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ABSTRACT

This paper investigates the structure of addresses contained
in IP traffic. Specifically, we analyze the structural charac-
teristics of destination IP addresses seen on Internet links,
considered as a subset of the address space. These character-
istics may have implications for algorithms that deal with IP
address aggregates, such as routing lookups and aggregate-
based congestion control. We find that address structures are
well modeled by a multifractal Cantor dust with two parame-
ters. The model may be useful for simulations where realistic
IP addresses are preferred. We also develop concise charac-
terizations of address structures, including active aggregate
counts and discriminating prefixes. Our structural characteri-
zations are stable over short time scales at a given site, and
different sites have visibly different characterizations, so that
the characterizations make useful “fingerprints” of the traffic
seen at a site. Also, changing traffic conditions, such as worm
propagation, significantly alter these “fingerprints”.

1 INTRODUCTION

The behavior of individual flows—single connections or
streams of packets between the same source and destination—
has received extensive analysis for a number of years. How-
ever, as the Internet continues to expand in speed and size,
the gulf between such “micro-flows” and their combined be-
havior when aggregated grows ever wider. To date, studies
of aggregate traffic have focused on questions of behavior
at a particular level of granularity: for example, correlations
in packet arrivals seen en masse on a link [11], patterns of
backbone traffic when partitioned by directionality, trans-
port protocol, and application [14, 20] or viewed at /8, /16
and /24 prefix granularities [1], or the overall distributions of
individual connection characteristics [4, 16]. These studies
have made significant progress in understanding the struc-
ture of specific types of aggregates, but the question of how
behavior changes as aggregation increases has received little
attention beyond basic statistical multiplexing models. Yet
there is clearly a world of difference between an individual
TCP connection and a Gbps backbone stream from one city
to another.

Ultimately, we would like to build towards a theory of
traffic aggregation. For example, what do we get when we
merge together two already-large conglomerates, say for
traffic engineering purposes? The work described here is
modest in scope compared with this goal. We look at one
of the simplest conglomerate properties we could investi-
gate: how a conglomerate’s packets are distributed among its
component addresses, and how those addresses aggregate.
However, these properties are relevant to many models of
conglomerates, such as models of how they are routed by the
network; and it turns out that even these simple properties
exhibit surprisingly rich structure.

The paper body begins with descriptions of our method-
ology and data sets (Sections 3 and 4). We then examine
the factors that give rise to an interesting property of aggre-
gates, namely that the distribution of packets per destination
prefix aggregate has a heavy, Pareto-like tail (Section 5).
This is related to the well-known “mice and elephants” phe-
nomenon, whereby some flows contain vastly more packets
than others. By applying different types of random shuffling,
however, we show that address structure—the arrangement of
active addresses in the address space—has a greater effect on
aggregate packet counts than the per-flow packet distribu-
tion, at least for medium-to-large aggregates such as /16s.
This motivates our investigation of address structure, since
we must understand it before we can understand the inde-
pendently important property of aggregate packet counts.

When examined spatially, as in Figure 2, the structure of
the set of addresses in a trace appears broadly self-similar:
some structural features reappear at different scales. We
therefore explore fractal address models in Section 6. It turns
out that real address structures may usefully be analyzed us-
ing a two-parameter multifractal model. This parsimonious
model captures much, though not all, of the address struc-
ture observed in our traces, and provides promise both as a
means for accurately synthesizing address structures for sim-
ulation purposes, and for providing an analytic framework
for further exploring aggregation properties. This model is
the paper’s core result.

In Section 7, we further explore our data sets and our
model using concepts and analytic tools designed for ana-
lyzing address structures. We finish in Section 8 with a look
at how address structure properties vary: over time, from
site to site, and for different types of traffic. We find that
the structure of aggregates seen at a site is steady over time,
that different sites exhibit distinctly different address struc-
tures, and that broadly distributed traffic patterns such as the
Code Red 1 and 2 worms of July and August 2001 have, not



Trace Description Time (hr) N Packet count Sampled?
U1 Access link to a large university ∼ 4.0 69,196 62,149,043 no
U2 Access link to a large university ∼ 1.0 144,244 101,080,727 no
A1 ISP ∼ 0.6 82,678 33,960,054 no
A2 ISP 1.0 154,921 29,242,211 no
R1 Link from a regional ISP 1.0 168,318 1,476,378 1/256
R2 Link from a regional ISP 2.0 110,783 1,992,318 1/256
W1 Access link in front of a large Web server ∼ 2.0 124,454 5,000,000 no

Figure 1—Characteristics of our traces.

surprisingly, their own striking signature.
An appendix presents supplementary graphs using addi-

tional data sets and parameters.

2 RELATED WORK

We are are not aware of similar previous work on charac-
teristics of IP address structure. More broadly, much effort
has gone into modeling the structures of traffic bursts in
the Internet; measured traffic appears to be self similiar [11,
21] and exhibit multifractal characteristics [6]. Attempts have
also been made to model other aspects of the Internet, such
as the the power law relationship of the Internet topology [5].
Krishnamurthy and Wang [10] have previously investigated
the properties of client addresses aggregated according to
BGP routing prefixes. Their results indicate that client clus-
ter size has a heavy-tailed distribution. Recently, researchers
have started to investigate IP address prefix based aggregate
properties for aggregate congestion control [12].

