
Efficient Application Placement in a Dynamic Hosting
Platform

∗

Zakaria Al-Qudah
Case Western Reserve

University
10900 Euclid Avenue
Cleveland, OH 44106
zma@case.edu

Hussein A. Alzoubi
Case Western Reserve

University
10900 Euclid Avenue
Cleveland, OH 44106
hfa1@case.edu

Mark Allman
International Computer

Science Institute
Berkeley, CA 94704 USA

mallman@icir.org

Michael Rabinovich
Case Western Reserve

University
10900 Euclid Avenue
Cleveland, OH 44106

misha@eecs.case.edu

Vincenzo Liberatore
Case Western Reserve

University
10900 Euclid Avenue
Cleveland, OH 44106

vl@case.edu

ABSTRACT

Web hosting providers are increasingly looking into dynamic
hosting to reduce costs and improve the performance of their
platforms. Instead of provisioning fixed resources to each
customer, dynamic hosting maintains a variable number of
application instances to satisfy current demand. While ex-
isting research in this area has mostly focused on the algo-
rithms that decide on the number and location of application
instances, we address the problem of efficient enactment of
these decisions once they are made. We propose a new ap-
proach to application placement and experimentally show
that it dramatically reduces the cost of application place-
ment, which in turn improves the end-to-end agility of the
hosting platform in reacting to demand changes.

Categories and Subject Descriptors

C.2.4 [Computer-communication networks]: Distributed
systems—Distributed applications, Network operating sys-
tems

General Terms

Performance , Design

Keywords

Application servers, Startup performance, Dynamic place-
ment, Web hosting

1. INTRODUCTION
Web hosting has become a $4B industry [27] and a crucial

part of Web infrastructure. Over half of small and mid-size
businesses utilize hosting to implement Web presence [14],
and 5,000 Web hosting companies with over 100 clients were

∗This work is supported in part by the NSF under Grants
CNS-0615190, ITR/ANI-0205519, and CNS-0831535.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

reported in 2006 [6]. While the current prevalent practice
involves allocating (or providing facilities for) fixed amounts
of resources to customers, the fiercely competitive industry
landscape has lead to a growing interest in dynamic host-
ing. In this approach, a hosting platform maintains a shared
pool of resources and reassigns these resources among appli-
cations as dictated by the demand. By reusing the same
resources to absorb demand spikes for different applications
at different time, dynamic hosting promises better resource
utilization and lower cost through the economy of scale.

A typical approach to implement dynamic hosting involves
dynamic placement of a variable number of application in-
stances on physical servers, and most research work in this
area has been focusing on the algorithms to decide on the
number and location of the application instances (e.g., [11,
19, 20, 12, 25, 26]). We address an orthogonal question of
an efficient way to enact these decisions once they are made.
For example, in the case of a flash crowd or an application-
level denial of service attack, if the platform decides to add
more resources to an overloaded application, we would like
this decision to be enacted as fast as possible.

Currently, application placement takes in the order of
minutes and, as we show, is resource intensive. This com-
pels placement algorithms to try to minimize the rate of
application placements to reduce their effects [25]. Our ap-
proach reduces dramatically these costs, and by doing so, it
will enable a new class of more agile application placement
algorithms than the existing algorithms handicapped by the
current heavy-weight application switching.

Our approach includes three key components. First, in-
stead of starting and stopping applications on demand, our
scheme pre-starts an instance of every application on every
available machine in a hosting platform: the applications
that are intended to handle users’ requests are active and
the rest stay suspended on disk in a “standby” mode. En-
actments of application placement decisions using this ap-
proach translate to activating suspended applications and
suspending active applications, which is much more efficient
in our targeted environment, where an application operates
within an application server (AppServ).

Second, we observed that memory paging, which modern

operating systems use to move applications’ state between
disk and main memory, becomes the bottleneck in applica-
tion placement. We resurrect long-abandoned process swap-
ping (moving an entire process between disk and memory
[5]) to address this problem. We demonstrate how process
swapping avoids the inefficiencies of modern OS memory
paging techniques when activating a suspended AppServ.

Finally, we recognize that modern operating systems re-
placed swapping with paging for a good reason, which is that
paging is more efficient in fine-grained scheduling among ac-
tive tasks. Thus, rather than replace paging with swapping,
we combine the benefits of both memory management tech-
niques: we allow the OS to continue using normal paging for
memory management of active tasks, and use swapping only
to process application placement events, which are incom-
parably less frequent than scheduling events among concur-
rent tasks. To this end, we introduce two new OS functions,
allowing the enacting agent, which we refer to as local con-
troller, to explicitly swap in or out a suspended AppServ,
while leaving intact normal paging for active tasks.

We have built a prototype of a hosting platform that im-
plements the above ideas, including the changes to the Linux
kernel of the hosting servers to provide the above OS func-
tions. We show that our approach offers a dramatic speed-up
of application placement enactment, investigate the factors
contributing to this improvement, and demonstrate its pos-
itive end-to-end effect on the hosting platform agility.

2. ARCHITECTURE OVERVIEW
We consider a hosting platform that runs typical three-

tier applications, which include a Web tier, an application
tier, and the back-end database tier. The web and ap-
plication tiers are often combined into a single tier imple-
mented within an application server such as JBoss Applica-
tion Server (or JBoss for short) and we follow this arrange-
ment in our experiments. However, our approach is fully
applicable to the full three-tier arrangements as well. Dif-
ferent applications exhibit performance bottlenecks at dif-
ferent tiers. We focus on the application tier; see [22, 15] for
examples of the work addressing the important issue of the
back-end tier performance.

