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Abstract
Measurements related to security are being carried out on
many sites on the Internet at network ingress points, be-
tween specific points on the Internet, and across the wide
area Internet. The goals range from identifying sources
of and possibly filtering unwanted traffic, to characteriz-
ing and coming up with new mechanisms for deterring
attacks. Most of the measurements do not systematically
consider adversarial traffic aimed at their measurement
system. We explore the role adversaries can play and
present a taxonomy on the potential impact of unwanted
traffic on measurement systems. Our goal is to both en-
hance the robustness of such systems and spur develop-
ment of tools that can alter the playing field by increasing
the cost to adversaries.

1 Introduction
Attacks on the Internet are steadily rising and range from
identity spoofing, spam, phishing, flooding links, dis-
tributed denial of service attacks, worms, virus, to or-
ganized targeted attacks by botnets. Various interesting
and pertinent solutions have been proposed to reduce the
impact of this unwanted traffic—authenticating senders,
identifying malware, filtering, throttling, rate limiting,
sharing information, etc. Research on unwanted traffic
has examined attacks traditionally from the viewpoint of
its impact on the user, the end systems, and the network.
In addition, numerous measurement projects have char-
acterized malware, examined the breadth of their impact,
and helped in the search for solutions.

What has been missing is a systematic examination of
the specific impact of adversarial traffic on the measure-
ment systems that have been created to deal with the mal-
ware. Systems to mitigate security threats have been pro-
posed that often also take into account an active adver-
sary trying to evade or otherwise attack them. However,
the adversary is considered to be narrowly focused on de-
feating the mechanism under study. We sketch a frame-
work for a more systematic evaluation that considers the
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impact an adversary can have on the measurements, and
lays the groundwork for considering how these effects
can propagate across different types of measurement.

Interference has been anecdotally discussed in certain
contexts, such as Web performance measurement sys-
tems like Keynote [4] and eValid Test Suite [2]. These
systems use a globally distributed set of platforms to
monitor customer Web sites by sending periodic requests
to selected Web pages to ensure availability and simul-
taneously measuring latency. Since the location of the
monitoring clients is often known, it is not surprising that
some Web sites game the system by providing a different
(higher) quality of service to requests from such moni-
toring clients to be perceived as a better provisioned site.
This would differ from actual user experience of the site.

Such interference is relatively benign and has impact
on competitive businesses. If the systems instead dealt
with security related measurements, an active adversary
has a strong incentive to use techniques to bypass the
system or compromise it. Even if the security infras-
tructure is not entirely compromised, inferences made
without taking into account active adversaries could be
flawed. The flaws could be from the perspective of false
negatives, false positives, and overall effectiveness.

In this paper we examine the ways in which measure-
ments and thus inferences can be skewed as a result of
adversarial actions. Our goal is to offer a framework for
which researchers and practitioners can evaluate the im-
pact of adversaries on their measurements from a vari-
ety of angles. We first illustrate the adversarial nature of
measuring unwanted traffic in § 2. We then present a tax-
onomy of the impact this traffic has on the measurement
systems in § 3. Finally, we conclude with a look towards
future work.

2 Measuring Adversaries
In this paper we focus our attention on measurement
for security-related tasks. Unlike standard measurement
tasks, this type of measurement explicitly involves an ad-
versary. That is, network operators are using the mea-
surements to either enforce some given policy on the traf-
fic (e.g., with a firewall or intrusion prevention system) or



to better understand the behavior of some remote entity
with the idea of informing future detection and response
mechanisms (e.g., with Honeypots). On the other hand,
attackers sometimes try quite hard to not be noticed and
to circumvent efforts at being measured and character-
ized. This tension is fundamental to all security-related
measurement activities. In this section, we first survey
the types of measurement systems used in the Internet
today for security-related measurement. We then catego-
rize the types of unwanted traffic that these systems are
likely to encounter and the possible impact of this un-
wanted traffic.

