK [77], and that active probing found
roughly 69% of successfully contacted servers supported SACK.

Maximum Segment Size (MSS)

The MSS governs the largest data segment a TCP sender will transmit. Across all
TCP traffic, we find advertised values in the 1300–1460 byte range in 98% of the
connections. These values arise from the very common 1500 byte Ethernet MTU,
minus space required for TCP/IP headers, as well as space for additional tunneling
headers.

Explicit Congestion Notification (ECN)

ECN enables routers to signal conditions of congestion without necessarily employ-
ing packet drops. We find virtually no support for ECN, observing only a handful
of monitored hosts (no matter how they are counted) advertising support for it in
their SYN packets.

Summary

We find that usage of performance improving TCP options varies considerably.
SACK enjoys widespread deployment and use; window scaling is quite common in
terms of both support and effective (non-zero) employment; ECN sees almost no
use.

6.2 Performance/Path Characteristics

We now turn our attention to factors that affect the performance that users
experience—spanning network effects, transport protocol settings, application be-
havior, and home networking equipment.

In a previous study, Dischinger et al. [35] used active measurements to probe 1,900
broadband host from 11 major providers in Europe and North America. They
found that the last-mile predominates as the performance bottleneck and induces
high jitter in the achievable throughput. They also found that broadband links
have large queuing buffers of several hundred to several thousand ms, and that
15% of last-mile RTTs exceed 20 ms. However, they do not compare access versus
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remote contributions to RTT. While their study covers a more diverse set of hosts,
our approach leverages capturing all activity of residential hosts.

Jiang and Dovrolis [57] estimated TCP RTTs from passive measurements of unidi-
rectional packet data using SYN –SYN/ACK–ACK handshakes and a slow-start
based approach. They found that 90–95% of connections have RTTs < 500 ms at
various academic links. Aikat et al. [4] examined the variability of RTTs within a
connection using data from the University of North Carolina. They report that a
striking 15% of TCP connections have median RTTs >1 s. However, their analysis
does not take delayed ACKs into account. Fraleigh et al. [45] analyzed packet level
traces from the Sprint backbone from 2001, finding that the median RTT never
exceeded 450 ms across their 9 traces. Only 3 traces had median RTTs >300 ms,
while 6 traces had median RTTs of <50 ms.

Siekkinen et al. [105, 106] analyzed performance limitations experienced by ADSL
users using passive measurements of approximately 1,300 DSL clients. They found
that most users do not utilize the available bandwidth, and that most traffic is
application-limited—particularly for P2P applications, which often actively limit
the transfer rate. Network limitations like congestion or TCP windows only af-
fected a small number of transfered bytes.

Zhang et al. [135] analyzed Internet flow traces from various access, peering, and re-
gional links within a Tier-1 provider in 2002 to understand from where performance
bottlenecks arose. They found that the most frequent performance limitations were
network congestion and advertised receiver window sizes.

Given this context, we now turn to an analysis of performance limitations in our
2008/2009 residential traces.

6.2.1 TCP Performance Limitations

TCP’s advertised window can have a significant impact on performance, as the
window must equal or exceed the bandwidth-delay product for a connection to fully
utilize the network path’s capacity. If too small, the data sender must pause and
wait for ACKs before sending additional data, whereas with a large enough window
data can steadily stream. We use the access bandwidth to compute bandwidth-
delay products for all connections and find that in the downstream direction, 44%
of all connections that transferred at least 50 KB have a bandwidth-delay product
that exceeds the maximum advertised window, but this proportion drops to 15%
for the upstream direction (which due to bandwidth asymmetry does not require
as large of a window).
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We find that the maximum advertised window observed per connection tends to be
fairly small, with a median across all connections in our dataset of 64 KB. Inter-
estingly, the use of window scaling does not significantly affect advertised window
size; the median for such connections increases only slightly, to 65–67 KB. How-
ever, the 75th percentile for connections with window scaling is roughly 190 KB,
as opposed to the limit of 64 KB imposed by a lack of window scaling.

We note, however, that connections with small advertised windows might in fact
have their performance more significantly limited by TCP’s response to congestion.
We assess loss/reordering events by checking whether a sender ever fails to send
monotonically increasing sequence numbers. Loss plays a key role in achievable
TCP performance [75, 83], and TCP can confuse reordering for loss [18], causing
it to perform congestion control actions that hinder performance. We find that
roughly 10% of TCP connections experience such events. Furthermore, 33% of
connections that transfer > 50 KB experience loss or reordering. These rates
are consistent with the observation that 9% of connections that negotiated SACK
actually exchanged a SACK block, as did 30% of connections that transfered at
least 50 KB. In addition, we find that about 1% of connections required SYN
retransmissions in order to successfully establish.

Finally, we find that at some points the receiver’s advertised window “closes” (drops
to zero). Generally, this behavior indicates that the receiving application has failed
to drain the operating system’s TCP buffer quickly enough, and therefore TCP
must gradually advertise less available buffer. As the advertised buffer space de-
creases, the sender’s ability to keep enough data in flight to fully fill the network
path diminishes. We find that for 4% of the downstream connections the adver-
tised window drops to zero, while this phenomenon occurs for 3% of the upstream
connections.

6.2.2 Round-Trip-Times (RTT)

We gathered our measurements at the ISP’s broadband access router, which is
the first IP router that traffic from the local hosts encounters. We can therefore
divide the end-to-end RTT that the residential connections experience into a local
component, measured from our monitor to the end system and back, and a remote
component, from our monitor over the wide-area Internet path to the host at the
other end of the connection.

We estimate TCP RTTs using the connection setup handshake (SYN, SYN/ACK,
ACK) [57], ignoring connections with SYN or SYN/ACK retransmissions, and con-
nections in which the final ACK carries data (which can indicate that an “empty”
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Figure 6.1: TCP round trip times for trace SEP08.

ACK has been lost). Figure 6.1 shows the smoothed probability distribution of the
RTTs. We found it quite surprising to observe that in many cases the local RTT
exceeds the remote RTT, i.e., the time to simply get to the Internet dominates over
the time spent traveling the Internet.

The difference manifests itself throughout most of the distribution. For example,
the median, 75th, 90th, and 99th percentiles of the local RTTs are all substantially
larger than their remote counterparts, and we find that 1% of local RTTs exceed
946 ms, while for remote RTTs the corresponding delay quantile is only 528 ms.
The 99th percentile of total RTT is 1328 ms, with a 90th percentile of 278 ms and
a median of 74 ms. While RTTs are often fairly low, we also observe several cases
for which the local RTT reaches values in the 2–6 sec range and beyond.

Local RTTs follow a bi-modal distribution, with one peak at 7 ms and another,
larger one at 45 ms. This is consistent with the fact that most DSL lines use
interleaving [56, 62], which increases delay, while a smaller number of the DSL
lines use the “fast path” feature, which does not contribute any significant delay.

Remote RTTs exhibit three modes, at 13 ms, 100 ms, and 160 ms, with the lat-



6.2 Performance/Path Characteristics 91/156

ter two somewhat blurred in the plot. Likely these modes reflect the geographic
distribution of remote hosts (e.g., Europe, US East coast, US West coast).

6.2.3 Impact of Access Technology

The not infrequent appearance of large local RTTs led us to investigate their pos-
sible cause. Typically, large RTTs reflect large queuing delays. Indeed, Dischinger
et al. [35] found that residential broadband links can exhibit queuing delays of
several seconds when a DSL line is fully utilized.

Manual inspection of sequence number plots of some connections with large RTTs
(>1000 ms) indeed shows such queues building up. We therefore checked whether
those lines utilized their access bandwidth during these events. We found, however,
that this is not always the case: while we often see significant traffic on these DSL
lines, they do not necessarily utilize their upstream or downstream bandwidth fully.
A more detailed manual analysis reveals other effects, too, such as RTTs within a
connection suddenly jumping by an order of magnitude.

One possible cause could be wireless links in users’ homes, given the plausibility
of a large fraction of broadband users employing 802.11 wireless to connect their
computers to the Internet. In densely populated, urban areas, users often “see”
numerous wireless networks, and therefore can experience non-negligible contention
for the medium.

To assess this hypothesis, we used several DSL links (1x 8000 Kbps and 3x 2000 Kbps
downstream) to estimate upstream and downstream throughput and queuing de-
lays using active measurements done with the nettest tool.

Using wired connections, we are able to fully utilize the DSL link’s bandwidth.
When using wireless connections, the achieved throughput often drops to 400–
1000 Kbps. In both cases, we experience queuing delays of several seconds. How-
ever, the reduced throughput when using wireless access causes the queue to start
building up at lower rates. In addition, while we were unable to saturate the
8000 Kbps link1 with a wired connection, and therefore had low or imperceptible
queuing delay, using wireless the queuing delay still rose to several seconds.

These results show that wireless networks can have a significant impact on the
achievable throughput. In particular, 11Mbps wireless cards and wireless connec-
tions in areas with many other wireless senders, and/or with poor link quality,
face significant performance degradation. We verified that wireless connections,

1Due to a bottleneck in the Internet between the DSL line and the measurement server
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in uncontested environments and with current 54Mbps wireless devices, offer the
same throughput and queuing delay as wired connections.

6.3 Summary

We analyzed transport protocol characteristics in terms of TCP options. We found
that window scaling and SACK have become more popular since Medina et al.’s
previous study [77], with SACK employed by more than 90% of clients. Window
scaling is also often used, but does not in fact result in larger advertised receiver
windows.

We assessed performance and path characteristics of TCP connections, noting that
most DSL lines fail to utilize their available bandwidth. Examining TCP round-
trip-times, we found that for many TCP connections the access bandwidth-delay
product exceeds the advertised window, thus making it impossible for the connec-
tion to saturate the access link. Our RTT analysis also revealed that, surprisingly,
the latency from the DSL-connected host to its first Internet hop dominates the
WAN path delay. This discrepancy can however be explained by ADSL’s inter-
leaving mechanism. We found that WAN delays are often as little as 13 ms, but
local RTTs not infrequently exceed 1000 ms, a phenomenon that is likely caused
by the use of wireless equipment in the customers home and ensuing contention
on the wireless hop.
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Chapter 7

Mobile Hand-held Device Characterization

Today, advanced mobile hand-held devices (MHDs, e. g., iPhones and BlackBerrys)
are very popular. MHDs have evolved rapidly over the years—from pure offline
devices, to cell phones with GSM data connectivity, to 3G devices, and universal
devices with both cellular as well as WiFi capabilities. Their increased graphics
and processing power makes these devices all-in-one PDAs and media centers.
Today’s MHDs can be used to surf the Web, check email, access weather forecast
and stock quotes, and navigate using GPS based maps—to just name some of the
prominent features. This increase in flexibility has caused an increase in network
traffic. Indeed, cellular IP traffic volume is growing rapidly and significantly faster
than classic broadband volume [130].