The components in our hosting architecture essential for
the discussion in this paper are shown in Figure 1. The
central controller decides how many instances of various ap-
plications should run on which servers, as well as how incom-
ing requests should be routed among application instances.
The central controller communicates its routing decisions to
the request router and application placement decisions to
the affected server machines. The central controller bases
its decisions on reports from measurement modules, which
monitor the load on every server.

The request router directs incoming requests from exter-
nal clients on the Internet to a server machine that currently
hosts a replica of the requested application. The request
router can be a load balancing switch (e.g., [8]), a request-
routing DNS server (e.g., [1, 4]), or an HTTP gateway (e.g.,
[9]). The request router applies the policies and configura-
tions that the central controller issues at the hosting plat-
form level. A local controller runs on every server machine
and enacts application placement decisions from the central
controller via Start(app) and Stop(app) messages.

Shared hosting platforms differ in the way they allocate re-
sources to applications. Three main alternatives include (i)

Figure 1: General architecture of a hosting platform.

allocating entire physical machines to applications, so that
resource allocation involves switching a machine from one
application to another; (ii) allowing a physical machine to
be shared among different applications at the level of OS pro-
cesses; and (iii) running each application instance inside its
own virtual environment, either a virtual machine or a con-
tainer, and and sharing physical machines among multiple
virtual environments. Our current approach addresses the
first two ways of resource allocation while focusing more on
the second approach since it is more general. In particular,
we assume that application placement occurs at the gran-
ularity of the application servers running the applications
in question, and we equate applications with their applica-
tion servers unless it may lead to a confusion. We further
assume that AppServ instances are started on the machine
with operating systems already running. If different applica-
tions require different operating systems, the platform would
manage pools of machines running each OS type separately.

The virtualized resource sharing provides a higher degree
of isolation between applications at the expense of perfor-
mance overhead. With virtual machines, this overhead can
be significant depending on the application’s operation mix
[17]. In a parallel study, we observed the problem of high-
cost application placement in the virtual machine environ-
ment as well [18]. We believe our techniques should also be
useful in virtualized environments and plan to explore them
in this context in the future.

Finally, while our testbed mimics a single data center, our
techniques and findings are directly applicable to geograph-
ically distributed hosting platforms, since they face exactly
the same issues in enacting a given application placement
decision on a given server machine.

3. PLACEMENT MECHANISMS
This section describes a number of approaches for applica-

tion placement. We begin with a straightforward optimiza-

tion of a currently common technique and then proceed with
several alternatives we explore in this paper.
Regular Startup. Dynamic application placement mecha-
nisms often deploy AppServ instances from scratch, includ-
ing copying the necessary files onto the target servers [21].
An obvious optimization of this scheme (which is sometimes
approximated within a data center by using a shared file
server) is to pre-deploy all applications everywhere, and sim-
ply start and stop AppServ instances as needed. We refer
to this application placement mechanism (including the pre-
deployment) as regular startup. As we will show later, even
with pre-deployment, regular startup incurs high startup
time and resource consumption. This motivates our search
for more efficient application placement techniques.
Run-Everywhere. A straightforward alternative to regu-
lar startup is to run an instance of every application on every
available server machine and then simply direct requests to
application instances designated to be active. The intuition
is that unused instances will remain idle, allowing the OS
to prioritize resources to the active AppServ instances. We
refer to this technique as a run-everywhere approach.
Suspend/Resume. In the run-everywhere approach, the
operating system on each server makes resource manage-
ment decisions without any knowledge about which AppServs
are intended to be active. Unfortunately, as we show in
Section 4, idle AppServ processes defeat the OS’s general
resource management by performing regular housekeeping
that makes them appear active to the OS. In other words,
even though the platform considers an AppServ idle, the
AppServ’s background tasks make it active in the OS’s eyes.
We synchronize these disparate views by allowing the plat-
form to explicitly indicate which AppServs should be active.
Specifically, the local controller responds to the Start() and
Stop() commands by issuing SIGCONT and SIGSTOP sig-
nals (which are not masked by JBoss) respectively to the des-
ignated process. We denote this technique suspend/resume.
Enhanced Suspend/Resume. We attempt to enhance
the agility of suspend/resume by addressing the following
inefficiencies. First, when paging-in the memory pages of
a resumed process, the operating system brings them into
main memory on-demand (i.e., only when the resumed pro-
cess generates a page fault). Thus, the resumed process
alternates between CPU-bound and I/O-bound states. To
reduce scheduling overhead our first enhancement prefetches
the memory pages of the process to be resumed in bulk be-
fore waking it up with the SIGCONT signal.

Second, a resumed process will be delayed if the operat-
ing system needs to free memory to accommodate the re-
sumed AppServ. To avoid this delay, our second enhance-
ment attempts to maintain an amount of free memory suffi-
cient for an average AppServ instance. Furthermore, we free
this memory by pre-purging entire suspended AppServ from
memory to disk. The rationale for pre-purging the entire
AppServ is two-fold. First, application placement changes
represent coarse-grained decisions. Thus, we know a recently
suspended AppServ will not be activated for a long (in com-
puting terms) time, and will likely be paged out eventually
anyway. Second, bulk pre-purging is likely to place all pages
of the AppServ on disk close to each other. As a result, when
this AppServ is to be activated again, the activation should
be faster because of fewer disk head movements. We denote
the approach incorporating prefetching and pre-purging en-
hanced suspend/resume.

In short, the enhanced suspend/resume involves moving
the entire AppServ process between main memory and disk.
Interestingly, this mechanism, known as swapping, pre-dates
the current paging (moving data between main memory and
disk at the granularity of a memory page) [5]. Process swap-
ping has been replaced by paging in general purpose op-
erating systems to allow fine-grained scheduling of concur-
rent tasks. However, in the hosting environment, applica-
tion placement events are incomparably less frequent than
scheduling events among concurrent tasks. Thus, we revisit
the merits of swapping in the operating systems of hosting
servers to support application placement. It is, however, im-
portant that the efficiency gains of paging over swapping are
not lost in the general operation of the hosting machine.