2.1 Measurement Systems

Many schemes have been developed and used to mea-
sure and characterize unwanted traffic. We focus on four
broad categories of popular measurement systems.
Firewalls: One of the most widely deployed mecha-
nisms for detecting and controlling unwanted traffic is
a firewall at the edge of an enterprise network. We con-
sider “firewalls” to be a range of devices and activities.
One end of the spectrum are simple Access Control Lists
on routers that approve or deny traffic based on per-
packet features (e.g., IP addresses, transport layer port
numbers, etc.). Firewalls can also be dedicated machines
on the network path that keep per-flow state and support
complex security policies such as capping the sending
rate of a connection or the rate at which a machine can
initiate connections. Firewalls also have a range of log-
ging capabilities, from none to quite detailed.
NIDS: A second type of security-related measure-
ment system is a Network Intrusion Detection Systems
(NIDS), such as Snort [8] or Bro [6]. NIDS are deployed
at strategic points to monitor incoming and outgoing traf-
fic for all the hosts on a network. NIDS can produce both
alarms for suspicious activities, as well as interface with
firewalls to automatically stop ongoing attacks. NIDS
use either signatures or algorithms to separate benign
and malicious traffic. For instance, a well-known string
(signature) within an HTTP GET request may indicate
that an incoming packet is attempting to infect a local
Web server with a particular worm. In another case, a
NIDS may employ an algorithm to watch connection at-
tempts over time to identify a remote host as a scanner
([6] shows one such algorithm). Another common tech-
nique for NIDS to use is to somehow characterize “nor-
mal” traffic and then flag deviations from that baseline
(so-called “anomaly detection”).
Honeypots: The third class of measurement systems we
consider are network Honeypots [7, 13]. These systems
either are real hosts or mimic real hosts attached to routed
but otherwise unused address space. All traffic that ar-
rives at these hosts is presumed to be either the result

of a mis-configuration or malicious. Therefore, by ac-
tively responding to the queries, the Honeypots can be
used to characterize unwanted traffic for the purposes of
(i) warning operators (and other devices such as firewalls
and NIDS) of previously unseen attacks and (ii) pro-
viding trends that help to improve operators situational
awareness [12].
Application-Level Filters: These systems reside at the
application layer and attempt to determine whether arriv-
ing traffic or requested traffic is “wanted” or not. The two
most prevalent kinds of filters are for incoming email and
for Web requests routed through a proxy server. Arriv-
ing email is often scanned for viruses and spam using a
myriad of techniques from matching signatures to statis-
tical techniques based on the prevalence of various terms
in the email. Another example is enterprises using Web
proxies that filter requests based on the content presumed
to be associated with a given URL (e.g., companies bar-
ring employees from accessing unsavory Web sites).

2.2 Adversarial Traffic

We next look at the range of traffic types that present
challenges for security-related measurement systems.
We break this down into three groups: (i) traffic that at-
tempts to attack the measurement system or its resources
directly, (ii) traffic that attempts to evade or circumvent
the measurement systems, and (iii) traffic that intention-
ally avoids the measurement systems to prevent charac-
terization.

2.2.1 Direct Attacks

Direct attacks on security-related measurement infras-
tructure can come in two forms.

First, attacks can simply try to DDoS the systems re-
sources, be it bandwidth, memory, table entries, etc. As
an example, some IDS systems such as Bro [6] maintain
a large amount of state about various streams of traffic at
various layers in the protocol stack simultaneously. One
method of attacking such a system would be to attempt to
make the system track more traffic streams than it could
handle and therefore be able to sneak a malicious flow
by the system without the system noticing (and, there-
fore, generating an alarm) [1]. Alternatively, many IDS
systems attempt to buffer out-of-order packet arrivals to
construct the exact byte stream an application is given.
An attacker could attempt to use such a buffer against
the measurement system and fill enough memory that
new traffic would not be appropriately monitored. An-
other form of attack is to slowly ramp up “background
noise” (legitimate Web fetches or similar benign traffic)
in the victim’s network to bring the measurement sys-
tems closer to the brink of failing to be able to keep up,



with an attack then simply providing the proverbial straw
that breaks the entire system.

