|
l l
| l

INTERNATIONALI
COMPUTER SCIENCE
Il N S T | T U T E

l

Architecting for Troubleshooting: Principles

Responsibility:
® Who has jurisdiction for solving a problem??

® Enable users to generate credible and actionable problem reports
— sufficient evidence to unambiguously demonstrate problem

® Responsible party likely in the best position to perform detailed diagnostics
Beyond Modularity:

® Fundamental tension between modular design and troubleshooting

— Interface narrowness allows for separation of concerns and rapid innovation ..

. but interface narrowness tends to mask problems, as errors and exceptlonal conditions must
propagate across layers of abstraction in some meaningful form

Tracking Causality:

® Network events entail lengthy sequences of activity dependent upon / affected by previous activity

® Determining chain of events that lead up to failures enables separating symptoms from root causes
Enriched Logging:

® Annotations associate meta-data with network activity

® | ogging requires distillation into more abstract forms over time

® Logging requires dialog between components generating log entries and the logging infrastructure
— callbacks support distillation and interactive debugging

Privacy:
® Information that facilitates debuggability can also facilitate detailed tracking of user activity
® We need mechanisms that, when possible, decouple logs of user activity from user identities
® Must recognize tussle between tracking activities for operational purposes versus masking it for reasons of privacy
® Problem even harder since often information needs to cross organizational boundaries

® Requests for information should include provenance attesting to the requester’s right-of-access:
—> E.g., demonstrate knowledge of related details or nonces known only to the traffic participants

Troubleshooting and Robustness:
® Troubleshooting and robustness are deeply intertwined
® Better troubleshooting can lead to automatic diagnosis and mitigation...

. Which in turn can lead to masking problems
— As can any robustness mechanism coupled with a narrow interface

Architecture for Troubleshooting: Prelir_ninary Mechanisms

VAST: - X-Trace N

Visibility Across Time and Space

Interactive repository of event level descriptions of network
activity
e Implemented using “FastBit” database technology
Supports programmatic querying, aging, distillation,
aggregation, and expiration
Designed to support cross-organizational data sharing
Queries for past activity can be mirrored into proactive
monitoring for future activity

» Pervasive Network Tracing Framework
e Architectural support for annotations

J/ AD A - X-Trace Annotated Traffic
B=ii ) /' (report dest = R)

-
-
-
- -
- L}
— i ——————

AN oo AD B
4 e / 5 \
. <
|
A\

—> Data Traffic
---- Wide-area X-Trace Reports
——————— » Local X-Trace Reports

/ Network Radar \ Reactive Measurement

What are the elements along a network path? . . .
. . Observations trigger measurements in response
How do they appear from different vantage points? . _
Observations can come from:

 Many elements not naturally exposed by standard operations U
One technique: measure transformations to known content serreports
Passive analysis

Proactive active probing
M | { Changes measurement from an event to a process

Combine disparate measurement techniques by using the
results of one measurement to drive additional assessments

| / For troubleshooting we can winnow possible root causes

- by using context-sensitive diagnostics

nnnnnnnnnnnnnnn

National Science Foundation