Our approach combines the benefits of both memory man-
agement techniques: we introduce two new operating system
functions that can be invoked in the face of a decision to
place or decommission an application on the machine. One
function implements a swap-in (or “prefetch” in our termi-
nology, to avoid confusion with general swapping) a process
into memory. The local controller utilizes this service before
issuing the SIGCONT signal to the process for the AppServ
being placed on the machine.

The other function swaps-out (“pre-purges”) a specified
process from memory to disk. The local controller uses this
function after suspending the AppServ with the SIGSTOP
signal to ensure there is enough memory for active AppServs
on the machine and to increase the contiguity of the pages
of the swapped-out process on disk.

4. PERFORMANCE
We have implemented the mechanisms discussed above in

a simple hosting service. In this section we study applica-
tion placement performance before turning our attention to
agility in the next section.

We use the following setup to study the performance of
the application placement mechanisms sketched in the last
section. We used a server with a 2.8 GHz Intel Pentium 4
CPU and 512 MB of memory running Linux kernel 2.6.21 as
a hosting server. The machine is equipped with two disks,
one hosting a large swap area (13 GB) and the other holding
the application files. Except where otherwise indicated, ap-
plications are run within JBoss Application Servers. While
we conduct our experiments mostly with JBoss, we have no
reason to believe that other application server implementa-
tions might behave differently with our mechanisms.

We use three sub-applications in our experiments: (a) the
transactional Web e-Commerce benchmark TPC-W1 with
1000 items intended to represent a realistic application; (b)
a synthetic application that imposes a tunable CPU load
(referred to as CPU-bound application); and (c) a synthetic
application with a tunable memory footprint (referred to as
memory-bound application). The CPU-bound application
defines a single request type that contains a loop consuming
a number of CPU cycles. By applying a certain request rate
to this application from an external HTTP client we can
study the performance of application placement schemes in
the presence of varying amount of CPU load due to com-
peting applications. The memory-bound application defines
two request types. One type initializes a large static array of
characters on the first request (the array size is the tunable

1http://www.tpc.org/tpcw/default.asp

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60 70 80 90

S
ta

rt
u
p
 t
im

e
 (

s
e
c
o
n
d
s
)

CPU load (%)

Jboss
WebSphere

Figure 2: Regular startup time vs. CPU load

application parameter), and then touches all those charac-
ters on subsequent requests. The other is a null request
whose purpose will be explained in Section 4.4.

For convenience, we package all applications into a sin-
gle JBoss (or WebSphere when it is used) server instance.
Unless otherwise mentioned, we use wget2 to generate client
requests in all our tests. All experiments in this section are
repeated ten times, and the error bars in the graphs show
the 95% confidence intervals.

4.1 Regular Startup
We investigate regular startup delay on an idle machine

(corresponding to the full-machine allocation alternative as
described in Section 2) and in the presence of competing load
(representing the shared-machine alternative). We start a
copy of JBoss containing all our test applications and apply
a certain request rate to the CPU-bound application to gen-
erate the desired CPU load. We then start a second instance
of JBoss and observe its startup delay. We conservatively
measure startup delay as the time between when the local
controller receives the Start() message and the time JBoss
reports that it is ready to process requests. In reality, the
startup time can be higher because the processing of the
very first request takes longer than the subsequent requests.

Figure 2 shows the the startup delay as a function of the
competing CPU load. The startup delay of JBoss is over
90 seconds on the idle machine and increases linearly as the
CPU load increases – to 150s at 40% load.To make sure that
the long startup time is not an artifact of JBoss implemen-
tation, we repeat this experiment with WebSphere AppServ.
While the WebSphere startup time is smaller than that of
JBoss, it exhibits the same general trend, with almost 50s
delay on the idle machine.

Other studies also report long application startup delays
that could extend to several minutes depending on the par-
ticularities of the application and the server machine [18,
13]. Startup delays on the order of minutes clearly limit the
agility of a hosting platform: an overloaded site will have
to wait this long even after the platform decides to give the
site more resources. In a modern high-volume site, this can
translate to a degraded service to a large number of users.

In addition to startup delay, an important aspect of the
application placement efficiency is its resource consumption,
because it represents an overhead that could otherwise be

2http://www.gnu.org/software/wget/

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

C
P

U
 u

s
a
g
e
 (

%
)

I/
O

 w
a
it
 (

%
)

Time (seconds)

CPU Usage
I/O wait

Figure 3: CPU and disk I/O usage dynamics of reg-
ular startup.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16 18

C
P

U
 u

s
a
g
e
 (

%
)

A
v
e
ra

g
e
 I
/O

 W
a
it
 (

%
)

Application count

CPU Usage
I/O wait

Figure 4: Resource consumption of idle applications.

utilized for processing client requests. We measure this over-
head in terms of CPU usage and I/O wait percentage. The
latter is an indication of disk usage, and is defined as the
percentage of time that the CPU was idle during which the
system had an outstanding disk I/O request.

Figure 3 shows the dynamics of CPU utilization and I/O
wait time percentage during an AppServ’s startup period on
an otherwise idle machine. The startup commenced roughly
10 seconds into the experiment and finished 90 seconds later.
As shown in the figure, the regular startup process is resource-
intensive. For the initial 30–35 seconds of the startup pro-
cess, the CPU utilization is close to 100%, followed by a
period of heavy disk use, and finally a period of intermit-
tent CPU and disk usage. This indicates that starting an
AppServ instance can interfere in significant ways with com-
peting applications on the same server.

In conclusion, the regular startup approach is slow and ex-
pensive and this hinders the agility possible in a placement
algorithm. While we do not delve into particular placement
algorithms in this paper we will now turn our attention to
techniques that will lessen the burden of application switch-
ing, which we believe will enable a new class of placement
algorithms.