We cast a first look at Internet traffic caused by mobile hand-held devices. We use
our anonymized residential DSL broadband traces, spanning a period of 11 month,
to study MHD behavior and their impact on network usage. We are thus able
to observe the behavior of MHDs when they are connected via WiFi at home and
compare their traffic patterns to the overall residential traffic characteristics. Some
devices (most notably the iPod touch and iPhone) require WiFi connectivity rather
than cellular connectivity for some services. Other services are more likely to be
used via cellular connectivity due to user mobility, e. g., looking up directions on
Google Maps, while walking around town or driving. Although we only focus on
residential MHD usage and not MHD usage in cellular networks, our analysis gives
first insights into what kind of services users are interested in when they are at
home and have access to all services. This information is crucial for 3G cellular
providers to anticipate usage patterns and future traffic growths.

The remainder of this chapter is structured as follows. In Section 7.1 we present
our methodology, Section 7.2 presents our results. In Section 7.3 we discuss related
work before we conclude this chapter in Section 7.4.



94/156 Residential Broadband Internet Traffic: Characterization and Security Analysis

7.1 Methodology

We base this study on the anonymized residential packet-level traces, annotated
with anonymized DSL line card port ID. We use traces SEP08, APR09, AUG09a,
AUG09b (see Chapter 2 for details). The line card port ID annotation enables us
to uniquely distinguish DSL lines since IP addresses are subject to churn and as
such cannot be used to identify DSL lines (see Section 4.2).

7.1.1 Identifying MHDs

To understand how MHDs are utilized we need to identify not only their presence in
our traces but also their contributions. This is non-trivial as MHD users commonly
do not just operate the MHD over their DSL-line but also/mainly computers or
set-top boxes. Note, that all devices active via one DSL-line usually share a single
IP address. Therefore, we rely on network signatures which we gather by observing
and recording MHD behavior in a controlled environment.

Among the currently popular MHD devices are Symbian-based phones, Black-
Berrys, iPhones and iPods, Windows Mobile based phones, and Google Android
phones [124]. We collected manual traces using tcpdump for all device types ex-
cept BlackBerrys1. With each device we performed the following set of actions
using a wireless access-point for data collection: connecting to the access-point,
accessing several Web sites, watching videos on YouTube, using other mobile ap-
plications like Weather and Stocks, checking and sending emails, using Facebook,
and updating/installing mobile applications on the MHD.

Analyzing these manual traces reveals that HTTP dominates the protocol mix
and that most mobile applications, including Weather, Stock quotes, AppStore,
and YouTube, use HTTP. From our manual traces we extract a list of HTTP user-
agent strings for each device and OS combination.2 We further augment this list
by well-known strings from other mobile devices, e.g., BlackBerrys. This captures
the strings of the standard applications. However, it is not possible to compile a
list of all user-agent strings that MHD application writers may use. However, since
most developers rely on standard libraries, we add patterns for these libraries. For
example, most applications for Apple devices use the Apple CFNetwork library for
communication and CFNetwork usually adds its name and version number to the

1Manual trace collection was performed with Google’s G1 (Android 1.5), Apple’s iPod touch
(iPhone OS 2 & iPhone OS 3), HP’s iPaq (Windows Mobile), HTC Touch 3G (Windows
Mobile), Nokia 810 (Maemo Linux), and Nokia E61 (Symbian). Thanks to all device owners.

2We note that these MHD user-agent strings differ from user-agent strings used by PCs/Macs.



7.1 Methodology 95/156

end of user-agent strings. While Mac OS X also uses CFNetwork, the version num-
bers used by the iPhone and Mac OS X are disjoint and we can distinguish them.
Based on this collection of user-agent strings we create patterns for (i) identifying
DSL lines that “host” MHDs and (ii) identifying and classifying MHD usage of
HTTP.

7.1.2 Application Protocol Mix

Finding signatures for identifying non-HTTP traffic caused by MHDs is more dif-
ficult since most other application protocols, e. g., POP, do not add device related
information to their user-agent strings. Furthermore, they may use encryption.

One obvious approach for overcoming this limitation is to assume that MHDs and
regular computers are used consecutively, i. e., not used at the same time at the
same DSL line. Based upon this assumption one can classify all traffic after a
HTTP request from a MHD on a DSL line as MHD traffic (relying on a timeout).
However, we show in Section 7.2.1 that the underlying assumption is incorrect.
A majority of the lines shows contemporaneous activity from MHDs and regular
computers.

Therefore, we take advantage of another characteristic of network devices—their
IP TTLs. The default IP TTLs of popular MHDs differ from those of the most
commonly used home OSes. The default TTL of iPhones/iPods and Macs is 64,
Symbian uses 69, while Windows uses 128. This enables us to separate MHD usage
from regular PC usage for some combinations of OSes. While we cannot distinguish
iPhones/iPods from Macs or Windows Mobile from Windows we can use IP TTLs
to separate the other combinations. Our observations show that the majority of
home OSes is Windows while the majority of MHDs are iPods or iPhones. In order
to separate those, we first select all DSL lines for which every HTTP request with
a TTL3 of 64 or 69 is originated by a MHD (as identified via the user-agent). The
assumption is that all traffic on these lines with TTL 64/69 is then caused by a
MHD. Thus, we can then use Bro’s DPD [36] on this traffic to get a first impression
of the application protocol mix of MHDs. Since this approach excludes lines with
certain combinations of MHDs and regular computers we are left with 54–59% of
the lines with MHDs. In addition, if the activity of the regular computer does not
include HTTP we might misclassify its traffic. We note that we use this heuristic
only for analyzing the application protocol mix; we use user-agent strings for all
other analyses.

3We take NAT devices and our hop distance to the end system into account.
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Table 7.1: Overview of MHD pervasiveness.

MHD HTTP Traffic
Name Size # MHDs Volume % of HTTP
SEP08 ≈4TB ≈200 ≈2GB 0.1%
APR09 ≈4TB ≈400 ≈9GB 0.4%
AUG09a ≈6TB ≈500 ≈15GB 0.6%
AUG09b ≈5TB ≈500 ≈15GB 0.7%
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Figure 7.1: Popularity of MHD device types

7.2 Results

After reporting on the pervasiveness of MHDs we focus on their protocol mix.
Then we characterize MHDs’ HTTP traffic, analyze mobile application usage, and
present results on iTunes and AppStore usage.

7.2.1 MHD Pervasiveness

On a significant number of the DSL lines we observe traffic from MHDs (see Ta-
ble 7.1). Indeed, in the most recent trace, AUG09, 3% of active lines have MHD
activity. Moreover, the contribution of MHDs to the observed HTTP traffic is also
substantial (up to 0.7% of HTTP bytes). This indicates that some MHD users
may find it more convenient to use their mobile devices at home even if they have a
regular computer as well. Note, HTTP’s share of overall traffic volume is 50–60%,
see Section 5.1.
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Figure 7.2: Number of lines with MHD activity vs. number of lines with
HTTP activity for APR09 and AUG09b.

There is a strong temporal trend underlined by the rapid growth in the number of
lines with MHDs’ activity and in the MHDs’ HTTP traffic volume. The number of
lines with MHDs almost doubled between SEP08 and AUG09. The HTTP traffic
volume from MHD grew sixfold while the overall traffic volume increased only
slightly and the overall HTTP volume increased by 22% at our vantage point.

Figure 7.1 shows the distribution of active devices types for all traces. We observe
that Apple devices (iPhone and iPod touch) clearly dominate, both in terms of
number of lines and traffic volume (not shown). They account for 86–97% of
MHDs’ HTTP traffic and 71–87% of the devices. This is in contrast to the market
shares of the devices [124]. Possible explanations are that Apple users (i) find their
device very convenient even for home use and/or (ii) are looking for a multimedia
device that “also works as a phone”. Indeed, the iPod touch is an iPhone without
phone capability. We note that starting from APR09 the number of lines with
iPods outnumber the number of lines with all non-Apple MHDs combined.

We already pointed out that we have a substantial number of DSL lines “hosting”
MHDs. Now we want to illustrate how the use of MHDs is distributed over the
course of a day. To determine how the use of MHDs is distributed across time we
plot the relative number of lines with active MHDs per hour (top) and the percent-
age of lines with HTTP traffic per hour for APR09 and AUG09b in Figure 7.2. We
see that MHDs are used throughout the day. While we see a similar behavior when
looking at overall HTTP traffic, we see that MHD usage has a stronger pick-up
in the morning (AUG09b even shows a peak). Overall HTTP traffic on the other
hand slowly ramps up during the day. Again the convenience of using the mobile
device may be a possible explanation. Users can use them to check their emails or
the weather when “starting their day”. The low byte contribution of mobile devices
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in the morning hours supports this claim (figure not shown).

Next, we examine if MHDs and regular computers are used consecutively or whether
they are used contemporaneously. To assess this, we compute for each DSL line
and for any two subsequent HTTP requests their inter-request-times (IRTs) and
label them as (i) both from MHDs, (ii) both from non-MHDs, or (iii) from MHD
and non-MHD. We then compute the shortest IRT for mixed activity (MHD and
non-MHD) per DSL lines. We find that for 33–39% of MHD lines the shortest IRT
for mixed MHD/non-MHD activity is less than one second. For IRTs of less than
one minute (five minutes) up to 62% (72%) of the lines have mixed activity.

7.2.2 Application Protocol Mix

While our approach for analyzing the application protocol mix of MHDs is limited
(see Section 7.1.2), it still gives us a first impression of MHDs’ traffic composition.
We find that HTTP clearly dominates across all of our traces. HTTP contributes
80–97% of all MHD bytes. Email related protocols account for more than 9% of
the bytes in SEP08, 2.3–2.5% in APR09 and AUG09a. However, it drops to 0.2%
in AUG09b, most likely due to a different usage patterns on weekends. In general,
no other protocol has a traffic share of more than 1.5% with the exception of 13%
unclassified traffic in APR09, and 15% RTMP streaming in AUG09a, caused by
only a handful of MHDs.