3 DESTINATION PREFIX AGGREGATION

We begin with the fundamental definition of what makes
up a traffic aggregate. In this paper, two packets are in the
same aggregate iff the first p bits of their destination ad-
dresses are equal. (Different aggregate sizes use different p.)
Destination address prefix makes a good aggregate definition
for several reasons:

– IP addresses were built for prefix aggregation. The ini-
tial IP specification divided addresses into classes based
on 1- to 4-bit address prefixes. Depending on class, an 8-,
16-, or 24-bit network prefix determined where a packet
should be routed [18]. Classless inter-domain routing [7],
which replaced this system as address blocks became
scarce, kept the notion of identifying networks by address
prefixes, but allowed those prefixes to have any length.

– IP routers make their routing decisions based on destina-
tion address prefix—a longest-prefix-match lookup on all
routes keyed by the packet’s destination address. There-
fore, the characteristics of observed destination-prefix-
based aggregates intimately affect route cache strategies.

– Other router algorithms that work on aggregates, such
as aggregate-based congestion control [12], often define
aggregates by destination prefix, since routers already use
them for route lookup.

– Address allocation proceeds in prefix-based blocks. IANA
delegates short prefixes (which contain many addresses)
to other organizations, which then delegate sub-prefixes
to their customers, and so forth. This property can re-
late other aggregate definitions—geographic location or
round-trip time, for instance—back to address prefixes.

Nevertheless, one could usefully define aggregates in many
other ways, such as by destination geographic area or appli-
cation protocol.

We use CIDR notation for prefixes and aggregates. Given
an IP address a and prefix length p, with 0 ≤ p ≤ 32, “a/p”
refers to the p-bit prefix of a or, equivalently, the aggregate
containing all addresses sharing that prefix. An aggregate
with prefix length p is called a p-aggregate, or, sometimes, a
“/p”. A p-aggregate contains 232−p addresses, so aggregates
with short prefix lengths contain more addresses; the sin-
gle 0-aggregate contains all addresses and a 32-aggregate is
equivalent to a single address. We use the terms “short” and
“long” when referring to prefixes, and “small” and “large”
when referring to aggregates; short prefixes correspond to
large aggregates, and long prefixes to small aggregates.

4 DATA SETS

Our packet traces originate at locations that generally
see a lot of traffic aggregation, including access links to
universities (U1 and U2) and Web sites (W1), ISP routers
with peering, backbone, and client links (A1 and A2), and
links connecting large metropolitan regions with a major
ISP backbone (R1 and R2). The traces date from between
1998 and 2001. Their durations range from 1 to 4 hours;
their packet counts range from 1.4 million to 101 million.
We write N for the number of distinct destination addresses
in a trace; it ranges from 70,000 to 160,000. Some traces
were pseudo-randomly sampled at the packet level. Figure 1
presents high-level characteristics of these data sets.

Many of our traces have been anonymized as if by tcpdpriv
–A50 [15]. This applies an anonymization function f to every
IP address in the trace. The function preserves prefix rela-
tionships, so given addresses a and b and any prefix length p,
a/p = b/p iff f (a)/p = f (b)/p. All our analysis methodologies
are indifferent to this kind of anonymization.

All of the traces are omnidirectional. That is, each trace
contains all packets passing by the trace location, regardless
of whether the packets were heading “towards” or “away
from” the trace point. This choice was mandated by the
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Figure 2—The address structure of data set U1, with two successive 32×
magnifications. We draw a box for every nonempty address prefix; the Y axis
is prefix length. A single address would generate a stack of 33 boxes, each
half the width of the one below. The topmost boxes are extremely thin!

Trace duration 1 hour
Sampling ratio 1/256
Number of packets 1,476,378
Number of non-TCP/UDP packets 36,445
Number of TCP/UDP flows 680,663
Number of active addresses (N ) 168,318
Number of active 16-aggregates 5,785

Figure 3—Characteristics of trace R1.

anonymization of some of our traces. However, we experi-
mented with algorithms to extract likely unidirectional traces
from omnidirectional ones. On seeing a packet with source
address a and destination address b, we can assume, modulo
spoofing and misrouting, that a is on one side of the link
and b is on the other. Running trace R1 through a conser-
vative algorithm based on this insight yielded three address
sets: 12% of addresses were “internal”, 68% were “exter-
nal”, and 21% could not be classified. The structural metrics
(see Section 8) of the whole trace follow those of the “ex-
ternal” addresses, probably because there are relatively few
“internal” addresses.

Given omnidirectional traces at locations with symmetric
routing, we would expect the set of source addresses in the
trace to roughly equal the set of destination addresses. Still,
we examine only destination addresses.

Figure 2 shows the destination addresses present in trace
U1. We draw a box for each aggregate containing at least
one address present in the trace. Other traces look generally
similar.