4.2 Run-Everywhere
We now turn to the run-everywhere alternative. We per-

form the following experiment to determine the costs in-
volved in this approach. We start a JBoss instance and wait

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20

S
ta

rt
u

p
 t

im
e

 (
s
e

c
o

n
d

s
)

Application count

Regular Startup Time

Figure 5: Application startup time vs. the number
of pre-existing idle applications.

until it reports startup completion. We then monitor the
overall CPU and disk usage on the server for the next 100
seconds before we start another JBoss instance. We repeat
this process for as many AppServ instances as possible.

Figure 4 plots the average percentage of CPU usage and
I/O wait time as a function of the number of AppServ in-
stances running. The figure stops at 18 AppServs because
starting additional AppServ instances beyond that point be-
comes extremely slow in our setup. Figure 4 suggests that
maintaining a large number of idle AppServs on a machine
causes disk thrashing. In other words, AppServs do not seem
idle to the operating system despite the fact that they are
not processing any user requests. The likely reason is that
AppServs perform some housekeeping even if they are not
processing requests [7]. Although we observe that house-
keeping requires little resources in the absence of large num-
ber of competing applications, it causes the operating system
to spend most of its time swapping processes as the server’s
resources become increasingly constrained.

By consuming resources, idle AppServs in particular in-
crease the startup delay for new AppServ instances that
might not have been included into the initial set. As we
start AppServ instances in the experiment described above
we tracked the startup time of each of these instances. Fig-
ure 5 shows the rapidly growing startup time as the number
of AppServs approaches the limit.

Overall, we conclude that starting an instance of every
application on every machine and allowing the OS to manage
the processes is not feasible since AppServs never become
truly idle from the OS’s perspective. Consequently, we next
explore schemes whereby the OS is explicitly informed about
whether the overall platform considers an AppServ instance
to be active or idle.

4.3 Regular and Enhanced Suspend/Resume
Suspended processes consume no CPU cycles, and we found

that the resident memory footprint (i.e., the memory that
could not be forced to page out) of a suspended AppServ is
around 700 KB. Therefore, even a modest system can sup-
port a large number of suspended applications at a minimal
memory cost (e.g., 100 idle instances can fit in 70 MB).

To measure the startup time of the regular and enhanced
suspend/resume techniques, we perform the following ex-
periments. For the regular suspend/resume, we start an

 0

 10

 20

 30

 40

 50

 0 20 40 60 80

T
im

e
 (

s
e
c
o
n
d
s
)

CPU load %

Enhanced Resume Time
Resume Time

Figure 6: Resume delay vs. CPU load for the sus-
pend/resume approaches.

AppServ instance from scratch and send it a SIGSTOP sig-
nal once the startup is completed. The process is repeated
for more AppServ instances with the goal of pushing the
earlier instances out of memory. We stop once the resi-
dent memory footprint of at least 10 suspended instances de-
creases to about 4 MB each3. Pushing suspended AppServs’
pages out mimics an expected usage scenario: with coarse-
grained application placement, we expect suspended AppServs
to be pushed out of memory. For the enhanced suspend/resume,
each suspended AppServ is explicitly pre-purged.

After the above preparation, we resume the suspended
AppServs (one at a time) using the suspend/resume and
enhanced suspend/resume approaches, and observe their re-
activation time. We repeat this experiment with various
competing CPU loads by exercising the CPU-bound appli-
cation in the background.

We use the completion of a small application request (the
home page of TPC-W) to indicate that the application in-
stance is active. This is a proxy since the AppServs pro-
cesses do not report they have finished“waking-up”as it was
the case for the regular startup (JBoss reports the startup
time). Adding this processing time makes our conclusions
conservative because they put suspend/resume techniques
at disadvantage relative to the regular startup.

Figure 6 shows the results. Compared to regular startup,
even the non-enhanced suspend/resume activates AppServs
5.3 times faster on an idle machine, with the advantage grow-
ing in the presence of competing load. Furthermore, the
figure demonstrates the added benefits of the enhanced sus-
pend/resume approach over the non-enhanced version, espe-
cially at higher CPU loads. Similar to the regular startup,
the non-enhanced resume delay depends on the CPU load
because the non-enhanced resume process requires CPU cy-
cles for page fault processing, CPU scheduling, and freeing
memory. However, the enhanced resume time virtually does
not change as the CPU load changes since the added en-
hancements avoid the demand paging overhead. Compared
to regular startup (Figure 2), the enhanced suspend/resume
is over 20 times faster on the idle machine and over 30 times
faster at 40% CPU load.

3Reducing the memory footprint further is possible but re-
quires starting a large number of additional AppServs. Stop-
ping at 4 MB suffices for our study because it puts enhanced
suspend/resume at disadvantage by reducing the amount of
memory regular suspend/resume must page in on wake-up.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

C
P

U
 u

s
a
g
e
 (

%
)

I/
O

 w
a
it
 (

%
)

Time (seconds)

CPU Usage
I/O wait

(a) Enhanced Suspend/Resume (the resume
starts at around 10s time).

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

C
P

U
 u

s
a
g
e
 (

%
)

I/
O

 w
a
it
 (

%
)

Time (seconds)

CPU Usage
I/O wait

(b) Suspend/Resume (the resume starts at
around 4s time).

Figure 7: Resource consumption of application placement with the suspend/resume approaches.

Figure 7 shows the dynamics of resource consumption of
an AppServ instance during the resume process. In this ex-
periment, no background CPU load is applied. The CPU
consumption of both regular and enhanced suspend/resume
process is drastically reduced compared to that of regu-
lar startup. As expected, suspend/resume and enhanced
suspend/resume operations are disk intensive because they
both need to bring a large number of pages into main mem-
ory. However, enhanced suspend/resume saturates the disk
for much less time; the reason is that, as we will see later,
it stores application pages on disk together so that they are
brought back faster.

