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A security equipment vendor was recently describing their Network Intrusion Detection System.
Of particular interest was a new technology the product implemented for detecting botnets. When
asked how this technology worked, the vendor embarked on a lengthy explanation, the crux of
which, was that the botnet detection algorithm used a port-based scheme that looked for TCP
connections on port 6667.

While port-based application detection schemes certainly have their uses and their advantages
(they are easy to implement and easy to understand), for detecting rogue/nefarious1 applications,
they are sadly lacking. This is not a new problem, and much work has been done in this area. We
offer a contribution towards rogue application identification, while providing a framework that can
be expanded for the identification of more applications. Our initial motivation for this work was
the detection of botnets.

Several techniques have been developed to automatically identify (and often classify) various
types of communication streams. Some use clues from the traffic content. Dewes et al. [1] propose a
scheme for identifying chat traffic that relies on a combination of discriminating criteria, including
service port number, packet size distribution, and packet content. Sen et al. [5] use a signature-
based scheme to discern traffic produced by several well-known P2P applications by identifying
particular characteristics in the syntax of packet contents exchanged as part of the operation of the
particular P2P applications.

Other flow classification approaches focus on the use of statistical techniques to characterize
and classify traffic streams. Roughan et al. [4] use traffic classification for the purpose of identi-
fying four major classes of service: interactive, bulk data transfer, streaming, and transactional.
They investigate the effectiveness of using packet size and flow duration characteristics, and simple
classification schemes were observed to produce very accurate traffic flow classification.

In a similar approach, Moore and Zuev [3] apply variants of the Naive Bayesian classification
scheme to classify flows into 10 distinct application groups. The authors also search through the
various traffic characteristics to identify those that are most effective at discriminating among the
various traffic flow classes. By also identifying highly correlated traffic flow charac-teristics, this
search is also effective in pruning the number of traffic flow characteristics used to discriminate
among traffic flows. Highly correlated characteristics provide comparable and, often, redundant
information about the traffic flows. Thus, in many cases it suffices to use only one of the correlated
characteristics to discriminate among traffic flows.

These techniques all operate on the same fundamental principle: identify characteristics ap-
plication traffic features (through statistical means or through machine learning), train on sample
data, and then use these characteristics to classify applications. The system we propose builds on
this principle. We use standard classification and machine learning techniques to identify flows that
are of interest as candidate rogue application flows. We then use additional techniques that look at
the spatial and temporal similarity between flows and the topology of the graph formed by these
flows to identify rogue application flows.

Here we present a system for aggregating monitored traffic looking for evidence of botnets so that
botnet-based attacks can be attributed to a botnet controller. We adopt a proactive approach by

1dlapsley: We will simply refer to them collectively as “rogue” applications.
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identifying hosts that are likely part of a botnet. Yet, this is not the same as definitively identifying
the botnet and its controller; there is always uncertainty until there is an actual attack.

Our approach follows a set of increasingly more complex analyzers, filtering out unlikely flows
along each step, so that the most computationally intensive analysis is done on a dramatically
reduced traffic set. First, individual flows are subjected to a series of filters and classifiers to
eliminate as many of the flows as possible, while being somewhat conservative so that botnet flows
are not likely to be eliminated. Next, the flows are correlated with each other, looking for groups
of flows that may be related by being part of the same botnet. The result is a group of flows that
are most likely part of one or more botnets. Finally, the topological information in the flows are
examined for the presence of a common communication hub.

In order to generate traffic that was representative of real botnet traffic, we implemented a
benign bot based on the “Kaiten” bot, a widespread bot that has readily downloadable source
code. The Kaiten bot was implemented in C using approximately 1000 lines of code. We reverse
engineered the Kaiten software and then reimplemented it. In order to obtain traces of actual
botnet traffic, we constructed a botnet test facility. This facility involved a simple setup modeled
along the lines of a chat-based botnet architecture. Our setup involved an IRC server, a code server,
13 zombies, and an attacker. A host within BBN’s network was used as the victim. We then used
this test facility to obtain actual traces of the communications between the various botnet entities
while the botnet was in operation. This data was then integrated with a 4 month traffic trace from
the Dartmouth campus collected under their CRAWDAD project [2]. The data were then passed
into our system to see whether or not our system could identify the ground truth botnet flows from
the background Dartmouth traffic.

Our system performs gross, simple filtering to reduce the amount of data that will be subjected to
more computationally intensive algorithms. Once the data has been filtered, the flows are classified
using machine learning techniques, then the flows that are in the “chat” class are correlated to
find clusters of flows that share similar timing and packet size characteristics. The cluster is then
analyzed to try to identify the botnet controller host.

Our experiment with Dartmouth campus data, starting with nearly 9 million flows augmented
with traffic traces from a benign botnet, shows that the ground truth botnet C2 flows can indeed
survive the data reduction and correlation to be identified as a cluster. These results show that the
method is promising. This method is also nicely suited for real-time analysis of traffic data. The
filtering stage requires very simple logic to cull the data set down by a factor of 37. This culling of
the data, especially when done in real time, allows much more time for more complex algorithms
later in the pipe, namely the machine learning classifiers and the correlation.

Detecting botnet activity is presently labor intensive and largely ad hoc. Our pipelined botnet
C2 detection system shows that it is possible to comb through packet traces, even in real time, to
extract evidence of tight command and control activity.

While it has been suggested that botnet controllers will migrate from IRC as their preferred C2
infrastructure, the abstract model of tight central control represented by IRC is very efficient and
will likely survive for quite some time. Future work will consider a system that detects very large,
high volume data sets for evidence of tight botnet C2 activity. Future work will also investigate
the extension of our system to include more application classes.
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