7.2.3 MHD Web Traffic

Given that HTTP traffic accounts for the vast majority of MHD traffic, we now
examine it more closely to characterize its usage and how it differs from overall
HTTP usage. We use anonymized HTTP headers and identify HTTP requests
from MHDs using user-agents strings as discussed in Section 7.1.1.

To identify the content-type of each transfered HTTP object we join information
from the Content-Type HTTP header field and an analysis of the initial part of
the HTTP body using libmagic, per Section 5.2. We then group the content-type
into a handful of categories. We classify downloads of mobile applications as apps,
video and audio content as multimedia, and images as web-browsing, because the
latter are usually an integral part of Web pages.

Figure 7.3 shows the HTTP content type categories for MHDs and compares them
with all HTTP traffic. We find that multimedia content is the most voluminous
MHD content-type across all traces followed by application downloads. Interest-
ingly, XML objects are also common. They account for 2–5% of the transfered
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Figure 7.3: HTTP content type categories by volume. Comparing MHD
traffic to all HTTP traffic.

HTTP bytes. XML is used by many applications for status and data updates,
e.g., weather forecasts, stock quotes, and sport results. Surprisingly, Web surf-
ing itself (text based content-types and images) is only the third largest category
contributing less than 14% in the 2009 traces (23% in SEP08).

Comparing these results to all HTTP traffic (see Section 5.2) we find that down-
loads of mobile applications and XML contribute a significantly smaller fraction
to the content type mix. In contrast the volume contributed by RAR archives to
all HTTP traffic is significantly larger. Browsing is a bit more prevalent in all
HTTP traffic (18–22%). Multimedia content is the biggest contributor for both.
However, for all HTTP traffic flash-video is the most popular video codec, while
MHDs use MPEG coding, which is likely influenced by the large number of mobile
Apple devices that do not support flash-video.

The volume share per DNS domain reflects the distribution of MHD content-types.
Apple’s apple.com is responsible for most of the traffic due to application down-
loads. Note, only the AUG09a trace shows a significant number of iPhone applica-
tion downloads from third-party sites rather than the Apple’s AppStore. YouTube
and Stream.fm are the next most popular domains. For overall HTTP traffic,
One-Click-Hosters and video portals are among the top domains by volume.

To answer the question if MHD HTTP traffic characteristics differ from overall
HTTP traffic, we compare the distribution of HTTP object sizes. See Figure 7.4
for a plot of the Cumulative Complementary Distribution Function (CCDF) and
Probability Density Function (PDF) for APR09. The results for the other traces
are similar. We find that both distributions are consistent with a heavy-tailed
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Figure 7.4: Size of HTTP objects for all traffic and MHD traffic for trace
APR09.

distribution. While the dominating mode of object sizes downloaded by MHDs is
larger (see support lines), the tail is heavier for all HTTP traffic.

7.2.4 Mobile Applications

Figure 7.5 shows the popularity of the top MHDs’ applications. The most popular
application is Apple’s browser Safari. Up to 62% of all devices are using it. This is
followed by iTunes (up to 37%) and Weather (up to 32%). For non-Apple MHDs
we observe that the browser is also the most popular application. Overall we find
that Apple’s default applications clearly dominate. Surprisingly, the popularity of
Maps is relatively low. One possible explanation is that one rarely needs direc-
tions while at home. CoreMedia, the media player of iPhones and iPods, is also
quite prevalent. This application is responsible for playing videos accessed via the
YouTube application or the browser. The YouTube application itself is only used
for searching videos, tagging, and navigating within YouTube. Locationd is the
wireless positioning system used on Apple devices.

To understand if users take advantage of specialized applications available for
popular Web services, we select two Online Social Networks that are popular in our
user base: Facebook and StudiVZ. For both OSNs there are specialized applications
available for the iPhone/iPod MHDs. We find that roughly half of the users (50%
± 10%) use the specialized applications while the other half continues to use the
built-in browser. This relationship is stable throughout our 11 month observation
period.
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Figure 7.5: Application popularity by number of MHD devices using a
specific application.

7.2.5 Application and Media Downloads

Given that we are observing traffic from residential DSL lines, we have the ability
to evaluate if users use their mobile devices or their regular computer to download
mobile applications and/or multimedia content. Due to the prevalence of Apple
devices in our dataset we now focus on Apple iTunes store and Apple AppStore.

We find that applications are predominantly downloaded directly to the MHD (see
Table 7.2), e.g., more than 70% of downloads for the 2009 traces. Surprisingly,
we see that for AUG09a and AUG09b the total volume of application downloads in
terms of bytes is almost the same for regular computers and MHD, i. e., the mean
application size is larger for applications downloaded by PC/Macs. A detailed
analysis reveals that this is caused by outliers; the median application size is the
same for both.

We see a vastly different behavior for media downloads or purchases from Apple’s
iTunes store. Downloads are almost exclusively done via the regular computers.
We see several thousand media files being accessed in the 2009 traces. However,
only a handful of downloads are via MHDs which results in a small byte contribu-
tion.
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Table 7.2: Downloads from AppStore

# Apps by PC/Mac by MHD
Trace available Volume # Req Volume # Req
SEP08 3,000 <1GB <100 <1GB <100
APR09 7,500 <1GB >100 >2GB >250
AUG09a 70,000 >2GB >150 >3GB >450
AUG09b 70,000 >3GB >150 >3GB >400

7.3 Related Work

Only a small number of studies have focused on Internet traffic in 3G mobile or
cellular networks. Svoboda et al. [113] analyze various aspects of cellular 2G and
3G (GPRS and UMTS) traffic using anonymized header traces from 2004 and 2005.
They study traffic volume per user and protocol mix. In terms of protocol mix,
they find that HTTP is the dominant protocol with 40–60% of traffic. Heikkinen et
al. [52] analyze P2P usage from passive UMTS header traces in Finland from 2005–
2007. Web traffic accounts for 57–79% of bytes from mobile hand-held devices,
email for 10–24%, and P2P is not noticeable. Williamson et al. [127] analyze
packet/data call event traces from a CDMA2000 network from 2004. They focus
their analysis on link-layer behavior, session properties, and user mobility.

Several studies have analyzed TCP performance and low-level traffic characteristics
in GPRS and CDMA data networks [16, 70, 129]. Other studies analyze the
content requested or available for mobile devices. Using data from 2000, Adya
et al. [2] analyze the Web server logs of a major commercial site and study the
requests of mobile clients. They find that stock quotes, news, and yellow pages
were the most commonly accessed content in their traces. Timmins et al. [115]
use active measurements to crawl the Web for sites offering specialized content for
mobile devices. Verkasalo [121] studies how Symbian phone features are used by
instrumenting the handset. He finds that the camera feature and games are the
most common multimedia applications.

Trestian et al. [117] analyzes mobility and web-application usage in a 3G net-
work from a metropolitan area. We on the other hand, focus on stationary usage
when MHDs are connected at home via WiFi. Trestian et al. characterize web-
application usage by counting the number of HTTP request and find that social
networking, music, and e-mail are the most common web. They do not assess
how many users utilize a particular application, which is the approach we use to
characterize application usage.
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7.4 Summary

Our analysis of residential broadband DSL lines of a large European ISP shows that
there is a significant and increasing number of active MHDs. Our characterization
of the traffic shows that MHDs are active on up to 3% of the monitored DSL lines.
We find that iPhones and iPods are by far the most commonly observed MHDs.
This has an impact on the most popular mobile applications: Safari (Apple’s
browser), iTunes, and Weather. The largest fraction by volume of MHD HTTP
content is multimedia. Comparing HTTP object sizes of overall and MHD traffic
we find that MHD HTTP objects are on average larger. The contribution of MHDs
to the overall traffic volume is still small, but rapidly growing, especially compared
to the overall traffic growth.
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Chapter 8

Residential Network Security

After analyzing traffic characteristics of residential networks, we next turn to ma-
licious network activity and risky behavior in such networks. While conventional
wisdom holds that residential users—and particularly home users in rural or de-
veloping regions—are responsible for much of today’s Internet insecurity, little sys-
tematic study has examined whether such views in fact reflect reality. In this chap-
ter we describe observations from monitoring the network activity (anonymized for
user privacy) of the 20,000 DSL customers of the European ISP as well and of more
than 5,000 users of a community network in rural India. To assess malicious activ-
ity we develop a set of metrics, including signatures for known malware patterns
and behavioral techniques for finding scanners and spammers. We analyze the re-
lationship between problems flagged by these metrics versus the security awareness
of our user populations (anti-virus and OS software updates) and potential risky
behavior (accessing blacklisted URLs). Overall we find that both environments
have roughly comparable levels of problematic behavior, in both cases indicating
only a small fraction of actively malicious hosts. However, we also find quite preva-
lent risky behavior across our data sets, and that security awareness steps such
as using anti-virus updates do not correlate with a lower degree of problematic
activity.

8.1 Motivation and Background

Conventional wisdom says that residential users or users of community networks
are responsible for much of today’s Internet insecurity as they typically lack the
means to maintain and secure their systems to the necessary degree. In particular,
this reasoning proceeds, this must be the case for rural or developing regions, where
the lack of infrastructure and technical expertise further limits the sophistication
of their protection. However, so far few systematic studies have examined whether
this presumption reflects reality.
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In this chapter, we pursue such a study. We examine the network activity of 20,000
residential DSL customers within an European urban area and several 1,000 users
of a community network in rural India (AirJaldi [5]). If conventional presumption
holds, we should not only see a significantly higher level of malicious activity in
these networks than in well-maintained enterprise networks, but also a major dif-
ference between the two environments. To check this hypothesis, we develop a set
of security metrics, including behavioral metrics for identifying scanners and spam-
mers, and utilize signatures for known malware patterns. We apply the metrics to
anonymized passive network traces captured within each environment. For com-
parison, we also perform the same analysis at a large research laboratory that has a
track record of effectively protecting its roughly 12,000 systems while maintaining
a very liberal default policy.

Furthermore, we analyze the relationship between problems flagged by our metrics
and the level of security awareness in our populations. One may expect that users
who perform regular OS updates and deploy anti-virus software are less likely to
have their systems compromised. Likewise, intuition may suggest that users who
partake in particularly risky behavior have more security problems. To check these
assumptions, we examine the end-user systems in our data sets for signs of regular
operating system updates and anti-virus deployments as well as for contacts to
URLs blacklisted by Google’s Safe Browsing API [50].