4.4 Prefetching Overhead
The enhanced suspend/resume we studied so far prefetches

the entire process state before resuming the AppServ. How-
ever, some of the process pages may not be needed for im-
mediate client request processing. In this case, prefetching
those pages unnecessarily delays the completion of the appli-
cation placement. Because the amount of excessive prefetch-
ing depends on the particulars of the application and the
workload, this section studies the bounds on the potential
delay penalty due to this excessive prefetching.

To this end, we used the memory-bound applications which
initializes a large static array of characters on the first re-
quest. The application then defines two request types: (i)
one that touches all the allocated characters, representing
the extremely favorable prefetching case when virtually all
prefetched process pages are required and (ii) a null re-
quest that does nothing, which represents the extreme case
of wrong prefetching when none of the application-specific
memory is needed after the resume (the only usefully prefetc-
hed pages are those holding the AppServ itself).

Figure 8 depicts the placement delay for different ap-
plication sizes under the enhanced and non-enhanced sus-
pend/resume approaches for both extremes. In the benefi-
cial case (Figure 8a), the the non-enhanced placement delay
increases rapidly as the application size increases. The de-
lay of the enhanced resume increases much slower, so the
benefits of the enhanced resume grow dramatically for large
applications. Still, we expected these benefits since all work
done by prefetching is useful.

In the extreme unfavorable case (Figure 8b), while the
enhanced suspend/resume performs similar to the previous

case, the non-enhanced resume delay no longer grows with
the application size and in fact drops slightly. This is due
to the specifics of our memory-bound application: the al-
location of large static arrays pushes out earlier AppServs
in large chunks and hence places their memory pages close
to each other on disk. Then, the resumed AppServ benefits
from normal operating system’s read-ahead as it pages in4.

Even under these extreme conditions, the enhanced sus-
pend/resume retains some performance advantage over reg-
ular suspend/resume. Of course, eventually the two curves
on the graph would cross; however, an application size of
280 MB (around 130 MB for the AppServ itself and 150 MB
the static array size which will be unneeded memory in this
case) was not enough for the cross-over to happen. The ef-
ficiency of in-bulk prefetching and contiguous placement of
pages on disk mitigates the penalty of unneeded prefetching.

Overall, our conclusion from these two extreme scenar-
ios is favorable to the enhanced suspend/resume: it exhibits
dramatic speed-up of application placement over regular sus-
pend/resume when it prefetches useful memory, and retains
certain performance advantage even when prefetching large
amounts of unneeded memory.

4.5 Contributing Factors
As discussed above, the proposed enhancements decrease

AppServ activation in three ways. In this section, we exper-
imentally characterize the contributions of each element to
the overall performance enhancement.

To isolate the contribution of prefetching, we disable pre-
purging and conduct an experiment similar to the experi-
ments that measure application placement delay under regu-
lar suspend/resume (see Section 4.3). A number of AppServ
instances are started and suspended one by one. Once early
AppServ instances are pushed out of main memory, we re-
sume one AppServ by prefetching and measure the resume
delay using a small client request as before. Notice that,
since we do not prepurge, we do not ensure free memory at
the time of prefetching or the contiguity of page placement
on disk. Therefore, any performance gain over the regular
suspend/resume will be only due to prefetching.

We use the same setup to assess the contribution of ensur-

4Linux attempts to read a few pages that are adjacent to
the requested page to reduce disk head movement.

 0

 10

 20

 30

 40

 50

 60

 100 150 200 250 300

S
ta

rt
u
p
 t
im

e
 (

s
e
c
o
n
d
s
)

Application size (Mbytes)

Resume Time
Enahanced Resume Time

(a) All application footprint is used for subse-
quent request processing.

 0

 5

 10

 15

 20

 100 150 200 250 300

S
ta

rt
u
p
 t
im

e
 (

s
e
c
o
n
d
s
)

Application size (Mbytes)

Resume Time
Enahanced Resume Time

(b) Most of the application footprint is not used
for subsequent request processing.

Figure 8: Application placement delays of regular and enhanced suspend/resume under best- and worst-case
scenarios for the enhanced suspend/resume.

Instance # Number of Disk Areas
Prepurging Page-out

1 31 5139
2 22 5278
3 18 5093
4 18 4897
5 17 4855

Table 1: Contiguity of process pages on disk.

ing enough free memory at the time of activation. However,
before the activation of an AppServ instance, enough mem-
ory to accommodate the application instance is freed using a
special program that allocates that amount of memory and
terminates (leaving the corresponding amount of free mem-
ory in its place). No prefetching is performed: the process
is activated using a regular SIGCONT signal, and hence it
wakes up using normal demand paging. Further, since we
do not prepurge the AppServ process, we do not ensure con-
tiguous placement of its paged-out pages on the swap area.

For the third factor — contiguous allocation of memory
pages on disk — several AppServ instances are started from
scratch, suspended, and then prepurged in bulk one after
another. To verify that bulk prepurging results in contigu-
ous disk allocation, Table 1 shows the number of contiguous
areas an instance occupies on the swap disk with prepurging
and regular paging-out (five different application instances
are shown). Prepurged AppServs occupy two orders of mag-
nitude fewer contiguous areas than those paged out using
regular paging. After the above phase, several additional
AppServ instances are started and suspended without being
prepurged, to make sure the memory is filled up. Finally,
we resume the prepurged AppServs (one at a time) using a
normal SIGCONT signal and measure its resume delay. Any
resume speedup will be due to contiguous page location on
disk: there is no free memory at the resume time, and the
resume occurs using regular demand paging.