5 IMPORTANCE OF ADDRESS STRUCTURE

We now turn to the distributions of the number of pack-
ets per TCP/UDP flow, destination address, and destination
address aggregate for trace R1. These packet count distri-
butions are significant for congestion control and fairness
applications, for example. We see that all three distributions
are heavy-tailed, and demonstrate that address structure is
the most important factor affecting aggregate packet count
distributions for medium-sized aggregates.

Figure 3 summarizes relevant characteristics of trace R1.

5.1 Packet count distributions
Log-log complementary CDF graphs form a well-known

test for heavy-tailed, or power-law tail, distributions. These
plots show, for a given x, the fraction of entities that have
weight x or more, with both axes in log scale. Power-law
distributions appear as straight lines for sufficiently large x.

Figure 4 presents a log-log complementary CDF of the
packet counts of TCP/UDP flows, addresses, and 16-ag-
gregates in the R1 data set.1 The graph’s X axis marks the
number of packets attributed to an entity—flow, address, or
aggregate. (The largest entities in the trace are visible as the
endpoints of the lines. The largest flow in the trace contains
3,727 sampled packets, the largest destination address has
1Appendix Figure 19 shows similar graphs for other data sets.
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Figure 4—Log-log complementary CDF of packet counts for R1 flows, ad-
dresses, and 16-aggregates. All are consistent with power-law distributions.
The fit lines have slopes−1.46, −1.16, and −1.13, respectively.

27,020 sampled packets, and the largest 16-aggregate has
187,227 sampled packets.) All three distributions appear to
have power law tails. That is, the chance that an entity has
weight greater than x is proportional to x−α with 0 < α ≤ 2;
here, α is approximately 1.46 for flows, 1.16 for addresses,
and 1.13 for 16-aggregates. These values were calculated by
least-squares fit to the upper 10% of the distributions’ tails,
less the last 5 points. Other traces have similar packet count
distributions, although some have less heavy tails.

We might have expected TCP/UDP flow packet counts
to appear heavy-tailed, as they in fact do. Prior work has
shown that Web flow weights follow a heavy-tailed distribu-
tion [3], and 70% of R1’s packets, and 89% of its flows, use
ports 80 (http) or 443 (https). However, we might also have
expected large aggregates to appear less heavy-tailed than
flows or addresses. Each 16-aggregate can contain tens of
thousands of flows; the sum of so many finite distributions
would tend to converge, however slowly, to a normal distri-
bution. This is not what we see in Figure 4. Why does the
16-aggregate packet count distribution appear, if anything,
more heavy-tailed than the flow packet count distribution?

5.2 Factors affecting aggregate packet counts
Conceptually, aggregate packet counts depend on three

factors:

1. Address packet counts: How many packets are there per
destination address?

2. Address structure: How many active addresses are there
per aggregate? (We call a destination address active
when its packet count is at least one. Thus, address
structure measures where packets are headed without
differentiating between popular and unpopular desti-
nations.)

3. The correlation between these factors: Do addresses
with high packet counts tend to cluster together in
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Figure 5—Complementary CDF of 16-aggregate packet counts for R1, R1
with random address packet counts, R1 with random addresses, and R1 with
permuted address packet counts (but the same addresses).

the address space? Or do they tend to spread out? Or
neither?

Obviously, the per-address packet count distribution will
dominate the packet counts of small aggregates. A 30-ag-
gregate, for example, can contain at most four addresses, so
address structure and correlation have minimal impact on
aggregate packet count. But what about medium-to-large
aggregates, such as /16s?

We can determine the relative importance of the three
factors by altering each factor in turn, then comparing the
resulting aggregate packet count distributions with those of
the real data R1.

1. “Random counts”: This transformation replaces all ad-
dress packet counts in the data set with numbers drawn
uniformly from the interval [0, 17.54]. This destroys
address packet counts and correlation while keeping
address structure the same. (17.54 is twice R1’s mean
address packet count.)

2. “Random addresses”: To alter address structure, we
randomly choose 168,318 addresses from the address
space, then assign R1’s address packet counts to those
addresses. This preserves the address packet count dis-
tribution while destroying address structure and corre-
lation.

3. “Permuted counts”: To destroy any correlation be-
tween the two distributions while preserving the distri-
butions themselves, we keep the original addresses, but
randomly permute their packet counts.

Figure 5 shows the results for 16-aggregates. All three
generated sets differ from the real data, but unlike “random
counts” and “permuted counts”, the “random addresses” line
differs significantly across the entire range of values. This
underlines the importance of address structure: for medium-
to-large aggregates, address structure has a greater effect on
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aggregate packet counts than address packet counts.2

6 MULTIFRACTAL MODEL

Figure 2 shows that real address structures look broadly
self-similar: meaningful structure appears at all three mag-
nification levels. We now validate that intuition by present-
ing a multifractal model for observed address structures. Of
course, true fractals have structure down to infinitely small
scales, while addresses bottom out at prefix length 32. Nev-
ertheless, this is enough depth to make fractal models po-
tentially valuable.

