
1

Comparison of Internet Traffic Classification Tools
Hyunchul Kim, Marina Fomenkov, kc claffy, Nevil Brownlee

CAIDA, University of California San Diego

{hkim, marina, nevil, kc}@caida.org

Dhiman Barman, Michalis Faloutsos
University of California Riverside

{dhiman, michalis}@caida.org

I. I NTRODUCTION

What is the best traffic classification method to date? Un-
der what conditions? Why?Despite a plethora of research de-
voted to traffic classification and a variety of proposed traffic
classification methods, the research community still does not
have definitive answers to these questions, and the task of traf-
fic classification remains unapproachable and confusing fora
practitioner.

Rigorous comparison of various classification methods is
challenging for three reasons. First, there is no publicly avail-
able payload trace set, so every method is evaluated using a
different set of locally collected payload traces. Second,ex-
isting approaches use different techniques that track different
features, tune different parameters and use different definitions
and categorization of applications. Third, more often thannot,
authors do not make their developed implementation codes pub-
licly available once they publish their results.

To address these challenges, we have conducted a compre-
hensive and coherent evaluation of three traffic classification
approaches: port-based, behavior-based, and statistical. For
each approach we selected a representative tool to test: Coral-
Reef [1], BLINC [4], and WEKA [2], correspondingly. In this
paper we present the results of our comparison, debunk traffic
classification myths, identify caveats, and suggest practical tips.

II. COMPARISON METHODOLOGY

A. Data set

The dataset we used for testing consisted of seven payload
traces collected at two backbone and two edge links located
in US, Japan, and Korea (Table I). The PAIX backbone traces
were taken on OC48 links of an US Commercial Tier 1 back-
bone link that connects San Jose and Seattle. The WIDE trace
was captured at a 100 Mb/s Ethernet US-Japan transoceanic
link that carries commodity traffic for WIDE member organi-
zations. The Keio traces were collected on a 1 Gb/s Ethernet
link at Keio University Shonan-Fujisawa campus. The KAIST
traces were captured at one of four external links connecting a
1 Gb/s KAIST campus network to KOREN, a national research
network in Korea.

Diverse geographic locations, throughput, and application
mix represented in these data allow us to test the traffic clas-
sification tools under a wide variety of conditions.

B. Metrics

To measure the performance of a classification method we
use four metrics:precision, recall, aggregate precision, andF-
Measure[7]. Theprecisionof an algorithm is the ratio of True

Positives over the sum of True Positives and False Positives1,
or the percentage of flows that are properly attributed to a given
application by this algorithm.Recall is the ratio of True Pos-
itives over the sum of True Positives and False Negatives, or
the percentage of flows in an application class that are correctly
identified. Aggregate precisionis the ratio of the sum of all
True Positives to the sum of all the True Positives and False
Positives for all classes. We apply the two former metrics to
evaluate the quality of classification results for each application
class and the latter metric to characterize the overall accuracy
of a classifier on the whole trace set. Finally,F-Measurecom-
bines precision and recall into a single metric by taking their
harmonic mean:2×precision×recall/(precision+recall).
We use this metric to compare and rank per-application perfor-
mance of 20 machine learning algorithms included in WEKA.

To establish a ground truth, we used the payload-based clas-
sifier [4] augmented with more signatures from [3] and manual
payload inspection.

III. R ESULTS

A. CoralReef

Despite the common parlance that ports are no longer use-
ful in identifying application, port-based tools such as Coral-
Reef still achieve high precision and recall (> 90%) for several
legacy applications and protocols such as DNS, SNMP, NTP,
News, Mail, Chat, SSH, and WWW. Port-based tools can clas-
sify these applications accurately because i) they mostly use de-
fault ports; and ii) their default ports are seldom used by other
applications.

CoralReef fails to yield accurate classification results in
the following three cases: (i) when applications mostly use
ephemeral ports, e.g., P2P and passive FTP data transfer; (ii)
when default ports of an application coincide with port mas-
querading P2P applications, e.g., streaming and game ports;
and (iii) when default ports of an application overlap with those
of others, e.g., SHOUTCAST Streaming uses port 8000, which
is also used by some WWW servers.

B. BLINC

BLINC implements a behavior-based approach to traffic
classification: it captures the profile of a host, in terms of des-
tinations and ports the host talks to, identifies applications the
host is engaged in, and then classifies traffic flows. For this

1True Positives is the number of correctly classified flows, False Positives is
the number of flows falsely ascribed to a given application, and False Nega-
tives is the number of flows from a given application that are falsely labeled as
another application.



2
TABLE I. CHARACTERISTICS OF ANALYZED TRACES

Set Date Day Start Duration Link type Src.IP Dst.IP Packets Bytes Avg. Util Avg. Flows (per 5 min.) Payload
PAIX-I 2004-02-25 Wed 11:00 2h backbone 410 K 7465 K 250 M 91 G 104 Mb/s 1055 K 16 Bytes
PAIX-II 2004-04-21 Wed 19:59 2h 2m backbone 2275 K 17748 K 1529 M 891 G 997 Mb/s 4651 K 16 Bytes
WIDE 2006-03-03 Fri 22:45 55m backbone 263 K 794 K 32 M 14 G 35 Mb/s 312 K 40 Bytes
Keio-I 2006-08-06 Tue 19:43 30m edge 73 K 310 K 27 M 16 G 75 Mb/s 158 K 40 Bytes
Keio-II 2006-08-10 Thu 01:18 30m edge 54 K 110 K 25 M 16 G 75 Mb/s 92 K 40 Bytes
KAIST-I 2006-09-10 Sun 02:52 48h 12m edge 148 K 227 K 711 M 506 G 24 Mb/s 19 K 40 Bytes
KAIST-II 2006-09-14 Thu 16:37 21h 16m edge 86 K 101 K 357 M 259 G 28 Mb/s 21 K 40 Bytes

study, we extended BLINC code to generate node profiles of
not only source〈IP, port〉 pairs but also of destination〈IP, port〉
pairs. The modified code, Reverse BLINC, improved the aggre-
gate precision on backbone traces by as much as 45%, since in
those traces one of the two directions of traffic is often missing
due to asymmetric routing. However, the code extension almost
doubles the memory usage and running time.