Figure 9 shows the result of these experiments, under
varying amounts of competing CPU load. For the ease of
comparison, the figure also reproduces the curves for regular
suspend/resume and the enhanced suspend/resume (which

 0

 10

 20

 30

 40

 50

 0 20 40 60 80

T
im

e
 (

s
e
c
o
n
d
s
)

CPU load %

Regular Resume
Only Prefetch

Only Contiguous on Disk
Only Free Memory
All Enhancements

Figure 9: Contribution of different enhancements.

combines all the above factors). The figure shows that each
factor results in a sizable reduction of the startup delay,
compared to the regular suspend/resume. Prefetching con-
tributes the most to the overall performance improvement,
while prepurging and contiguous disk allocation both exhibit
similar benefits. Furthermore, combining the three enhance-
ments together results in a cumulative effect, with the most
significant performance gain.

4.6 Effect of Application State
Unlike the current practice of deploying applications from

scratch, the suspend/resume techniques restore the before-
suspension state of application instances, and the perfor-
mance of these techniques may depend on the dynamics
of the system leading to the application placement (e.g.,
the application memory footprint, application-level caching,
etc). Our previous experiments measured the resume time
of AppServs that had been suspended without having pro-
cessed any user requests. This corresponds to the first place-
ment of a given application on a hosting server. The goal of
this section is to consider the performance of our techniques
for a repeated placement. To this end, we exercise an appli-
cation on a hosting server with client requests, then at some
point we deallocate it, and then re-deploy it again.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80

T
im

e
 (

s
e
c
o
n
d
s
)

CPU load %

Suspend/Resume
Enhanced Suspend/Resume

Figure 10: Application placement delay (repeated
placement).

We use TPC-W benchmark, which simulates a bookstore
Web site. TPC-W’s Remote Browser Emulators (RBE) try
to mimic the behavior of real web users shopping at the
TPC-W bookstore. We run 30 emulators for 60 seconds
against each application instance before it is suspended, and
then resume that application in the presence of certain level
of competing CPU load.

Figure 10 presents the activation time of both suspend/res-
ume and enhanced suspend/resume. As shown, the regular
resume time varies significantly from one trial to another.
The likely reason is the random behavior of the RBE’s be-
fore suspension, with demand-paging bringing varying por-
tions of the application memory footprint back from disk.
On the other hand, the enhanced resume time remains sta-
ble because it prefetches all the memory footprint anyway.
Furthermore, regardless of wide variations in regular resume
time, the enhanced resume time remains significantly shorter
in all cases.

5. HOSTING PLATFORM AGILITY
Having considered the performance of the various appli-

cation placement mechanisms on a hosting server, we now
study how this performance translates into the end-to-end
agility of a realistic hosting platform. We put together a
testbed that includes all the components in Figure 1. Our
testbed consists of two hosting servers, referred to as the
base server which hosts an application initially and the sup-
port server where an additional application instance will be
activated when the base server becomes overloaded. We
use Nortel’s Alteon 2208 Application Switch as the request
router; the clients send their requests to the switch’s IP
address and the switch then load-balances these requests
among hosting servers at the granularity of TCP sessions.

The measurement module on each hosting server reports
server CPU usage to the central controller every second5.
On detecting an overload (i.e., CPU usage reaching 80% in
our experiments), the central controller activates an applica-
tion instance on the support server by sending it the Start()
message. The support server deploys the application using
one of the mechanisms under study and, upon completion,
sends a “ready” message to the central controller. In the
regular startup case, the readiness of the application is de-

5In reality, measurement modules could also monitor other
types of resources, but CPU is sufficient for our experiment.

tected as reported by JBoss. In both suspend/resume cases,
it is detected by the local controller sending a special request
to the new application instance and obtaining a successful
response. Once the central controller receives the “ready”
message it configures the Nortel switch to add the support
server to the group of servers for load balancing.

We utilize a synthetic application, which comprises a sin-
gle Java Server Pages (JSP) benchmark page that performs
a combination of CPU-, disk-, and memory- intensive op-
erations. The testbed is initialized before the experiment
as follows. For regular startup, we pre-deploy (but do not
start) the application at the support server. For regular
suspend/resume, we start and then suspend the test ap-
plication, and then start and suspend a number of other
instances to make sure the test application is evicted from
memory. For the enhanced suspend/resume, we start and
then pre-purge the test application.

The testbed is driven by a client workload generator, which
generates a series of requests to the benchmark page using
httperf 6. Initially, the request rate is low and only the base
server is handling the clients’ requests. After 50 seconds we
increase the request rate (e.g., mimicking a flash crowd). We
then observe the dynamics of the average response time as
the measure of the agility of the hosting platform.

Figure 11 shows the experiment results. In the first 50 sec-
onds, the base server is underloaded and exhibits response
time less than 200 msec in all cases. However, the platform
reaction to the overload differs dramatically with different
schemes. As shown in Figure 11a, the response time of the
platform with regular startup increases to over 40 seconds
in some cases. Furthermore, it takes the platform roughly
100 seconds to adapt to the new load.

The platform agility increases with regular suspend/resume.
Figure 11b shows the period of degraded service decreases to
just over 25 seconds, or 25% of the time required by regular
startup. The severity of service disruption during the adap-
tion is also reduced, with the response time spiking to only
at most 12 seconds, because of a smaller backlog of requests.

Figure 11c shows the response time dynamics of the plat-
form using the enhanced suspend/resume approach. The en-
hanced suspend/resume further improves the platform agility.
It cuts the degraded service time to roughly 11 seconds—or
by a factor of 2 compared to regular suspend/resume—and
the response time during the adaption to less than 5 seconds.