A second type of direct attack on security-related mea-
surement infrastructure is to compromise the measure-
ment platform itself. For instance, the Witty worm [9]
compromised hosts running various Internet Security
Systems (ISS) products. Once a security-related mea-
surement system has been compromised the alerts gener-
ated or actions taken are clearly questionable at best.

2.2.2 Evasion

We next focus on attacks that attempt to evade the mea-
surement systems. We provide several examples of this
sort of attack, but do not claim that this is a comprehen-
sive list.

Among the simplest evasion techniques are splitting
up payloads amongst multiple small packets (using IP
fragmentation, multiple TCP packets, etc.). A simple
measurement system that makes judgments on each ar-
riving packet independently of all other packet arrivals
will be easily fooled by splitting some string across pack-
ets. For instance, instead of sending “root” in one
packet it gets broken into two packets with “ro” and
“ot”.

Another tactic is to attempt to circumvent a firewall
that does not pass traffic from some application by using
a non-standard port for the application in question, but
one that the firewall does allow. For instance, using TCP
port 80 for ssh traffic rather than for Web traffic. This
can be exploited by benign users that are simply trying
to get work done or by adversaries who are trying to hide
their traffic from security monitors.

Evasion tactics get trickier. For instance, an attacker
may leverage the IP TTL to show a NIDS a superset of
the packets that will actually arrive at the end host, thus
giving the NIDS a potentially bogus view of what might
be happening on the end system [3].

Another trick (from [3]) is to reorder and retransmit
segments to try to confuse a NIDS system. For instance,
if “root” is to be transmitted the attacker might send
“m” with sequence number 4, “oo” with sequence num-
bers 2 and 3, a “t” with sequence number 4 and finally
an “r” with sequence number 1. This leaves the NIDS
with an inconsistent view. Did the attacker send “root”
or “room”? The TCP specification is ambiguous and ac-
tual behavior varies. Therefore, the NIDS may get fooled
into thinking something benign was transmitted instead
of something malicious, or visa-versa.

NIDS systems that use anomaly detection are suscepti-
ble to attacks whereby the adversary attempts to re-define
the notion of “normal” such that it is easier for an attack
to fly “under the radar”. A similar situation exists for
Honeypots which commonly use statistical methods to

interpret data.
Spam filters may represent the single system that at-

tackers most often attempt to circumvent. Basic systems
that simply match strings are dealt with by changing the
case of text, mis-spelling words, breaking lines at dif-
ferent points, etc. More advanced statistical techniques
for finding spam are gamed by adding benign sound-
ing words, mis-spelling words, using HTML formatting
tricks to split words up in the actual email, but have those
words put back together when rendered for the user, in-
cluding the spam message in a graphic instead of as text,
etc. This is a year’s old arms race without any signs of
stopping, illustrating the difficulty of the task for mea-
surement systems that attempt to characterize an adver-
sary.

2.2.3 Avoidance Attacks

A final type of attack is an avoidance attack. The idea
is that if an attacker can determine that it is interacting
with a Honeypot rather than a “real” end system then the
attacker may avoid the block of addresses the Honeypot
is using. This kind of blacklisting can leave a void in
the characterization of some specific malicious activities.
This void then may propagate to other measurement sys-
tems. For example, IDS systems then will not have the
signatures that a Honeypot may have been able to gener-
ate. This problem can be addressed by making the Hon-
eypots as realistic as possible and by making the Hon-
eypots monitor a constantly changing set of addresses to
defeat blacklisting [5].

3 Modalities for Measurement Pollution by
Unwanted Traffic

Our adversarial models imply that Internet measure-
ments can be affected by unwanted traffic in a variety of
ways. However, adversarial intent alone is insufficient
to fully explain the scope of this issue. We posit that
a complete description of how unwanted traffic effects
measurements must include consideration of the target
measurement system. For our purpose this means both
the “sensor” component of the measurement system that
is used to collect the raw data, and the “analysis engine”
that is used to transform the raw data into the form that
is presented to and considered by users.

For this paper, we consider four systems (explained
in the previous section) used for the specific purpose
of measuring unwanted traffic—firewalls, NIDS, Honey-
pots and application-level filters. Unwanted traffic can
pollute the results reported by each of these systems in
different ways.