6.1 Fractal dimension
An address structure can be viewed as a subset of the unit

interval I = [0, 1), where the subinterval Aa = [a/232, (a +
1)/232) corresponds to address a. Considered this way, ad-
dress structure might resemble a Cantor dust-like fractal [13,
17]. Cantor dusts have fractal dimension between 0 and 1.
What would be the dimension of our address structure?

The lattice box counting fractal dimension metric naturally
fits with address structures and prefix aggregation. Lattice
box counting dimension measures, for every p, the number of
dyadic intervals of length 2−p required to cover the relevant
dust. These dyadic intervals correspond exactly to our p-
aggregates.

Given a trace, let np be the number of p-aggregates that
contain at least one address present in the trace as a desti-
nation (0 ≤ p ≤ 32). Any nonempty trace will have n0 = 1,
since the single 0-aggregate covers the entire address space,
and n32 = N is the number of distinct destination addresses
present in the trace. Furthermore, since each p-aggregate
contains and is covered by exactly two disjoint (p + 1)-
aggregates, we know that np ≤ np+1 ≤ 2np. Using this nota-
tion, lattice box counting dimension is defined as

D = lim
p→∞

log np

p log 2
.

In other words, if address structures were fractal, log np
would appear as a straight line with slope D when plotted
as a function of p. We would actually expect to see startup
effects for low p (higher slope than the true dimension) and
sampling effects for high p (lower slope than the true dimen-
sion, because there’s not enough data to fill out the fractal).
Figure 6 shows a log plot of np as a function of p; we find
that, for a reasonable middle region 4 ≤ p ≤ 14, np curves do
appear linear on a log-scale plot. For R1, a least-squares fit to
this region gives a line with slope 0.79. Thus, R1’s nominal
fractal dimension is D = 0.79.

6.2 Multifractality
Adaptations of the well-known Cantor dust construction

can generate address structures with any fractal dimension.
Starting with the unit interval, one repeatedly removes the
2For 20-aggregates and smaller, “random counts” matches less well than
“random addresses”—at first for the largest aggregates, then eventually,
with increasing prefix length, for almost all aggregates.
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Figure 6—np as a function of prefix length for several traces, with a least-
squares fit line for R1’s 4 ≤ p ≤ 14 region (fit slope 0.79).

middle portion of all subintervals. The relative size h of the
removed portion determines the Hausdorff dimension of the
resulting set:

D = − log 2
log 1

2 (1− h)
.

(For the canonical Cantor dust, h = 1/3 and D = log 2/ log 3.)
Any address interval Aa containing a point of the resulting
dust could represent an active address.

Such Cantor dusts can capture the global scaling behav-
ior of aggregate counts. However, real address structure is
more complicated than what they can predict. Dusts have
the same local scaling behavior everywhere in the address
space, modulo sampling effects. Traces, on the other hand,
populate portions of the address space quite differently, as
can be seen in Figure 2. This results in different local scaling
behavior, the essence of multifractality.

To test if a data set is consistent with the properties of
multifractals, we use the Histogram Method to examine its
multifractal spectrum [17]. Let µp(a) denote the “mass” asso-
ciated with the dyadic interval of length 2−p containing a. For
us, this is the probability that a randomly chosen active IP
address is contained in the aggregate a/p. Let σp(a) denote
the number of active addresses in the aggregate a/p; then
µp(a) = σp(a)/N . When µp(a) > 0, the local scaling exponent
αp(a) is defined as follows:

αp(a) =
log µp(a)

log 2−p = − log (σp(a)/N)

p log 2
.

To calculate a multifractal spectrum, first compute a his-
togram of αp. That is, decide on a set of evenly-sized his-
togram bins, and for each bin Bi, calculate Fi, the number
of aggregates a/p whose αp(a) value lies within that bin.
The multifractal spectrum plots fp(Bi) = log Fi/p versus the
binned scaling exponents.3 For multifractal data, this spec-
trum will collapse onto a single curve for sufficiently large p.
3Strictly speaking, the multifractal spectrum is continuous; this is a binned
approximation.
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Figure 7—Multifractal spectra for R1 and Cantor dusts, p = 16.

Our data sets are dominated by sampling effects for large p,
however, so we examine medium p instead. The solid line in
Figure 7 shows R1’s multifractal spectrum at p = 16; spec-
tra at nearby prefixes are similar.4 It covers a wide range of
values. The dashed line corresponds to an address structure
sampled from a Cantor dust with fractal dimension 0.79, the
same as R1’s nominal fractal dimension. 168,318 addresses
were sampled, giving the dust the same number of addresses
as R1. The resulting structure’s multifractal spectrum is nar-
row compared to that of R1.

6.3 Model
The original Cantor construction can be easily extended

to a multifractal Cantor measure [9, 19]. Begin by assigning a
unit of mass to the unit interval I. As before, split the interval
into three parts where the middle part takes up a fraction h
of the whole interval; call these parts I0, I1, and I2. Then
throw away the middle part I1, giving it none of the parent
interval’s mass. The other subintervals are assigned masses
m0 and m2 = 1−m0. Recursing on the nonempty subintervals
I0 and I2 generates four nonempty subintervals I00, I02, I20,
and I22 with respective masses m0

2, m0m2, m2m0, and m2
2.