The bulk of the adaption time in this case is now spent not
for application placement but for switch reconfiguration. It
took the switch around 7 seconds in all our experiments from
the time it is sent the reconfiguration messages to the time
requests started showing up at the support server. While
this delay can be viewed as negligible in existing applica-
tion placement mechanisms, it becomes dominant in the en-
hanced suspend/resume. Further study revealed that much
of the switch configuration delay is due to its storing the
new configuration on a flash card. We speculate that this
design was driven by the fact that load balancing switches
were assumed to be used in static environments, where they
balance load among a fixed set of servers. It appears that, in
dynamic utility computing environments, a better approach
would be to start load-balancing before flushing the new
configuration in the background.

6http://www.hpl.hp.com/research/linux/httperf/

 0

 10

 20

 30

 40

 50

 0 25 50 75 100 125 150 175 200

 R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
o
n
d
s
)

Time (Seconds)

 Response Time With Regular Startup

(a) Regular startup

 0

 2

 4

 6

 8

 10

 12

 14

 0 25 50 75 100

 R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
o
n
d
s
)

Time (Seconds)

Response Time With Regular Resume

(b) Suspend/resume

 0

 1

 2

 3

 4

 5

 6

 0 25 50 75 100

 R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
o
n
d
s
)

Time (Seconds)

Response Time With Prefetching

(c) Enhanced suspend/resume

Figure 11: End-to-end agility of a hosting platform with different application placement mechanisms (note
different scales on the y-axis).

6. RELATED WORK
There is a growing interest in the efficient management

of data centers and hosting platforms. Different approaches
target different resource-sharing environments: multiple ap-
plications sharing the same AppServ instance [21, 23], multi-
ple AppServ, each dedicated to its own application, sharing
the same physical machine [25, 13], each application run-
ning in its own dedicated virtual machine, with virtual ma-
chines sharing a physical machine (e.g., [10, 2]), and, finally,
each application instance running on a dedicated physical
machine, so that resource management in the data center
occurs at the granularity of the entire machines [3]. These
environments differ in their resource sharing flexibility and
the degree of application isolation they provide. The imme-
diate target of our work is the environment where applica-
tion instances are hosted as normal operating system pro-
cesses on a server machine. Previous work addressing this
environment [25, 13] recognized the costs of changing appli-
cation placement but focused on minimizing the placement
changes. Our approach is complimentary to this work in
that we are aiming at reducing the delays and costs involved
in carrying out placement decisions—which we believe will
enable a new class of more savvy decision algorithms.

Placement of application replicas is one of the key aspects
in a hosting platform. Previous work in this area has mostly
focused on the algorithms for deciding on the number and
location of the replicas, either in the wide area network [11,
19, 20, 12] or within a given data center [25, 13, 26]. By
reducing the delay in enacting these decisions, our approach
should allow for more dynamic algorithms that respond bet-
ter to sudden demand changes.

The agility of hosting platforms has been recently ad-
dressed by Qian et al. [18]. Unlike our work, the authors
targeted environments in which application instances are or-
ganized in application-level clusters and hosted on virtual
machines. To improve the agility of resource reassignment,
the authors rely on a limited number of stand-by virtual
machines (called ghost VMs) that reside in memory. The
benefits of their approach depend on the correct decision on
which VMs to run as ghosts. On the contrary, our approach
aims to reduce the delay of activating idle AppServ instances
that reside on disk. We believe that the ideas behind our
approach will be applicable to speeding up the resumption
of a suspended VM as well, and plan to investigate this pos-
sibility in future work.

We use prefetching to increase the efficiency of the swap-
in process. Prefetching has been studied extensively and

used in multitude of applications ranging from instruction
prefetching in microprocessors to Web prefetching. The lit-
erature on prefetching is too vast to cite here (see [16] and
the references therein for initial pointers to prefetching in the
operating systems context). We particularly used the swap
prefetch kernel patch [24] as a base for our implementation.

7. LIMITATIONS AND FUTURE WORK
Our approach can make the effects of bad programming

practices more pronounced. For example, application sus-
pension may lead to the timeout of database connections,
and proper exception handling is needed upon the resume.
Handling such errors is important in any environment, and
one might view the fact that our approach brings this need
to the fore as a benefit and not a drawback.

A current limitation of our approach is that its benefits
would be reduced in an environment where application in-
stances of a given application form an application-level clus-
ter. Several application servers, such as WebSphere and
Weblogic, provide this functionality, which allows applica-
tion instances to share client’s session state and fail-over
from one application instance to another in the middle of a
session. With application clusters, whether an application
instance starts from scratch or is resumed from a suspended
state, it needs to (re)join the cluster, which currently takes
over 30 seconds on a WebSphere [18]. When added to the
placement delay of all approaches, the relative advantage
of enhanced suspend/resume will become less pronounced.
In the future, we plan to explore more efficient application
cluster membership mechanisms.

Another direction for future work is exploring more elab-
orate prefetching policies of process state. The policy we
discuss in this paper simply prefetches an entire AppServ
process into memory. We have started to investigate a sec-
ond policy—which we refer to as “snapshot prefetching”—
that prefetches only the part of the application that was
actually accessed in memory the previous time the applica-
tion was active. We could consider additional policies such
as those derived from an LRU stack.

Looking ahead, it is possible that no single mechanism
will prove sufficient for the needs of future hosting platform,
and some combination of these mechanisms will be required.
For example, although we show that maintaining idle appli-
cation instances is too expensive using the “run-everywhere”
approach, it might be feasible to maintain some number
of spare idle applications, which would serve as a “quick-
reaction force” to sudden demand spikes and give the plat-

form some time to place additional application instances.
By cutting the placement delay time, our enhanced resume
techniques would allow the system to cut down on the num-
ber of spares required in such an environment. This would
be reminiscent of the ghosts approach proposed in the con-
text of virtual machines in [18].