The results of our analysis reveal a number of observations that contradict con-
ventional wisdom, including:

• We find only a small fraction of actively malicious hosts both at the European
ISP as well as the rural community network in India.

• Indeed, a comparison of these two environments shows that there is no sig-
nificant difference in the levels of malicious activity.

• While OS software updates and anti-virus technology are widely deployed
we do not find a correlation with a lower degree of malicious activity.

• Likewise, while we observe frequent risky behavior we find that such behavior
does not increase the probability of malicious activity as much as one may
presume.

We note that our study only corresponds to a first look at the security properties of
residential traffic. Since today’s malware landscape is large and diverse, identifying
the full extend of badness within a large data set is not only daunting but most
likely impossible. Still, we believe that our choice of metrics covers a significant
share of typical malicious activity, and our study lets us thus challenge assumptions
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that people tend to express about the insecurity of residential and community
networks.

We structure the remainder of this paper as follows. We describe our data annota-
tions in Section 8.2 before we introduce our methodology in Section 8.3. We then
study security awareness and risky behavior in Section 8.4 before investigating
malicious activity in Section 8.5. We present related work in Section 8.6. Finally,
we discuss our results and present avenues for future work in Section 8.7.

8.2 Data Annotations

We rely on the Time Machine traces collected at the European ISP and LBNL,
which span 14 and 4 days respectively (see Table 2.3). In addition, we use the
AirJaldi traces (see Table 2.4) for our assessment of malicious activity and risky
behavior. See Chapter 2 for a description of the environments and data sets we
use. To determine whether either the presence of network address translation
(NAT), the amount of customer activity, or operating systems influence the level
of malicious activity we see, we annotate our traces with meta information on NAT
usage, activity level, and OS.

8.2.1 NAT Usage

NAT is often used in residential settings to connect a single or multiple hosts to
the Internet via a single DSL line. In addition, NAT gateways also act as firewalls
blocking unwanted incoming connections and scans, thus protecting otherwise vul-
nerable hosts from infections. We use our NAT detection approach from Chapter 4
to annotate the DSL lines of the European ISP with NAT usage information. For
AirJaldi we cannot use our NAT detection approach to annotate the traces as our
approach relies on OS diversity and on a small number of hosts per NAT gateway.
At LBNL we do not need NAT annotations since in general NAT gateways are not
part of the network setup.

8.2.2 Activity Levels

To measure a DSL line’s “activity level”, we count its number of daily HTTP
requests. We then sort all lines by these numbers and label the top 10% as having
high activity; the top 50% of lines has having medium activity; and the bottom
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10% as having low activity.1 In addition, we also calculate cumulative activity
levels by counting the number of HTTP requests up to a given day D, and then
applying the labeling scheme to the accumulated values.2

We use the same approach to assign activity levels to IP addresses over the 4-day
LBNL trace. For AirJaldi we do not compute cumulative values as the traces’
durations are less than 40 hr.

We find that the property of a DSL line having multiple hosts hidden behind a NAT
gateway correlates with higher activity levels: the correlation with high activity is
0.20; with medium activity it is 0.35; with low activity there is negative correlation.
However, we do not observe strong correlation between lines not deploying NAT
and activity levels. Although we find that the correlation is slightly negative for
high and medium activity and slightly positive for low activity.

8.2.3 Operating Systems

A common assumption is that exposure to malware varies between operating sys-
tems where some systems are perceived to be more secure due to a better architec-
ture or a smaller market share that makes them less attractive targets. To assess
the degree to which this is the case, we annotate our traces with the operating
system(s) that are used on a DSL line (or IP). To identify operating systems, we
use the user-agent strings of HTTP requests. We select user-agent strings from the
most popular browsers (Firefox, Internet Explorer, Safari, and Opera) and extract
the operating system version from them. We are thus able to identify operating
system combinations for more than 90% of DSL lines of the European ISP. Ana-
lyzing the operating system mix, we find that 59% of lines use only a single version
of Windows, while 23% use several different Windows versions. Macs are present
on 7.6% of lines. To assess malicious activity on Macs, we next select the lines on
which only Mac user-agent strings were present but no Windows user-agents. To
further ensure that there are no Windows systems on Mac lines, we also exclude
lines on which we observe IP TTLs that are consistent with Windows3. After this
pruning, we find that 2.7% of all lines have only Macs. We further find that Linux
is present on 3.68% of lines. However, Linux is in general used in combination with
other operating systems. Thus, the fraction of lines with only Linux is too small

1Note, that this implies that lines with high activity are also included in the medium activity
class.

2We have also experimented with determining activity levels by measuring the number of out-
bound connections. The results however match those yielded by the HTTP-based metric and
we thus do not discuss them further.

3Windows used a default TTL of 128, Mac OS X uses 64.
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to separately assess malicious activity for them. For the AirJaldi environment we
find that we observe too many different operating systems per IP and therefore
cannot assess malicious activity based on OSes. At LBNL, we find that less than
60% of active IPs have user-agent strings with operating system information. We
find that 70% of those IPs use only a single version of Windows, and 2.8% use
multiple Windows versions. We see Macs in use with 19% of those IPs and Linux
with 8.6%.

8.3 Methodology

To identify DSL lines and hosts that show malicious activity or are infected with
malware respectively we use a twofold approach. We use three metrics that each
indicate unnatural and malign behavior but are not limited to any particular kind
of malware. Namely, the metrics capture address scanning, port scanning, and
spamming. Furthermore, we use network level signatures for three malware fami-
lies, Zlob, Conficker, and Zeus. In addition, we study the usefulness of the intrusion
detection system Snort [97] with the Emerging Threats [39] rule sets, as a blanket
approach. Note, however, that our experience shows (Section 8.3.4) that the latter
approach is not usable. In addition to problematic and malicious behavior, we
also check if users are security aware (e. g., that they use anti-virus scanners) and
whether they exhibit risky behavior. For compactness of presentation, we describe
our methodology in terms of the European ISP and point out any differences that
apply for any of the other environments.

To take advantage of the long duration of our traces, we analyze and report mali-
cious and risk behavior separately for each day of our multi-day traces (ISP and
LBNL). We further cumulate the results by accumulating all activity over different
trace durations and in total. For example, consider a DSL line that started to be
a scanner on day 4. In the daily data sets this line is marked as a scanner on day
4. In the cumulative data sets this line is marked as scanner on day 4 and for all
following days regardless of whether the line is again acting as scanner on any of
the following days or not. The cumulated data sets thus allow us to check how
malicious activity changes across longer observation periods, and the cumulative
data for the last day of a trace reflects the aggregate behavior over the full obser-
vation period. For AirJaldi we do not differentiate between per day and per trace
analysis since no trace is longer than 40 hr.

To determine the influence of risky behavior on malicious activity and to under-
stand the relationship between different malicious activity metrics we calculate
their correlations and their conditional probabilities in the following way: For
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both, the daily and cumulated data sets, we calculate a (binary) vector for each
day with one entry per DSL line which indicates if the metric is applicable or not,
e.g., the line is identified as scanner, has high HTTP activity, uses anti-virus, etc.
This allows us to examine the full correlation matrix of the metrics, where the
correlation is obtained by dividing the covariance of two vectors by the product of
their standard deviations. If two metrics are independent the correlation coefficient
is 0. The correlation is +1 in the case of a perfect positive linear relationship and
-1 in the case of a perfect decreasing linear relationship. Other values between -1
and 1 indicate the degree of linear dependence between the variables. The closer
the coefficient is to either -1 or 1, the stronger the correlation between the vari-
ables. Likewise, the probability of a DSL lines having a property (on a given singe
or cumulative day) is:

Pr[property] =
num. lines with property

num. active lines

and the conditional probability is defined as usual as

Pr[property1|property2] =
Pr[property1 ∩ property2]

Pr[property2]

8.3.1 Scanning

Extensive address scanning is a commonly used badness indicator since it is often
the precursor of an attack that exploits a vulnerability on the sites that answer
the scan. Most Network Intrusion Detection Systems (NIDS) therefore detect and
report such scanners. Their detectors typically target external hosts probing a
monitored network. However, for our study, we are instead interested in finding
outbound scanners. This is considerable harder as the potential probes are embed-
ded within the host’s benign activity (whereas when checking inbound scanning a
monitor will only see the malicious traffic). We find that in our setting, a classic
threshold-based scan detector is easily mislead by, e.g., users browsing the Web.
Detectors that count failed connection attempts work better but they still misfire,
e.g., for P2P and related traffic classes.

We therefore use an approach which is loosely borrowed from TRW [58]: use the
ratio of successful vs. unsuccessful TCP connections initiated by the originator.
We define an unsuccessful TCP connection as one where the client sends a SYN
packet but either receives a TCP reset or no answer at all. For our data set we
find a bi-modal distribution of success ratios for all pairs of DSL lines and remote
IPs, see Figure 8.1. It shows that the ratio between a line’s number of successful
outgoing connections to a particular destination and its total number is generally
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either ≪ 0.2 or ≫ 0.8. For a given line we thus define a destination as either
successful or unsuccessful, depending on the category of the pair.4

One unsuccessful approach for finding scanning DSL lines is to determine their
ratio of successful destinations. However, there is no clear cutoff and therefore
this metric, see Figure 8.2, does not provide us with clear distinction between
malicious and benign activity. Presumably, P2P clients can also have a large
numbers of unsuccessful destinations thus rendering this approach impractical.
To overcome this problem we use an additional feature—port numbers—for our
badness indicator. The motivation is that scanners typically tend to limit their
activity to a small subset of ports with known vulnerabilities.

We identify these ports using a twofold approach. We (i) investigate the ports
with the highest number of unsuccessful connections in our ISP data set and select
the ports associated with perilous or vulnerable services (e. g., Windows RPC,
data bases, remote desktop protocols). We (ii) augment this list by port numbers
observed in incoming scans that are flagged by the production IDS at LBNL,
again manually confirming that the services are perilous or vulnerable. Using this
approach we identify 14 ports. After prefiltering our data set to include only
connections to those 14 ports we see a nice separation. Now, almost all DSL lines
either have only a small number (less than 20) or a very large number (more than
1,000) of unsuccessful destinations. A scatter plot for day 9 is shown in Figure 8.3.
For this day we actually see either more than 10,000 unsuccessful destinations or
less than 100 except for one DSL line with 380 unsuccessful destinations.