Continuing the procedure defines a sequence of measures µk
where µk(Iε1...εk ) = mε1 × · · · × mεk (each εi is 0, 1, or 2);
these measures converge weakly towards a limit measure µ.
To create an address structure from this measure, we choose
a number of addresses so that the probability of selecting
address a equals µ(Aa). If m0 = m2 = 1/2, this replicates
the Cantor construction. If m0 and m2 differ, however, the
measure µ is multifractal. Although the set of mathematical
points with nonzero mass equals the original Cantor set, and
has the same basic fractal dimension, the measure’s unequal
distribution of mass causes the sampled set of addresses to
exhibit a wide spectrum of local scaling behaviors.

We constructed another set of addresses, the “R1 Model”,
by generating 168,318 addresses according to a Cantor mea-
sure with basic fractal dimension D = 0.79 and with m0 =
0.8 (chosen to fit the data). The dotted line on Figure 7
4Appendix Figure 20 shows spectra for all prefixes from 13 to 17.
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Figure 8—Multifractal spectra for A2 and its model, p = 16.

shows its multifractal spectrum.5 The single parameter m0 is
sufficient to make the model match real data fairly well at all
scaling exponents.

We created similar models for several other traces, using
fractal dimensions and m0 as follows:

Trace D m0 Trace D m0
R1 0.79 0.80 A2 0.80 0.70
U1 0.73 0.72 W1 0.83 0.75

Each trace’s fractal dimension D was measured as the slope
of the least-squares fit line on a graph of log2 np versus p for
4 ≤ p ≤ 14. Each trace’s mass proportion m0 was chosen
so that the model’s multifractal spectrum covered a similar
range as that of the trace. Figure 8 shows the multifractal
spectra for A2 and its model at p = 16.6

All of these models broadly match the real data’s mul-
tifractal spectra. The trace spectra cover different ranges
of scaling exponents, but modifying m0 seems sufficient to
capture this variation. In particular, raising m0 increases the
range of scaling exponents on the spectrum, as one would
expect. We also experimented with fixing m0 at our opti-
mal guess and varying D. As D rose above the measured di-
mension, the model’s fractal spectrum fragmented into more
spikes; as it lowered below the measured dimension, the
model’s spectrum smoothed out, but also covered a narrower
range of scaling exponents and fell below the real spectrum.

6.4 Causes
Why might IP addresses appear to be multifractal? This

area needs more investigation, but there is an attractive, in-
tuitive explanation. Multifractals can be generated by a mul-
tiplicative process or cascade that fragments a set into smaller
components recursively—for example, taking out the mid-
dle subinterval as in a Cantor set—while redistributing mass
associated with these components according to some rule—
for example, a higher probability of further populating the
5Appendix Figure 21 shows spectra for R1 and its model at p = 15, 17,
and 18.
6Appendix Figure 22 shows multifractal spectra at p = 16 for all data sets;
Figure 23 compares the spectra for U1 and W1 to those for their models.
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resulting left subinterval. This brings to mind the way IP ad-
dresses are allocated: ICANN assigns big IP prefixes to the
regional registrars, the registrars assign blocks to ISPs, who
further assign sub-prefixes to their customers, and so forth.
For social and historical reasons, many of these allocation
policies may share a simple basic rule—for example, left-to-
right allocation. Together, these processes would generate a
cascade, and multifractal behavior.

7 METRICS

We have seen that a surprisingly simple model of ad-
dress structure captures the multifractal behavior of real data.
Now, we test that model against generic structural metrics
that describe how addresses are aggregating. Our goal is to
test whether the multifractal model matches real data in sim-
ple summary metrics with real-world relevance, in addition
to the multifractal spectrum. We introduce three character-
izations: active aggregate counts, which measure where non-
trivial aggregation takes place; discriminating prefixes, which
measure the separation between aggregates; and aggregate
population distributions, which show how addresses are spread
across aggregates.

7.1 Active aggregate counts (np and γp)
One measurement of how densely addresses are packed

is simply how many aggregates there are. A trace contain-
ing 10,000 distinct destination addresses might have a single
active 16-aggregate, if the addresses were closely packed,
or 10,000 different 16-aggregates, if they were maximally
spread out. The active aggregate counts np, introduced in
Section 6.1, capture this notion by counting the number of
active p-aggregates for every p. For instance, n16 is the num-
ber of active 16-aggregates: the number of /16s that contain
at least one address visible in the trace as a destination. A
model of active aggregate counts might affect the design of
algorithms that keep track of aggregates by showing how
many aggregates there are on average.

The ratio γp = np+1/np is often more convenient for
graphing than np itself.7 Figure 9 shows the values of γp for
R1, A2, and our multifractal model tuned for R1; Figure 10
additionally shows the model for A2.8 γp drops vaguely lin-
early from 2 to 1, corresponding to exponential growth in
aggregate counts that gradually flattens out as prefixes grow
longer. (γp always lies between 1 and 2.) The models’ plots
are smoother than the real data for p ≥ 6 or so, but they do
match in broad outline. For example, note how the plots for
A2 and its model dip lower than those for R1 and its model
at p > 18. The bumps in γp at p = 8, 16, and 24 are proba-
bly caused by traditional class-based address allocation, still
visible in γp years after the introduction of CIDR [8].