BLINC has 28 different parameters to tune. For traces cap-
tured on the same link, the optimal threshold values remained
nearly the same. For traces from different links, separate tuning
was necessary to prevent degradation of the aggregate precision
by 10%-20%. Our experience with BLINC classifier also sug-
gests that one should tune parameters for P2P applications first,
because almost every module in the code checks them.

Once tuned, BLINC classifies WWW, DNS, Mail, Chat, FTP,
and Streaming flows with>90% precision. However, recall val-
ues for these applications are lower than precision values,since
all classification is threshold-based: the number of application
flows from a given source should exceed a certain threshold in
order to trigger a classification attempt. If there are not enough
flows from this source, then this traffic remains unclassified.
DNS, Mail, and Chat have lower recall in backbone traces than
in edge traces, because even Reverse BLINC could not cap-
ture those application flows when server flows were missing
from backbone traces. Recall on FTP, Streaming, and Game is
always lower than 25.8% across all traces, since behavior sig-
natures of BLINC for these applications do not cover the fol-
lowing cases: (i) when a Streaming or FTP server concurrently
provides any other application services; (ii) when a Game client
sends any TCP flows or talks to only a small number of desti-
nation hosts.

With proper tuning, BLINC reliably identifies P2P flows,
particularly when we apply CoralReef first to filter out DNS
flows which BLINC often misclassifies as P2P. When applied
to the remaining flows, BLINC achieves>85% precision in
terms of flows on P2P applications. However, recall of P2P
traffic in terms of bytes is significantly lower than flow recall.
We conjecture that this difference in recall is due to the fact
that some P2P applications usually assign different ephemeral
ports for every single data transfer. If such transfers are large,
then they account for a large number of bytes, but the number
of flows remains below the classification triggering threshold,
and, therefore, this traffic remains unclassified.

C. Machine Learning Algorithms

We have evaluated 20 different machine learning algorithms
from the WEKA library using their default parameters. To se-
lect the most discriminating features from the 34 possible at-
tributes, we tried both consistency-based feature selection and
correlation-based feature selection with the BestFirst search
method. For different traces, 5-10 features were selected for

discriminating. Correlation filters produced better feature sets
leading to a higher aggregate precision than consistency filters
did, which is consistent with the results of [5], [6].

We then divided each trace into a set of 5 minute interval sub-
traces and trained algorithms on each sub-trace. Next, we tested
the resulting classifier on several other sub-traces, by averaging
the results over all runs.

The Random Forest (Decision Tree based) algorithm [7]
showed the best aggregate precision (>80% for every trace) not
only among the 20 different machine learning algorithms but
among all the techniques that we have evaluated in this study.
However, its per-application performance highly varies across
different applications and traces.

Generally, Rule-based and Decision Tree-based algo-
rithms [7] outperformed others in both aggregate precisionand
per-application F-Measure. However, we could not find any
single machine learning algorithm that would yield>90% pre-
cision and recall on all applications even in a single trace.
We are still experimenting with tuning parameters of machine
learning algorithms including training algorithms using differ-
ent training sets with different sampling size, application mix,
and feature sets to investigate their impacts on aggregate preci-
sion, per-application precision and recall. We are also finding
out key features for each application in all of our traces.

IV. CONCLUSIONS

For every method we evaluated, P2P, Games, and Streaming
applications were harder to identify than other conventional ap-
plications. Unique characteristics of these applicationsmay not
be captured by currently available techniques which focus on
only one type of information: port number, behavior pattern,
or flow characteristics. We propose to build a combined clas-
sifier where existing techniques are carefully combined based
on their per-application performance. We are currently experi-
menting with various combinations of CoralReef, BLINC, and
machine learning algorithms. Preliminary results look promis-
ing. We intend to present our future findings at the Workshop.

REFERENCES

[1] CoralReef.
http://www.caida.org/tools/measurement/coralreef/.

[2] WEKA: Data Mining Software in Java.
http://www.cs.waikato.ac.nz/ml/weka/.

[3] J. Erman, M. Arlitt, and A. Mahanti. Traffic ClassificationUsing Cluster-
ing Algorithms. InACM SIGCOMM MineNet Workshop, 2006.

[4] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: Multilevel traf-
fic classification in the dark. InACM SIGCOMM, 2005.

[5] A. Moore and D. Zuev. Internet traffic classification using Bayesian anal-
ysis techniques. InACM SIGMETRICS, 2005.

[6] N. Williams, S. Zander, and G. Armitage. A preliminary performance com-
parison of five machine learning algorithms for practical IP traffic flow
classification.ACM SIGCOMM CCR, October 2006.

[7] I. Witten and E. Frank.Data Mining: Practical Machine Learning Tools
and Techniques, 2nd ed. Morgan Kaufmann, 2005.