For the scanning metric of our study, we use two different thresholds. A DSL line
triggers the scanning metric if we see more than (i) 1,000 or (ii) 100 unsuccessful
destinations within our data set, considering only the subset of ports. We moreover
confirm that this nice separation can also be observed for older data sets collected
at the same location and at LBNL and AirJaldi. Using this metric we flag a line as
scanner on a particular day if it exceeds our thresholds. For the example day that
we plot in Figure 8.3 we find that 0.057% (threshold 1,000) and 0.062% (threshold
100) of lines are scanners.

Another dimension of scanning is port scanning, where malicious hosts may probe
many ports on a single remote IP. Since in general no benign application needs
to contact many ports on a single IP we can use a threshold based approach to
classify a line as a port scanner. A DSL line that contacts at least two remote
hosts on more than 50 ports unsuccessfully within a single day is considered a port
scanner for that day.

4In the following, we ignore any pairs that do not fall into either category; these are less than
2%.
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pair success ratio
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Figure 8.1: Histogram of connection success ratio per 〈DSL line, remote
IP〉 pair for day 9 of the ISP trace.

We choose these values based on our experience: we pick 50 distinct ports, since
FTP or P2P clients might contact some ports unsuccessfully, but not as many as
50. We also require at least two destinations to be (unsuccessfully) contacted in
order to reduce false positive. Otherwise, a user who manually checks a destination,
e.g., for debugging purposes, would already lead to a hit. Roughly 0.1% of DSL
lines are port scanners according to this definition across the 14 day ISP trace.
If we flag a line as port scanner if it scanned just one remote host per day, this
number increases to 0.5%. However, most of them scanned only a single IP during
the whole 14 day period. Even with our metric which includes two hosts we find
that most port scanner still only scan on a single day.

8.3.2 Spamming

Another way for assessing badness is whether a DSL line sends spam. To find an
appropriate metric for classifying a line as spammer we now explore the SMTP
traffic in detail. Overall, roughly 20% of DSL lines use SMTP. Since spammers
might be more likely to have more unsuccessful commands we analyze the return
codes of SMTP commands relying on anonymized SMTP headers. However, we
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Figure 8.2: Scatter plot of number of successful and unsuccessful 〈DSL
line, remote IP〉 pairs per DSL line for all ports for day 9 of
the ISP trace. The size of the circles reflect the number of
lines having this specific combination.
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Figure 8.3: Scatter plot of number of successful and unsuccessful 〈DSL
line, remote IP〉 pairs per DSL line for suspicious ports only
for day 9 of the ISP trace. The size of the circles reflect the
number of lines having this specific combination.
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Figure 8.4: Spamming: Scatter plot of number of distinct sender domains
vs. number of contacted SMTP hosts per DSL line for day 9
of the ISP trace. The size of the circles reflect the number of
lines having this specific combination.

find that this is not the case. The distribution of success ratios and counts has
a wide spread—we do not observe a bi-modal distribution that could be used to
derive a spamming metric. Among the reasons are e. g., that we find that some
lines seem to have misconfigured clients that send the same command over and
over without adhering to the server’s reply codes.

Another possible metric is the number of distinct SMTP servers a line tries to
contact or the number of distinct (anonymized) sender domains a DSL line uses.
The number of distinct SMTP servers can be an indicator since we do not expect
DSL customers to run their own SMTP servers and thus they should rely on
a (small) number of e-mail providers to deliver their mails. This is necessary
since the IP range of the monitored DSL lines is known to be dynamic and many
SMTP servers reject mails from any dynamic addresses without authentication.
Using the same rationale, we do not expect a large number of distinct sender
domains per DSL line. Figure 8.4 shows the number of distinct sender domains
vs. the number of SMTP hosts contacted per DSL line. We find that DSL lines
consistently either contact less than 25 SMTP servers or more than 100. Indeed,
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most lines contact less than 10. The number of distinct sender domains is spread
more evenly. Nevertheless, the majority of lines has less than 10 distinct sender
domains. We thus classify a line as spammer, if it contacts more than 100 distinct
SMTP servers. We again evaluate the number of distinct SMTP servers for each
day separately and flag a line as spammer if it exceeds the threshold for that day.
For the example day in Figure 8.4 we find that 0.07% of lines are spammers. Older
data sets collected at the same location as well as the AirJaldi and LBNL data
sets show similar characteristics.

One might argue, that it is also possible to check if an IP address is blacklisted
by an anti-spam providers, e. g., Spamhaus. However, this is difficult within our
setting. Address assignments are dynamic and we experience considerable address
reassignments, see Section 4.2. It is thus very likely that a single spam host causes
many IPs to be blacklisted. Moreover, many anti-spam providers blacklist all
dynamically assigned IP ranges.

8.3.3 Known Malware Families

To better estimate malicious activity we next examine badness indicators related
to known malware families. In particular, we focus on Zlob (aka DNS.Changer),
Conficker, and Zeus.

One property of the Zlob malware family [126] is that it changes the DNS resolver
settings of infected hosts. It even tries to change the resolver settings of the DSL
routers. Zlob changes the DNS resolver to a known set of malicious IPs. The
motivation is that these malicious DNS resolvers can then return wrong answers
and thus redirect some queries to malicious servers. This presumably facilitates
phishing. We thus classify a DSL line as being infected with Zlob if it uses one
of those DNS resolvers. We note that Zlob targets both Windows as well as
Mac systems (social engineering by fake codec download). Thus Zlob is a prime
candidate for verifying the potential infections of Mac systems.

Another malware family that has attracted a lot of attention is Conficker [90]. Even
though Conficker started already in the fall of 2008 there are still many Conficker
infected hosts in the wild. For April 2010 the Conficker Working Group [29] re-
ports 5–6M unique Conficker A+B infected IPs and 100-200 k unique Conficker C
infected IPs. Note, that the number of IPs is not necessarily a good estimation of
the population size. The Conficker Working Group estimates that population size
is between 25% and 75% of the number of unique IPs per day. Given this preva-
lence of Conficker we search for signs of Conficker activity. To find rendezvous
points Conficker is known to generate a list of 250 different domain names per day
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(Conficker A and B, Conficker C uses 50,000 domains) and then tries to resolve
them in DNS. Since the algorithm for generating the domain names is known [118]
we compute the relevant domain names for our observation period and check which
DSL lines try to resolve these domains. To account for potential clock skew of the
client machines we also include the domain names for the days before and after
our observation period.

However, Conficker C is known to generate domains that are legitimately registered
(due to short domain names and the large number of generated domains). To rule
out false positives we thus only flag a DSL line as infected with Conficker if it
did at least 50 lookups for known Conficker domains. Typically an infected line
looks up at least 250 domains per day. Indeed, we find that DSL lines either look
up less than 10 Conficker domains or ≫ 50, with most lines resolving exactly 250
domains. We note that we find considerably more Conficker A and B infections
than Conficker C infections. This agrees with the number of IPs reported by the
Conficker Working Group [29]. We also note that Conficker uses address scanning
to find other vulnerable machines and spread itself. Thus, we expect to find a
correlation between address scanning and Conficker domain lookups.

The final malware family we consider is Zeus. We use the Zeus Domainblock-
list [134] to identify DSL lines infected with Zeus, by checking whether DSL
lines try to resolve any domains on the list via DNS. However, since the list not
only contains domain names that are random or appear random but also domain
names that indicate scareware (e. g., updateinfo22.com), or type squatting (e. g.,
google-analytiics.cn) we require more than three lookups per line and day in
order to classify a line as infected. If it had fewer lookups it is likely due to em-
bedded ads or some other artifact but not due to a bot. Since we do not have
a continuous feed of the Zeus Domainblocklist, we use a one day snapshot from
Mar-23 for the ISP traces as well as for AirJaldi1 and AirJaldi2. We use another
snapshot from May-06 for LBNL and AirJaldi3.

8.3.4 Emerging Threats Rule Set

Another way of detecting malicious activity is using a Network Intrusion Detection
System (NIDS). However, it is non-trivial to find an appropriate rule set that does
not generate too many false positives while also not missing much relevant behavior
either. Since we are trying to get an overview of malicious activity, we attempt to
utilize the popular Emerging Threats (ET) [39] rule sets for the NIDS Snort [97].
We exclude all rules that are labeled as aiming at finding inappropriate (e. g.,
gaming traffic or P2P) as we are not interested in such.
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Analyzing one day of ISP traffic, we however get more than 1 million hits, flagging
more than 90% of the monitored DSL lines—clearly this has to include many false
positives. By restricting the analysis to check only outbound activity, the fraction
of flagged lines is reduced to 61%; still too many to be a reliable indicator for
malicious activity. The main problems with the Emerging Threats rule sets are
their sheer size (more than 3,500 rules in total) and a general lack of documenta-
tion (many rules are not documented at all). In particular, rules do not include
any indication on how specific they are (i. e., what the likelihood of false positives
is), nor how severe the activity is that they target (e. g., is this rule triggered by
a C&C channel or by adware). The rules that trigger most often for outgoing
traffic include an adware user-agent, weird HTTP URI encodings, and duplicate
user-agents. When inspecting the results, we even find a rule to flag the Alexa [6]
toolbar. The large number of rules and the lack of documentation also make it
impossible to manually select a high-quality subset of rules. We tried to whitelist
rules that are likely non-malicious according to our objectives (e. g., Alexa). How-
ever, such whitelisting did not significantly reduce the number of DSL lines with
alerts reported since the remaining rules were still not sufficiently crisp. For ex-
ample, some of the often reported rules identify bots contacting their master by
checking URLs for specific patterns. However, many of those patterns are rather
generic and rely on the presence of single- or double-letter URL query parameters
(e. g., b=, tm=). These also commonly appear in benign traffic.

We conclude that while the Emerging Threats rule sets might be an important
tool for securing small networks with strict acceptable-use policies, such as small
businesses, they are less appropiate for large networks and environments with
more liberal security policies. These results are consistent with the experiences of
Carlinet et al. [20] who run Snort on ADSL traffic from about 5,000 customers of
a French ISP.

8.3.5 Security Awareness and Risky Behavior

To analyze whether DSL customers are aware of potential hazards and take sug-
gested countermeasures we analyze (i) whether DSL lines use anti-virus scanners,
(ii) if they regularly update their OS software (e. g., Windowsupdate), and (iii) if
they download Google’s Safe Browsing blacklist. For this we analyze the HTTP
user-agent strings and HTTP server hosts (from HTTP’s Host header). Most
anti-virus and OS software updates are done using HTTP and they use specific
user-agents and/or HTTP servers. Searching for those allows us to classify a DSL
line as software updater and/or anti-virus user. Likewise, the HTTP servers serv-
ing Google’s blacklist are well-known and we can thus identify those DSL lines
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which use the blacklist.