Some properties of trace locations may be inferred from
graphs of γp. For example, A2’s γp is lower than R1’s around
p = 18 to 24, but higher for p > 26. This means that more of
A2’s aggregation takes place at long prefixes: active addresses
7Nevertheless, Appendix Figure 24 graphs of np for all data sets and models.
8Appendix Figure 25 graphs of γp for all data sets and models, and Appendix
Figure 26 compares γp for U1 and W1 to their models.
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Figure 10—γp for A2 and its model.

are closer to one another than in R1. We hypothesize that
A2’s location, at an ISP with both peering and customer links,
accounts for this; maybe A2’s direct customers have relatively
many closely-packed active addresses.9

7.2 Discriminating prefixes
Active aggregate counts measure address density, but can-

not always characterize address separation. An address might
be the only active address in its half of the address space,
in which case we would call it well-separated from other
addresses, or it might be part of a completely populated
16-aggregate. The np and γp metrics cannot always distin-
guish between cases where all 16-aggregates (say) are equally
populated, so all addresses are equally separated, and cases
where some 16-aggregates are fully populated and others are

9We note that our algorithm for identifying “internal” and “external” ad-
dresses in omnidirectional traces, which classified 79% of R1’s addresses, was
able to classify only 21% of A2’s addresses. This might indicate a complex
conversation pattern, such as high levels of communication among A2’s cus-
tomers. Intuitively, such a communication pattern—for example, if several
of A2’s customers were different campuses of a single organization—might
correlate with closely-packed active addresses.
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Figure 12—CDF of address discriminating prefix counts πp.

sparsely populated, so some addresses are more separated
than others. To measure address separation, we introduce a
new metric, discriminating prefixes.

The discriminating prefix of an active address a is the
prefix length of the largest aggregate whose only active ad-
dress is a. Thus, if the discriminating prefix of an address is
16, then it is the only address in its containing 16-aggregate,
but the containing 15-aggregate pulls in at least one other
active address. Figure 11 demonstrates this concept on an
example set of 4-bit-long addresses. If many addresses have
discriminating prefix less than 20, say, then active addresses
are generally well separated, and we’d expect aggregates to
contain small numbers of active addresses.

We turn discriminating prefixes into a metric by calcu-
lating πp, the number of addresses that have discriminating
prefix p, for all 0 ≤ p ≤ 32. Since every address has exactly
one discriminating prefix,

∑
πp = N .

Figure 12 graphs πp for R1, A2, and our R1 model.10 The
traces’ discriminating prefixes range widely, indicating wide
variability in address separation. Discriminating prefixes get
surprisingly low: one R1 address has a discriminating prefix
of 6 (since π6 > 0), meaning that some active 6-aggregate
contains exactly one active address. (However, the major-
ity of addresses have discriminating prefix 26 or higher.)
The model captures this range in discriminating prefixes,
although it does not create discriminating prefixes as low as
the real data. Simpler models, such as random address as-
signment, sequential address assignment, and a monofractal

10Appendix Figure 27 graphs of πp for all data sets and models.
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Figure 13—8- and 16-aggregate population distributions for R1.

Cantor construction, create much narrower ranges of dis-
criminating prefixes.

7.3 Aggregate population distributions
Aggregate population distributions provide a more fine-

grained measurement of how addresses are aggregating at
a given prefix length. The population of an aggregate is the
number of active addresses contained in that aggregate. (In
Section 6.2, we expressed this as σp(a).) All p-aggregates
might have similar populations, meaning addresses are spread
evenly among the active aggregates. Given our experience
with the other metrics, however, we would expect p-ag-
gregates to exhibit a wide range of populations for short-
to-medium p. (Longer-prefix aggregates contain fewer ad-
dresses, so there isn’t as much room for variability.)

Figure 13 graphs 8- and 16-aggregate population distri-
butions for R1 and our R1 model on a log-log complemen-
tary CDF: for a given x, the Y axis measures the fraction
of aggregates with population at least x. (This is the same
kind of graph as the aggregate packet count distributions in
Section 5.1.) As expected, aggregates exhibit a wide range
of populations. The multifractal model echoes the real data,
particularly in the tail region.

It is worth noting that aggregate population distributions
are the most effective test we have found to differentiate ad-
dress structures. For example, before generating our mul-
tifractal model, we developed an algorithm that generates
a random address structure exactly matching a given set of
γp values, discriminating prefixes, and even discriminating
prefixes for aggregates. Despite the fitting, the aggregate
population distributions generated by the model were far off
the real data, much farther off than our current multifractal
model.

Aggregate population distributions also demonstrate our
model’s limitations. Figure 14 shows distributions for A2 and
its model. The model is pretty far off. Overall, the models
for R1 and W1 match their traces’ aggregate population dis-
tributions well, while the models for A2 and U1 do not.11

11Appendix Figure 28 shows similar graphs for U1 and W1 and their models.
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Figure 14—8- and 16-aggregate population distributions for A2.