We describe a taxonomy of the ways in which un-
wanted traffic from adversaries can change the mea-



surements generated by firewalls, NIDS, and Honeypots
based on two concepts: consistency and isolation. Both
of these concepts are defined in terms of a set of packets
P = p1 . . . pn that arrive at the measurement system, and
the resulting log entries available to users A = a1 . . . am.
We define a measurement system to be consistent when
a given set of packets Pi always results in the same set
of log entries Aj . We define isolation in a measurement
system if a given set of packets Pi results only in the
set of log entries Aj . It is important to emphasize that
the log entries Aj for each of the three target measure-
ment systems are different. In the case of NIDS, log en-
tries are alarms that include summary information from
the rule that matched a set of packets and some detail
on the packets themselves. Entries in firewall logs are
similar. In contrast, log entries for Honeypots are often
only packet traces that can include either headers alone
or headers plus payloads. With these definitions, we enu-
merate the taxonomy as follows:

Consistent/Isolated This is the case where the mea-
surement system is behaving correctly and log entries
are not altered in unexpected ways by unwanted traf-
fic. Specifically, given instances of unwanted traffic
pi, . . . , pt generate log entries ai, . . . , at and no other set
of packets Pw will have an impact on the log entries. This
ideal, predictable behavior is the baseline against which
other cases must be compared.

Consistent/Non-isolated This is the case where the
measurement system behaves in a consistent, predictable
way, but where a given instance of unwanted traffic
changes the log entries caused by other unwanted traf-
fic. Specifically, consider that a given instance of un-
wanted traffic Pi results in log entry Ai. If another set
of unwanted traffic Pj arrives along with Pi then the re-
sulting alarm will change to Ak The following example
illustrates a real world instance of this case.

Two sequences of packets were created using the
MACE malicious workload generator [10] and submit-
ted to a system running the Snort NIDS version 2.4.4
with rules public release 2.4. Sequence S1 triggers a
pair of alarms (shown in Table 1) because of the string
“/hsx.cgi” in the URI (first alarm) and the string “../../”
(second alarm) in the payload (either after “?” for a GET
request or in the body of a POST). Sequence S1 con-
sists of three packets: the first for the HTTP request up
to the end of the “/hsx.cgi” string and the second and
third packets consisting of the payload “../”. The sec-
ond sequence, S2, differs from the first in that an addi-
tional packet was inserted between the second and third
packets consisting of “\x08/”, which is equivalent to
a backspace followed by a forward slash. When Snort
observes sequence S2 only the first alarm in Figure 1
is fired, even though it is semantically equivalent to S1.
This example is similar in most respects to common in-

sertion exploits; the difference being that in this case the
resulting log entries are changed, not omitted. This prob-
lem is similar to the issue of normalization [3], but at a
payload semantic level.

Inconsistent/Isolated This is the case where the mea-
surement system generates two (or more) different sets
of alarms Ai1 and Ai2 when the same set of packets
Pi arrives at the system in two separate measurement
epochs. The difference between this case and the last
is that the sets of alarms AiX are not predictable, and
that the alarms generated by other sets of packets Pj are
not affected by this behavior. This case can arise when
certain kinds of randomness are introduced into the envi-
ronment that lead to unpredictable behavior.

It is difficult to construct a concise examples for this
case since inconsistency in the pure sense should not be
bounded over time. However, we offer two examples of
inconsistent/isolated behavior that illustrate the idea. The
first example is an extension of the example in Table 1.
It is likely that there are other signatures for attacks on
a particular service that could be affected by the pres-
ence of a backspace character in a packet – but unlikely
that all signatures in the database would be vulnerable.
If a series of these backspace packets were directed to-
ward a NIDS like Snort that considers traffic on a packet-
by-packet basis, their impact would be unpredictable and
would depend directly on whether the packets arrived in
an order sufficient to alter the resulting log entries. This
is inconsistent behavior. The fact that only signatures
susceptible to the backspace could be affected means that
the behavior is isolated.