Moreover, we also check if DSL lines actually request any blacklisted URLs. Such
behavior clearly has to be considered risky. We do this by utilizing the Google
Safe Browsing API blacklists and characterizing HTTP request as either “bad” or
“safe”. We update our blacklist copy every 25minutes and store its history, i. e.,
we track changes in the blacklist over time. This allows us to verify whether a
requested URL was blacklisted at the time of the request or only after the request
took place.

8.4 Security Awareness and Risky Behavior

Next, we investigate the security awareness of the users of our networks and how
prevalent risky behavior is. We start by studying the characteristics of the DSL
customers from the European ISP, since it is the richest dataset with regards to
meta information. We then compare the results from the European ISP with those
from the AirJaldi community network and the LBNL setting where applicable.

8.4.1 Security Awareness

Figure 8.5 shows the fraction of active DSL lines as well as lines with anti-virus
respectively OS software updates. On any given day 67–72% of DSL lines perform
OS software updates and 64–69% of lines update their anti-virus signatures (or
anti-virus engines). From the cumulated data we see that over the 14 day obser-
vation period up to 87–88% of lines check for updates to their OS and anti-virus
software. This highlights that the user-base is in principle aware of hazards and
performs recommended precautions.

When focusing on DSL lines with activity from only Macs (and not Windows
systems) we find that only up to 54% do anti-virus updates and that up to 81%
perform software updates within our observation period.

8.4.2 Google Blacklist

But what about risky behavior such as requesting potential dangerous URLs?
For this purpose we check all requested URLs against the Google Safe Browsing
blacklist using Google’s Safe Browsing API. Overall, we find that only about 0.03%
of all HTTP requests are blacklisted. However, if we investigate the per line
behavior, we find that on any given day up to 4.4% of the DSL lines request at
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Figure 8.5: Fraction of active DSL lines, lines with anti-virus updates,
and lines with OS software updates for daily and cumulated
data sets from the ISP.

least one blacklisted URL. Across the whole 14 day period we see that a striking
19% of lines request at least one blacklisted URL.

To check if the browser could have warned the user we next check if the user-agent
placing the request actually downloaded the blacklist from Google. Our results
are mixed. For some lines the hits are from user-agents that did not download the
blacklist. However, many lines have user-agents that downloaded the list and still
request a blacklisted URL. While some of these hits occur before the URL appeared
on the blacklist5, many requests occur even though the URL is on the blacklist.
I. e., the user placing the request (presumably by clicking on a link) should have
been warned by the browser that the URL may be malicious. This behavior is in
contrast to the observed diligence regarding anti-virus and OS software updates.

To better understand this phenomen we study if the DSL lines that request URLs
before they were blacklisted correlate with the DSL lines that request URLs that

5We allow a 1 hr grace period, i. e., we consider a URL blacklisted 1 hr after it appeared in our
copy of the list.
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are on the blacklist at the time of the request. Figure 8.6 shows the correlation of
DSL lines requesting blacklisted URLs for which (i) the browser did not download
the blacklist (sbHitElse), (ii) the browser downloaded the blacklist and the hits
occurred before the URL was blacklisted (sbHitThisBefore), and (iii) the browser
downloaded the blacklist and the hits occurred while the requested URLs are al-
ready blacklisted (sbHitThis). No correlation or weak correlation indicates that
the users who request URLs before they were blacklisted do not request URLs
already on the blacklist (i. e., the request only took place because the user was
unaware of the potential malignity of the URL).

While correlation is small when we focus on single days there is significant corre-
lation, 0.35, for the whole 14 day period between sbHitThisBefore and sbHitThis.
Thus it seems that there are some DSL lines that regularly and consistently re-
quest blacklisted URLs. We note that Google suggests that browser developers
implement a 25–30min update interval for the blacklist. Furthermore, Google
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states that a warning can only be displayed to the user if the blacklist is less than
45minutes old, thus forcing browsers to regularly update the list.

Interestingly, the more active lines are also more suspectible to such behavior. We
find that the fraction of lines requesting blacklisted URLs significantly increases,
up to 55% overall for DSL lines with high activity and 34% for medium activity.
There might be two reasons for this increase, (i) more activity increases the chances
of finding a blacklisted URL or (ii) more active users might ignore the warnings.

As with blacklists, we find that there is also a correlation between DSL lines that
update their anti-virus scanners (and OS software) and activity level. This might
indicate that the more active users are more security aware but also tend to ignore
warnings about potentially malicious URLs, maybe because they assume that their
anti-virus software will protect them.

8.4.3 Comparison with AirJaldi and LBNL

Comparing security awareness at the European ISP with the AirJaldi network in
India, we find them quite similar. In terms of fraction of HTTP requests we find
that at AirJaldi approximately 0.02% of them are blacklisted by Google (ISP:
0.03%) while 0.5–1.12% of HTTP requests are for updating anti-virus software at
AirJaldi (ISP: 1%). For OS software updates, the numbers differ: up to 2.8% of
HTTP requests are for OS software updates while only 0.3% are so at the ISP.
Assessing security awareness on a per host/line basis is difficult, however, given the
layered NAT structure. We find that 3.2–4% of the observed IPs at AirJaldi do
anti-virus and OS software updates and that 3.8–5.4% request blacklisted URLs.
We note, however, that each IP address can connect anywhere between a handful
and several hundred users.

We next turn to security awareness at LBNL. We find relatively few hosts that
update anti-virus (24%) and OS software (31%). This can be explained by the
fact that LBNL uses centralized, internal update servers. Furthermore, the operat-
ing system distribution also differs, with significantly more Linux and Mac hosts.
These lower numbers are also reflected in a lower fraction of HTTP requests related
to such updates: 0.5% for anti-virus and 0.2% for software updates. When we turn
to risky behavior, we find that only 0.01% of HTTP requests are blacklisted. In
term of hosts we also find smaller number than at the ISP: up to 0.92% of hosts per
day and less 1.25% overall. We also note that the relative increase between days
is less at LBNL than at the ISP. However, we still observe the influence of activity
levels, 6.1% of hosts with high (2.4% with medium) activity request blacklisted
URL. Furthermore, the correlation between hosts that request URLs before they
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are blacklisted and hosts that request URLs that are already blacklisted is 0.136,
which is similar to the correlation we observe at the ISP (0.146) when considering
only the first 4 days.

8.5 Malicious Activity

After finding that even though users appear to be security aware and take appro-
priate precautions they still engage in risky behavior, we now use our metrics for
locating unnatural and malicious behavior. We emphasize that the overall estimate
of malicious activity that we derive can only be a lower bound of the total. Clearly,
there must be malware that our metrics are missing, and we cannot estimate how
large that share is.

Moreover, we also study the influence of security awareness, risky behavior, activity
level, usage of NAT, and operating systems on infection probability. We start by
studying the characteristics of the DSL customers of the European ISP, since it is
the richest dataset with regards to meta information. We then compare the results
from the European ISP with those from the AirJaldi community network and the
LBNL setting where applicable.

Figure 8.7 shows the likelihood that a line triggers any of the malicious activity
metrics for the European ISP and is thus considered to be bad, labeled as isbad.
We find that both on a per day basis as well as overall there is only a small fraction
of actively malicious host, < 0.7 and < 1.3, respectively. Moreover, the percentage
does not vary by much across days.

However, even though the cumulative probabilities are still small they are increas-
ing over our 14 day period. This indicates that over time we are able to identify
more lines with malicious activity and may imply that longer observation periods
may reveal even more infected lines. There are two regions of growth, a short-lived,
more rapid one up to 3 days, and then a slow but steady one beyond that. This
may be due to (i) malware somewhat infrequently engaging in activities, (ii) mal-
ware somewhat infrequently engaging in activities that we are able to detect, or
(iii) a short infection lifetime, i. e., a host is only infected for a short period of
time. We speculate that the increase is due to a combination of all possible ex-
planations. Moreover, we next show that the observability of infections is limited;
e. g., an infected line may be used as a spammer for a subset of the time when it
is active.

We find that the malware families are contributing the most to the overall badness
estimation while spammers, scanners, and port scanners are less prominent on a
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Figure 8.7: Probability that a line triggers any of the malicious activity
metrics (isbad) for the European ISP for daily and cumulated
data sets.

per day basis. See Table 8.1 for an overview. However, spammers are contributing
significantly to the total observed badness. The reason is that more than 44% of
the spammers are only active on a single day, i. e., they trigger the metric only on
a single day. In contrast, only 6/11% of the scanning activity is limited to a single
day. On average (mean and median) scanners are seen for 4 days. We note that
both of our scanning thresholds (100 and 1,000) yield similar results. We thus focus
on a threshold of 100 for the remainder of this paper. For most metrics we observe
a difference between the mean number of days that the metric is triggered and the
median number of days. This indicates that there is no consistent behavior by the
malicious lines. Indeed, an in-depth analysis reveals that some spammers/scanners
start their malicious behavior as soon as the line is active. Others stop in between
or are only active for a short period. The fact that the malware families are usually
(mean) triggered on 4 days confirms that the bots engage in activity on a regular
basis. However, malicious activity such as port scanning or spamming seems to be
limited to subperiods. There are additional causes for such sporadic activity: first
the malware might be removed, the bot may crash due to pure software quality
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Table 8.1: Probability that a DSL line triggers a malicious activity metric
on a per metric basis. The daily numbers summarize the range
of the probability values per day and the cumulative numbers
summarize the malicious activity across the full trace duration.
To estimate the persistence of the malicious activity we also
include the mean/median number of days that each metric
triggered as well as the percentage of lines where the metric
triggered only on a single day.

Activity prevalence Probability of
Metric Probability in days single day

daily prob. cumm. prob. mean median activity
Spam 0.03–0.10% 0.25% 3.6 2 44%
Scan 100 0.01–0.06% 0.09% 4.3 4 11%
Scan 1,000 0.00–0.06% 0.08% 4.1 4 6%
Port Scan 0.01–0.03% 0.06% 3.5 2 39%
Zlob 0.13–0.19% 0.24% 8.4 10 10%
Conficker 0.17–0.26% 0.23% 6.5 6 27%
Zeus 0.07–0.15% 0.28% 4.9 2 38%
Total 0.50–0.66% 1.23% 5.9 4 28%

and only be reactivated after a host reboots, or a host might be newly infected.