8. CONCLUSIONS
This paper discusses the issue of efficient application place-

ment in a shared Web hosting platform. While existing re-
search in this area has mostly focused on the algorithms that
decide on the number and location of application instances,
we address the problem of efficient enactment of these de-
cisions once they are made. We show that the prevalent
practice of placement enactment by starting and terminat-
ing application instances is a time- and resource-consuming
process; this bounds the rate at which configuration changes
can take place and delays the configuration changes from
taking the desired effect. Furthermore, we showed that a
straw-man approach to run idle instances everywhere so that
they could be engaged at a moment’s notice is impractical
because these ostensibly idle Web applications actually con-
sume significant resources due to housekeeping activities of
their application servers.

Consequently, we explored new mechanisms for applica-
tion placement. Our best approach involves the cooperation
from the operating system and reduces application place-
ment delay by a factor of 20-30 in our experiments: from
over 90s to less than 5s on an otherwise idle machine, and
from around 150s to still around 5s on a moderately loaded
machine. We carefully explored the factors that contribute
to these improvements as well as potential limitations of our
approach.

Furthermore, we have demonstrated how the above im-
provements translate into the end-to-end agility of the host-
ing platform [18] in reassigning servers among application
instances. By assembling a realistic testbed, we showed that
our approach allows the platform to adapt to a sudden de-
mand change ten times faster than when using regular ap-
plication startup, and with much less severe service degra-
dation during this already-shortened transition period. In
fact, we observed that, with our approach, the application
placement delay becomes dominated by the time spent re-
configuring the load-balancing switch. We suggested a way
to remove much of this reconfiguration delay from the criti-
cal path of the application placement procedure.

Besides reducing delays in reallocating shared resources,
we believe the additional flexibility afforded by our proposed
techniques can open up the space of possible policies for
deciding how to allocate resources within hosting platforms.

9. REFERENCES

[1] H. A. Alzoubi, M. Rabinovich, and O. Spatscheck.
MyXDNS: a request routing DNS server with
decoupled server selection. In WWW, 2007.

[2] A. Awadallah and M. Rosenblum. The vmatrix: A
network of virtual machine monitors for dynamic
content distribution. In 7th WCW, 2002.

[3] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and
S. E. Sprenkle. Dynamic virtual clusters in a grid site
manager. In 12th HPDC, 2003.

[4] Cisco Distributed Director. http://www.cisco.com/
warp/public/cc/pd/cxsr/dd/tech/index.shtml.

[5] S. Demblon and S. Spitzner. Linux internals (to the
power of -1). 2004.
http://learnlinux.tsf.org.za/courses/build/internals/.

[6] http://hostcount.com/stats.htm.
[7] JBoss documentation.

https://docs.jbosson.redhat.com/confluence/
display/DOC/General+Server+Metrics.

[8] IBM Network Dispatcher. 2001.
http://www-900.ibm.com/cn/support/library/sw/
download/nd30whitepaper.pdf.

[9] IBM WebSphere Partner Gateway. http://www-01.
ibm.com/software/integration/wspartnergateway/.

[10] X. Jiang and D. Xu. Soda: A service-on-demand
architecture for application service hosting utility
platforms. In 12th HPDC, 2003.

[11] J. Kangasharju, J. W. Roberts, and K. W. Ross.
Object replication strategies in content distribution
networks. Computer Communications, 25(4), 2002.

[12] M. Karlsson and C. T. Karamanolis. Choosing replica
placement heuristics for wide-area systems. In ICDCS,
pages 350–359, 2004.

[13] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer,
M. Steinder, M. Sviridenko, and A. Tantawi. Dynamic
placement for clustered web applications. In 15th Intl.
Conference on World Wide Web, 2006.

[14] R. O. King. SMB hosting market still undeveloped.
Web Hosting Industry Review.
thewhir.com/features/smb-undeveloped.cfm, 2004.

[15] D. T. McWherter, B. Schroeder, A. Ailamaki, and
M. Harchol-Balter. Priority mechanisms for oltp and
transactional web applications. In ICDE, 2004.

[16] A. E. Papathanasiou and M. L. Scott. Aggressive
prefetching: an idea whose time has come. In HotOS,
2005.

[17] Performance characteristics of virtualized systems
with the VMware ESX server and sizing methodology
for consolidating servers. IBM White Paper.
ibm.com/websphere/developer/zones/hipods, 2007.

[18] H. Qian, E. Miller, W. Zhang, M. Rabinovich, and
C. E. Wills. Agility in virtualized utility computing. In
2nd VTDC, 2007.

[19] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On
the placement of web server replicas. In INFOCOM,
pages 1587–1596, 2001.

[20] M. Rabinovich, I. Rabinovich, R. Rajaraman, and
A. Aggarwal. A dynamic object replication and
migration protocol for an internet hosting service. In
ICDCS, May 1999.

[21] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing
on the edge: A platform for replicating Internet
applications˙In Proc. of the 8th WCW, Sept. 2003.

[22] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van
Steen. GlobeDB: autonomic data replication for web
applications. In WWW, pages 33–42, 2005.

[23] S. Sivasubramanian, G. Pierre, and M. van Steen.
Replicating web applications on-demand. In SCC,
Sept. 2004.

[24] Swap prefetching. https://lwn.net/Articles/153353/.
[25] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A

scalable application placement controller for enterprise
data centers. In WWW, pages 331–340, 2007.

[26] B. Urgaonkar, P. J. Shenoy, and T. Roscoe. Resource
overbooking and application profiling in shared
hosting platforms. In OSDI, 2002.

[27] Yankee group’s SMB survey suite offers the most
comprehensive view of the SMB market. CRM Today.
http://www.crm2day.com/content/t6_librarynews_
1.php?news_id=116800, 2005.