A second example of this case relates to the idea of
packet interleaving described in [11]. For NIDS that are
connection-oriented such as Bro, signatures can be ex-
pressed in the form of state machines in which multiple
packets from a source may be required to raise an alarm.
In this case, two different signatures might have common
initial sequences. If the same set of packets from a given
service (such as NetBIOS) are observed by the NIDS in a
different order between two measurement epochs, there
is both the possibility that a different order of alarms will
be logged and that a different set of alarms will be raised.
These kinds of experiments were conducted in [11], and
both of these outcomes were observed.

Inconsistent/Non-isolated This final case is where the
measurement system’s behavior in terms of the resulting
logs is truly unpredictable from one epoch to the next.
In this case, if a set of packets pi, . . . , pj result in log
entries ai, . . . , aj in one measurement epoch, the same
set of packets could result in log entries ak, . . . , al in
the next measurement epoch. This case is important be-
cause it illustrates that randomness in unwanted packet
streams may not only be an issue of arrival order as in
the case above, but can also be caused by the entirely



Packet sequence S1: payload 1: POST /hsx.cgi HTTP/1.0\r\nContent-length: 10\r\n\r\n
payload 2: ../
payload 3: ../
payload 4: \x00\x00\x00\x00

Packet sequence S2: payload 1: POST /hsx.cgi HTTP/1.0\\r\\nContent-length: 10\r\n\r\n
payload 2: ../
payload 3: \x08/
payload 4: ../
payload 5: \x00\x00\x00\x00

Snort rule #1: uricontent:”/hsx.cgi”;
(i.e., if /hsx.cgi appears in the URI, raise an alarm)

Snort rule #2: uricontent:”/hsx.cgi”; content:”../../”; content:”%00”; distance:1;
(i.e., if /hsx.cgi appears in the URI, plus content of ../.. followed by null byte in payload, raise an alarm)

Alarm #1: [**] [1:1113:5] WEB-MISC http directory traversal [**]
[Classification: Attempted Information Leak] [Priority: 2]
04/18-18:46:45.587011 10.2.23.103:25868 => 10.2.0.2:80
TCP TTL:64 TOS:0x0 ID:41059 IpLen:20 DgmLen:58 DF
***AP*** Seq: 0xECAE373E Ack: 0x43344649 Win: 0x8218 TcpLen: 32
TCP Options (3) => NOP NOP TS: 633549769 553538167
[Xref => http://www.whitehats.com/info/IDS297]

Alarm #2: [**] [119:18:1] (http inspect) WEBROOT DIRECTORY TRAVERSAL [**]
[Classification: Attempted Information Leak] [Priority: 2]
04/18-18:46:45.587011 10.2.23.103:25868 => 10.2.0.2:80
TCP TTL:64 TOS:0x0 ID:41059 IpLen:20 DgmLen:58 DF
***AP*** Seq: 0xECAE373E Ack: 0x43344649 Win: 0x8218 TcpLen: 32
TCP Options (3) => NOP NOP TS: 633549769 553538167
[Xref => http://www.whitehats.com/info/IDS297]

Table 1: Snort generates both alarm#1 and #2 when it receives packet sequence S1. However, Snort only generates
alarm #1 when it receives packet sequence S2 which includes a back space character in the fourth packet. This is an
example of consistent, non-isolated behavior.

different issue of denial of service. As discussed ear-
lier, it is well known that many different measurement
systems are susceptible to DoS attacks including NIDS
and firewalls [10]. DoS attacks can cause unpredictable
resource consumption in these systems leading to unpre-
dictable packet loss and other effects that have the poten-
tial to alter what is ultimately logged by the measurement
system.

4 Conclusions and Future Work

We have made an initial examination of how adversaries
could impact security related measurements that are on-
going at various protocol layers in numerous sites across
the Internet. We have sought to enumerate adversarial
traffic types and to provide a taxonomy of the impact of
this traffic on security related measurements. Our next
steps in this study include conducting experiments with
a spectrum of unwanted traffic and measurement systems
to assess the actual impact in a controlled environment.
Our ultimate goal is to develop generic tools and prac-
tices that can augment the ability of measurement sys-
tems to be robust against unwanted traffic.
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