Surprisingly, we find that only a small overlap among the lines that trigger any of
the metrics. Most lines with malicious activity trigger only a single metric (92%)
and around 7% trigger two. Similar observations hold for other traces from this
environment.

Nevertheless, we study how the different metrics correlate with each other, see
Figure 8.8. We find that spamming and Zeus as well as scanning and Conficker
show some correlation (over the full trace duration):

Metric A Metric B Corr. Pr[A|B] Pr[B|A]
Spam Zeus 0.109 11% 12%
Scan Conficker 0.227 10% 50%

Some of the other metrics6 only show weak correlations between 0.011 and 0.037
(with conditional probabilities between 1.2% and 7.7%). All other combinations
show no correlation (<0.002).

6〈spam,scan〉 〈spam,Conficker〉 〈spam,port scan〉 〈Zlob,Conficker〉 〈Zlob,port scan〉 〈Zlob,Zeus〉
〈Conficker,Zeus〉
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Figure 8.8: Correlation between metrics for malicious activity for the ISP
trace. We plot the min and max values from the daily data
sets as well as the correlation over the full 14 day period.

8.5.1 Influences on Malicious Activity

Next we check whether the likelihood that a line “isbad” is influenced by other
parameters.

Influence of Anti-Virus and OS software Updates

We start our investigation with the influence of anti-virus and software updates.
Surprisingly, we do not see strong influences, i. e., anti-virus software does not seem
to reduce the likelihood of a line being infected with malware. When considering all
badness metrics, we find that the probability of infection actual increases slightly
when using anti-virus scanners (1.26%, up from 1.23%). Likewise there is also
hardly any influence of OS software updates on the infection probability. Although,
the probability of infection slightly decreases when OS software updates are done.
We verified that these findings are not biased by NATed DSL lines with multiple
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the ISP trace.

hosts. I. e., even for lines that do not have multiple hosts the likelihood of infections
is not significantly biased by the presence of anti-virus or OS software updates.

Influence of Blacklist Hits

Given the large fraction of DSL lines which request blacklisted URLs we next study
if this behavior increases the risk of infection (see Figure 8.9). We see that the
probability of a line triggering any of our metrics, “isbad”, rises to 3.19% (up from
1.23%) if it requests a URL on Google’s blacklist. While this is more than twice
the overall probability it is still fairly small. We therefore conclude that while the,
likely unsafe, practice of requesting blacklisted URLs is widespread, it does not
immediately result in a significantly higher likelihood of infection.
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Table 8.2: Overall conditional probabilities of a DSL line triggering on
any of our malicious activity metrics given NAT usage and
activity for the ISP.

Probability Probability
Condition given cond. not given cond
multihost 1.81% 0.73%
unNATed 1.30% 1.22%
high activity 4.08% 0.92%
medium activity 1.94% 0.58%
low activity 0.46% 1.32%

Influence of Activity and NAT

Next, we evaluate whether NAT or different line activity levels influences infection
probabilities. Regarding NAT usage we find that lines with multiple hosts are
slightly more likely to be infected (1.81%), whereas unNATed lines are just as
likely to be infected than all lines. Activity levels of DSL lines on the other hand
does have an influence. Just over 4% of lines with high activity are infected while
only 1.9% of lines with medium activity are infected. For lines with low activity
the infection probability drops to 0.46%. Table 8.2 summarizes the influence of
activity and NAT on infection probabilities.

Malicious Activity on Macs

Next, we turn to DSL lines with activity from only Macs (2.7% of DSL lines) and
evaluate their likelihood of infection. When analyzing the full 14 day observation
period the likelihood of infection for Macs is less than for all lines, only 0.54%.
When we investigate the different badness metrics individually, the picture changes.
For Macs only one metric triggers: Zlob, a malware that targets Mac and Windows
systems. We observe that 0.54% of Macs are infected and that we observe the
infected Macs on every day. In comparison, 0.24% of all lines are infected with
Zlob. We note that we also find a single line that triggered on the Zeus metric on
a single day by requesting the same domain 7 times, more than our threshold of 3.
Since Zeus does not target Macs, this is a false positive and we exclude it from
our analysis. A likely explanation is that the lookups are incidental and are not
caused by a Zeus bot.

While these numbers do not suggest that Macs are worse off than Windows, it
does indicate that they are also not better off, in particular, given that there are
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Figure 8.10: Summary of malicious activity and annotations for all Air-
Jaldi traces. Only these IP addresses had any malicious ac-
tivity across all traces.

malware families that specifically also target Macs. Given the rising market share
of Macs this is not to be underestimated.

8.5.2 Comparison with AirJaldi and LBNL

Again we perform the same analysis both for the community network in rural India
as well as the enterprise network LBNL.

AirJaldi

Within the Indian AirJaldi network we observe very limited malicious activity.
However, given that AirJaldi uses a multi-tiered NAT hierarchy we can only explore
malicious activity by IP address rather than per DSL line or per end-system.
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Within each trace we observe between 180 to 260 active internal IP addresses
which are shared among several 1,000 hosts. Across all three traces only a total
of 11 IP addresses triggered any of our metrics and thus show signs of malicious
activity. Figure 8.10 shows an overview of which metric triggered for which IP
address for all three traces. We list all 11 IPs that triggered any of our metrics.
An X indicates that this IP was not observed in a particular trace. We also
annotate each IP with information about its activity level (Hi, Med), whether it
requested blacklisted URLs (BLK), and whether it updated anti-virus (AV) or OS
software (SW).

For scanning we use the a threshold of 100 unsuccessful destinations. Using a
threshold of 1,000 eliminates IP 10 (in AirJaldi1) as possible scanner. A detailed
look at the spammers shows that IP 10 contacted 56 remote SMTP servers, less
than our cutoff of 100. However, since no other IP contacts more than 10 SMTP
servers, we flag this IP as a likely spammer (Spam?) rather than a spammer
(Spam).

Only two IP address trigger our malicious activity metrics in more than one trace.
The remaining 9 IP addresses only trigger in one of the traces. We never observe
more than 6 IPs with malicious activity any single trace and in only one case do
we find multiple forms of malicious activity on a single IP. Unfortunately, we do
not know if these 11 addresses are always reassigned to the same NAT gateway in
each of our traces since AirJaldi uses dynamic IP assignments via DHCP. Indeed,
we find that some of the malicious IPs are only active in a single trace while other
IPs have malicious activity across all traces.

Even though we cannot reliably determine the number of infected hosts behind
each of the IPs we can estimate. For Conficker this is possible since each infected
host will in general generate 250 DNS lookups per day. Thus we estimate the
number of infected hosts by dividing the total number of Conficker lookups by
250 and list the result in parentheses (Conficker(n)) in Figure 8.10. Exploring the
number of destinations for scanners and spammers for each flagged IP we find that
they are well within the range of what we observe at the European ISP. Therefore,
we conclude that each of the reported scanning and spamming IPs is likely due to
a small number of infected hosts. Indeed, most likely due to a single one.

Given the inability to identify end hosts we also cannot correlate activity levels,
anti-virus, OS software updates, or Google blacklist hits with malicious activity.
We do however, see that the 11 IPs flagged as malicious have in general high or
medium activity level and that they often have blacklist hits and do perform OS
software as well as anti-virus updates.
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LBNL

We observe no malicious activity at LBNL. Even though our spamming and scan-
ning metrics trigger on some LBNL hosts we confirmed that these hits are benign.
The “spammers” are all legitimate mail servers and the “scanners” are hosts that
perform scanning for penetration testing purposes. Moreover, we do not observe
any Zeus or Conficker lookups nor do we observe any host contacting Zlob re-
solvers.

8.6 Related Work

In our study, we examine several metrics for malicious activity including scan-
ning and spamming which are established indicators of compromised systems.
Allman et al. [7] present a history of how scanning has developed over time.
Most network intrusion detection systems (NIDS), such as the open-source sys-
tems Snort [97] and Bro [86], use simple threshold schemes to find scanners. Bro
also provides a more sensitive detector, Threshold Random Walk [58], that iden-
tifies scanners by tracking a system’s sequence of successful and failed connection
attempts. However, as we discuss in Section 8.3.1, existing detectors do not work
well for finding outbound scans, as needed for our study. Furthermore, the presence
of P2P further complicates scan detection, because P2P clients behave similar to
scanners, i. e., they unsuccessfully try to contact a number of IP addresses.

Spamming is often countered by blocking known offenders via DNS-based black-
lists, such as SORBS [109] or Spamhaus [110]. However, due to the high IP address
churn we experience (i. e., DSL lines frequently change their IP address, see Sec-
tion 4.2) such blacklists do not provide us with a reliable metric. Furthermore,
many blacklists include the full dynamic IP space. Spammers’ use of botnets and
“dark” IP space [92] further complicates the applicability of blacklists as targets
are moving rapidly. Ramachandran et al. [93] identify spammers by observing the
destinations they try to connect to. This eliminates the need for content inspec-
tion. The Snare system [51] extends this approach by building a reputation based
engine relying on additional non-payload features. These approaches, however,
deploy clustering algorithms and thus rely on suitable training sets which is not
available for our data set. We, however, can inspect anonymized SMTP headers
and such infer some semantics directly.

We also check our data sets for indicators of specific malware, all of which are
analyzed and tracked in detail by other efforts: Conficker [29, 90]; Zlob [126];
and Zeus [134]. For example, Bailey et al. [13] survey botnet technology and
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Dagon et al. [33] examine malware that changes a client’s DNS resolver, including
the Zlob trojan.

Another approach for finding malicious activity is to leverage a NIDS’ output di-
rectly. Therefore, we also attempt to use general signature libraries for identifying
malicious activity, e. g., the Emerging Threats library [39] for Snort. However,
as discussed in Section 8.3.4, these are too inaccurate for deriving reliable met-
rics (which confirms the repeated experience of network operators while deploying
signature-based NIDS). Carlinet et al. [20] also run Snort on ADSL traffic from
about 5,000 customers of a French ISP to study what contributes to a user’s risk
of being infected with malware. For their study, Carlinet et al. removed 20 Snort
signatures triggering the most alarms. However, they do not further analyze how
the remaining ones contribute to the overall results, or whether there is relevant
overlap between them. This confirms our experience, that large signature sets tend
to flag too much benign activity and thus do not result in reliable metrics. We also
leverage Google’s Safe Browsing blacklist [50]; the approach used for collecting the
blacklist is originally described by Provos et al. in [91]. More closer to our approach
is work by Stone-Gross et al. [112], which combines several malware-specific met-
rics for detecting rogue networks. They however focus on finding malicious ISPs
rather than end-user systems.