The most obvious difference between these sets of traces can
be seen on plots of γp. A2 and U1 have lower amounts of ag-
gregation at medium-to-long prefixes than R1 and W1, but
higher amounts of aggregation at long prefixes. In Figure 9,
for example, A2’s γp dips appreciably below that of R1 for
18 ≤ p ≤ 25, only to rise above it for p > 27. Our current
multifractal model does not achieve both these properties
simultaneously; if a model has low γp for 18 ≤ p ≤ 25, it has
low γp for p > 27.

8 PROPERTIES OF γp

We now turn from the multifractal address model to the
γp metric itself. In particular, we investigate γp’s properties
as a concise characterization, or “fingerprint”, of the traffic
visible at a location. Is γp dominated by the sheer number of
active addresses (N )? Does the γp graph change over short
time scales at a single location? And how do unusual events,
such as heavy worm propagation, show up in γp?

8.1 Sampling effects
All of our structural characterizations depend, to some

degree, on N , the total number of active addresses observed.
Sampling gives a useful analogy. Think of an address trace
as a sampling of an underlying discrete probability distribu-
tion, where each destination address has a fixed probability.
N , then, resembles a sample size. How much do np and γp de-
pend on this sample size? For example, if we sampled shorter
or longer sections of a trace, how would that affect γp?

We vary N by examining contiguous sections of a 24-
hour trace containing U1 as a 4-hour-long subset. These
shorter and longer sections effectively represent differently-
sized samples of the same underlying probability distribu-
tion, assuming the distribution didn’t change significantly
over the 24-hour period.12

Figure 15 shows γp for U1 traces with durations ranging
from 24 hours to 6 minutes. The number of active addresses
varies over more than an order of magnitude, from 161,560

12The distribution almost certainly does change but, as Figure 15 shows, not
enough to affect the argument.
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Figure 15—γp for U1, and for longer and shorter traces from the same
data.

to 11,838. We would expect the γ curve to shift downward
as N decreases, since N is the product of the γps. For small
sample sizes, and the 6-minute trace in particular, the shape
of the curve also changes significantly—the characteristic
bumps at p = 16 and 24 have disappeared and the curve turns
up significantly for p > 24, a property not visible in any other
section.13 The other curves, however, resemble one another,
and differ visibly from other data sets. (Compare Figure 9,
for example.)

8.2 Short-term stability
For address structure characterizations to be useful as

traffic “fingerprints”, they must not vary too much on the
order of minutes or even one hour under normal traffic con-
ditions. We will see that this is indeed the case.

To examine γp’s stability over time, we break traces U2,
A1, and A2 into sequential nonoverlapping segments, each
containing 32,768 addresses. That is, we process the traces
in temporal order, collecting addresses and packet counts;
but just before recording the 32,769th address, we output
the current section of the trace and start a new one. The
traces break into about 10 sections each. The segments from
a given trace all last for about the same duration; the average
duration is 6.7 minutes for U2, 5.5 minutes for A1, and 7.5
minutes for A2. We would like sections from the same trace
to resemble one another, and to differ from sections from
other traces.

First, we calculated the average number of addresses that
adjacent sections have in common. If 32,767 addresses are
the same, then obviously the sections will have similar char-
acteristics. In fact, about half of the addresses change from
section to section; the first and second A1 sections, for ex-
ample, share just 15,239 addresses.

Despite this major address turnover, Figure 16 demon-
13A possible explanation: Like all our traces, U1 contains bidirectional data.
At long time scales, the large variety of external sites visited will dominate
visible address structure. At short time scales, that variety cannot express
itself, so the structural dynamics of internal addresses become more impor-
tant.
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strates that the shape of the γp curve remains quite stable,
especially for medium-to-large p. Each line shows the aver-
age γp for the sections of some trace; the error bars on that
line show the maximum and minimum γp values in any sec-
tion of that trace. For much of the address space, the error
bars from different traces do not even overlap. Note that N is
identically 32,768 for every section on the graph: differences
between traces are caused purely by address structure.

8.3 Worms
Up to this point, we have examined the characteristics of

address structures under normal network conditions. Now
we consider how worm propagation, and specifically the
propagation of Code Red 1 and 2, affects address structure.

The Code Red worm [2] exploits a buffer overflow vul-
nerability in Microsoft’s IIS webservers. In order to spread
the worm (version 1 and 2) to as many hosts as possible, the
worm generates a random list of IP addresses and tries to
infect each one in turn. Code Red 1 picks addresses com-
pletely randomly. Code Red 2, by contrast, attacks addresses
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Figure 18—Aggregate packet count distribution for 24-aggregates before
and after Code Red 1 and 2.

with greater probability that lie within the same aggregates
as the infected host. (Three-eighths of the time, it chooses a
random address within the same /16; one-half of the time, it
chooses within the same /8; one-eighth of the time, com-
pletely randomly.) This reduces the time that the worm
wastes on dead addresses.