There has been some work on the prevalence of individual malware. The Conficker
Working Group states that 3 million infected hosts is a “conservative minimum
estimate”, and it cites the study of an anti-virus vendor that finds that 6% of the
monitored systems are infected. Weaver [123] estimates the hourly Conficker C
population size in March/April of 2009 to average around 400-700 k infections. At
the time of writing, the Zeus tracker reports 658 active Zeus C&C servers.

8.7 Discussion and Future Work

Given that conventional wisdom says that residential users or users of commu-
nity networks are responsible for much of today’s Internet insecurity we, for this
study, select a number of indicators that are commonly used for detecting mali-
cious activity. Some of them are behavioral and thus able to find any malware
that exhibits such behavior (scanning, spamming), while others target specifics of
a particular malware family and thus only allow us to understand infections from
those (Conficker, Zlob, and Zeus).

While we are confident that our metrics reliably flag what they are designed to
find, we emphasize that the overall estimate of malicious activity that we derive
in our study can only be a lower bound of the total amount present. Clearly,
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there must be malware that our metrics are missing, and we cannot estimate how
large that share is. Indeed, we observe an indicator that it may be non-negligible:
the victim sets detected by our metrics are mostly disjoint, which suggests that
systems tend to get infected by a single malware, not by many simultaneously thus
we underestimate the amount of total malicious activity.

However, our approach for finding malicious activity mimics how security-conscious
sites typically monitor their network for security violations: by building a toolbox
of independent detectors—such as attack signatures, blacklists, behavioral detec-
tors for activity commonly associated with compromised hosts—they aim at in-
creasing their coverage of malicious activity, without however being able to tell
what they are missing.

When building such a toolbox, an important trade-off is the number of false alarms
generated by each detector. Just as every site needs to find the right mix, we had
to select a set of metrics which (i) find a significant subset of malware; (ii) have
low false-positive rates; and (iii) can be used across different environments. While
initially we started with a larger set of metrics, we found some of them to not fit
well with our needs. For example, the semantics of many blacklists are not very
crisp and often lead to many more hits than plausible; likewise, per our discussion
in Section 8.3.4, generic NIDS signatures sets are prone to false positives. In
contrast, we find the metrics used for this study to meet our criteria well.

There are a number of interesting conclusions about residential users and commu-
nity networks that we can draw from our study, even when keeping the fundamental
limitations in mind:

• A typical residential system is unlikely to be participating in scanning or
spamming, and thus also unlikely to be with infected with any malware
relying primarily on one of these vectors.

• Residential users are risk-aware: many of them update their systems regu-
larly and deploy anti-virus software. However, doing so does not seem to to
have much of an impact on their likelihood of being infected.

• Even though being risk-aware in principle, users regularly exhibit risky be-
havior: they contact malicious sites even though they must have been warned
of doing so by their browsers. Interestingly, however, we find that such be-
havior only slightly increases their probability of being infected—significantly
less than one may presume.

There is a second set of conclusions that our methodology allows us to infer: relative
comparisons between different network environments. Assuming that our metrics
cover a representative subset of malicious activity, we find that we see similar levels
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of malicious activity at the European ISP and the rural Indian network. Likewise,
we also find similar levels of both security-awareness and risky behavior in the
two environments. In comparison, at LBNL we do not observe any malicious and
significantly less risky behavior.

For future work we plan to extend our set of metrics for malware by adding more
signatures for common botnets to extend the coverage of malicious activity we are
able to observe. Furthermore, we plan to pursue a per host analysis of the AirJaldi
environment. Indeed, the AirJaldi network operators are planning to improve the
network design to regain visibility of the hosts.
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Chapter 9

Conclusion

We study residential broadband Internet traffic using anonymized packet-level
traces augmented with DSL session information. Our data covers more than 20,000
customers from a major European ISP. To ensure privacy, all data is immediately
anonymized. The goal of this thesis is to understand the nature of residential
traffic characteristics and malicious activity in such networks. In addition, we also
want to compare our results to other network environments, including university
networks, an enterprise network, and a rural community network in India. Un-
like for university networks, researchers rarely have large-scale access to residential
traffic, and thus its makeup, dynamics, evolution, and variations remains under-
examined by other studies. Yet, understanding the nature of residential traffic
characteristics is imperative for network operators to design and develop future
network configurations and architectures.

Efficient Retrospective Traffic and Security Analysis

We present a network “Time Machine” (TM) that enables quick access to past
network traffic and security forensics. We add Time Machine support to the open
source Bro Network Intrusion Detection System (NIDS) and examine a number of
applications (controlling the Time Machine, correlating NIDS alarms with associ-
ated packet data, and retrospective analysis) that such integration enables. Our
results from an operational network show that such a combined TM↔NIDS setup
greatly enhances the possibilities of security analysts to assess NIDS notifications
and security incidents.

Characterizing Residential Broadband Traffic

We analyze DSL sessions and find that sessions are surprisingly short. The me-
dian session duration is only 20–30 minutes. As a consequence IP addresses are
reassigned frequently: 50% of IP addresses are assigned at least twice per day. We
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also present a novel approach to detect network address translation (NAT) and to
estimate the number of hosts connected behind such a NAT gateway. We find that
most DSL lines (90%) indeed use a NAT gateway to connect to the Internet. Fur-
thermore, we show that more than 10% of lines have multiple hosts that are active
at the same time at least once. These findings indicate that great care must be
taken when using IP addresses as host identifiers, e. g., for estimating population
sizes.

Next, we investigate application layer characteristics. Surprisingly, we find that
HTTP and not P2P dominates the traffic mix by volume. More than 50% of
bytes are due to HTTP. We conclude that HTTP’s resurgence is due to popular
high-volume content hosted via HTTP (e. g., video portals and one-click hosters).
We note that a number of these results agree with those of other contemporaneous
studies of Internet traffic [41, 69, 98], suggesting that the trends are representative
for a significant fraction of the Internet. We also assess performance and path
characteristics of TCP connections and find that most DSL lines do not utilize
their available bandwidth, mostly due to settings on end-hosts, e. g., TCP receiver
windows that are too small to utilize the bandwidth given the observed bandwidth-
delay-products. Furthermore, we observe that connections from client-server appli-
cations, like HTTP and NNTP, achieve an order of magnitude higher throughput
than P2P connections but still fail to fully utilize their available bandwidth.

This highlights, that the characteristics of residential traffic have to be reevalu-
ated constantly, since network traffic and user behavior and demand is constantly
changing. Furthermore, the introduction of new devices to access the Internet
(e. g., smartphones and tablets) also impacts traffic characteristics and usage pat-
terns. Only a solid understanding of such characteristics enable network operators
to plan, provision, and design future network architectures and to address current
limitations. For example, consider the application protocol mix. Since the turn
of the century it has changed several times, from being dominated by HTTP, to
P2P, and back to HTTP with NNTP also appearing as a significant traffic con-
tributor. Yet, P2P applications have different traffic demands (e. g., symmetry of
upstream/downstream capacity) than client-server protocols, like HTTP, and thus
require different traffic engineering approaches. Or consider the example of TCP
options. While TCP window scaling has been introduced in the past to increase
performance, we find that the default setting on many hosts fails to fully utilize the
available bandwidth, thus limiting performance. Our results can be a guidance for
network operators and operating system and device developers to improve network
performance and end-user experience.
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Malicious Activity and Risky Behavior

We also assess malicious activity and risky behavior of residential users and com-
pare the results to other network environments. We select a number of indicators—
signatures of common malware families as well as behavioral models such as scan-
ning and spamming—to detect malicious activity. While we are confident that
our metrics reliably flag what they are designed to find, we emphasize that the
overall estimate of malicious activity that we derive in our study can only be a
lower bound of the total amount present.

However, our approach for finding malicious activity mimics how security-conscious
sites typically monitor their network for security violations: by building a toolbox
of independent detectors. When building such a toolbox, an important trade-off is
the number of false alarms generated by each detector. While initially we started
with a larger set of metrics, we found some of them to not fit well with our needs.
For example, the semantics of many blacklists are not very crisp and often lead to
many more hits than plausible; likewise, generic NIDS signature sets are prone to
false positives. In contrast, we find the metrics we use for this study to meet our
criteria well.

There are a number of interesting conclusions about residential users and commu-
nity networks that we can draw from our study, even when keeping the fundamental
limitations in mind: Assuming that our metrics cover a representative subset of
malicious activity, we find similar levels of malicious activity at the European ISP
and the rural Indian network. We also find similar levels of both security-awareness
and risky behavior in the two environments. Users in both environments are un-
likely to be participating in spamming or scanning and thus unlikely to be infected
with malware using such vectors. Users are also risk-aware: many deploy anti-virus
software and update their systems. However, doing so does not seem to reduce
the likelihood of infections. On the other hand, we find that even though users are
generally risk-aware, they regularly exhibit risky behavior: they contact websites
flagged as malicious by Google’s Safe Browsing API even though they must have
been warned by their browsers. Interestingly, however, we find that such behavior
only slightly increases their probability of being infected.

These findings seem contrary to conventional wisdom, as anti-virus software does
not reduce the likelihood of infections and risky behavior increases it by less than
one may presume. Furthermore, we find that users in rural areas of developing
regions are no more likely to be infected and are as risk-aware as users in Europe.
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Future work

As Internet traffic is rapidly changing over time, with new applications and services
appearing frequently, we plan to track the long-term evolution of traffic charac-
teristics and malicious activity. Furthermore, so far we limited our analysis of
residential networks to a single urban area. In future work we plan to extend
our studies to more network locations to characterize differences between different
geographical areas as well as different access technologies (e. g., 3G cellular data
access). We also plan to investigate interactive and real-time sensitive traffic such
as VoIP and gaming. Although these do not yet contribute a significant number
of bytes, these protocols are important for the perceived Quality-of-Service of the
customer.

In the area of security analysis we also want to conduct measurements over longer
periods of time and different points in the network. We also plan to add more
signatures for common botnets in order to extend the coverage of malicious activity
we are able to detect. Furthermore, we want to investigate why security-awareness
and risky behavior do not correlate with different levels of malicious activity.
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