We would expect this behavior to completely change ad-
dress structure observable at the edge of the Internet. Any
site has a usual probability distribution for the addresses that
might be expected to access it in a given time; Code Red
would add all infected hosts to that distribution. Also, the
sheer magnitude of Code Red would change the address
structure by changing the rate at which new addresses enter
the system. We examine the address structure not to advocate
its use for worm detection, but to demonstrate network be-
havior very different from the normal conditions described
elsewhere in this work.

We obtained hour-long flow traces from a national lab-
oratory taken the day before Code Red 1 hit (July 18, 2001,
N = 2,332); the first day of Code Red 1’s widespread in-
fection (July 19, 2001, N = 167,563); the day before Code
Red 2 hit (August 3, 2001, N = 79,563; Code Red 1 was
still active); and the first day of Code Red 2’s widespread
infection (August 4, 2001, N = 63,954). Unlike our other
traces, these contain only the addresses of hosts outside the
laboratory that attempted to open connections inside the
laboratory. This avoids effects from the lab’s own infected
hosts.

As expected, Code Red wildly changed the structure of
addresses seeking to contact the lab. Figure 17 shows a plot
of γp for the four traces. The July 18 line is representative
for connections predating Code Red: small N , small γp. After
Code Red, a much broader range of addresses contact the
lab, raising N and the aggregate ratio. The aggregate packet
count distribution, shown in Figure 18, changes as well; it
drops, since many aggregates have been added that contain
only unsuccessful probes. Figure 18 may also demonstrate
a difference between the two Code Reds: Code Red 2 gen-

10



erates more medium-sized aggregates, perhaps because its
locality means that networks near the lab in IP space tend to
probe it more often.14

9 CONCLUSION

This paper demonstrates that address structure is key
to understanding interesting properties of large aggregates,
such as their packet count distributions. We presented a mul-
tifractal model of observed addresses, and showed that it well
models many properties of the address structures we col-
lected. We developed specific structural characterizations to
examine how addresses aggregate at different levels. Finally,
we demonstrated that address structure differs between sites,
yet is relatively insensitive to sample size and stable over short
time scales.

ACKNOWLEDGMENTS

We are deeply grateful to David Donoho for his com-
ments, guidance, and generosity; he led us, for example, to
the multifractal model. Dick Karp was also a generous and
thoughtful collaborator. We thank Walter Willinger, Chuck
Blake, Robert Morris, Sally Floyd, and several anonymous
reviewers for comments on previous drafts.

REFERENCES

[1] Supratik Bhattacharyya, Christophe Diot, Jorjeta Jetcheva,
and Nina Taft. POP-level and access-link-level traffic
dynamics in a tier-1 POP. In ACM SIGCOMM Internet
Measurement Workshop, November 2001.

[2] CAIDA. CAIDA analysis of Code-Red, 2001.
http://www.caida.org/analysis/security/code-red/.

[3] M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed
probability distributions in the World Wide Web. In A
Practical Guide to Heavy Tails, chapter 1, pages 3–26.
Chapman & Hall, New York, 1998.
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APPENDIX

These additional figures show our data sets in more
depth. The main text refers to them in footnotes where ap-
propriate. Notes on particular figures follow.

Figure 19 shows log-log complementary CDFs of packet
counts for addresses and 16-aggregates for all our traces;
compare Figure 4 in Section 5.1. We were not able to cal-
culate packet counts for TCP/UDP flows for many of these
traces because the traces contained no per-flow data. Fits to
the upper tails of these curves yield values around 1 for α,
the power in a power-law distribution. However, not all dis-
tributions seem strongly heavy-tailed; see the lines for A1,
for example.
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Figure 19—Log-log complementary CDFs of packet counts for addresses and 16-aggregates in all traces. (See Section 5.1.)
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Figure 20—Multifractal spectra for R1 at prefix levels 13 ≤ p ≤ 17. (See Section 6.2.)
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Figure 21—Multifractal spectra for R1 and its model, p = 15, 17, and 18. (See Section 6.3.)
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Figure 22—Multifractal spectra for all data sets, p = 16. (See Section 6.3.)
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Figure 23—Multifractal spectra for U1 and its model, and for W1 and its model, p = 16. (See Section 6.3.)
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Figure 24—Aggregate counts np for all data sets, and for models of U1, A2, R1, and W1. (See Section 7.1. Note: the Y axis is not log scale.)

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  4  8  12  16  20  24  28  32

γ p

Prefix length p

U1
A2
R1

W1

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  4  8  12  16  20  24  28  32

γ p

Prefix length p

U2
A1
R2

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  4  8  12  16  20  24  28  32

γ p

Prefix length p

U1 model
A2 model
R1 model

W1 model

Figure 25—γp for all data sets, and for models of U1, A2, R1, and W1. (See Section 7.1.)
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Figure 26—γp for U1 and its model, and for W1 and its model. (See Section 7.1.)
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Figure 27—CDFs of discriminating prefix counts πp for all data sets, and for models of U1, A2, R1, and W1. (See Section 7.2.)
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Figure 28—8- and 16-aggregate population distributions for U1 and W1 and their models. (See Section 7.3.)
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Figure 29—Multifractal spectra at a national laboratory before and after Code Red 1 and 2, p = 16. (See Section 8.3.)
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